1
|
Ranjan R, Ma B, Gleason RJ, Liao Y, Bi Y, Davis BEM, Yang G, Clark M, Mahajan V, Condon M, Broderick NA, Chen X. Modulating DNA Polα Enhances Cell Reprogramming Across Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613993. [PMID: 39345551 PMCID: PMC11429986 DOI: 10.1101/2024.09.19.613993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As a fundamental biological process, DNA replication ensures the accurate copying of genetic information. However, the impact of this process on cellular plasticity in multicellular organisms remains elusive. Here, we find that reducing the level or activity of a replication component, DNA Polymerase α (Polα), facilitates cell reprogramming in diverse stem cell systems across species. In Drosophila male and female germline stem cell lineages, reducing Polα levels using heterozygotes significantly enhances fertility of both sexes, promoting reproductivity during aging without compromising their longevity. Consistently, in C. elegans the pola heterozygous hermaphrodites exhibit increased fertility without a reduction in lifespan, suggesting that this phenomenon is conserved. Moreover, in male germline and female intestinal stem cell lineages of Drosophila, polα heterozygotes exhibit increased resistance to tissue damage caused by genetic ablation or pathogen infection, leading to enhanced regeneration and improved survival during post-injury recovery, respectively. Additionally, fine tuning of an inhibitor to modulate Polα activity significantly enhances the efficiency of reprogramming human embryonic fibroblasts into induced pluripotent cells. Together, these findings unveil novel roles of a DNA replication component in regulating cellular reprogramming potential, and thus hold promise for promoting tissue health, facilitating post-injury rehabilitation, and enhancing healthspan.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Binbin Ma
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yijun Liao
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingshan Bi
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guanghui Yang
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Maggie Clark
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vikrant Mahajan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Madison Condon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Tu R, Ping Z, Liu J, Tsoi ML, Song X, Liu W, Xie T. Niche Tet maintains germline stem cells independently of dioxygenase activity. EMBO J 2024; 43:1570-1590. [PMID: 38499787 PMCID: PMC11021519 DOI: 10.1038/s44318-024-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.
Collapse
Affiliation(s)
- Renjun Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhaohua Ping
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Jian Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Man Lung Tsoi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, New Territories, Hong Kong Special Administrative Region, China
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China.
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA.
| |
Collapse
|
3
|
Chen J, Li C, Sheng Y, Zhang J, Pang L, Dong Z, Wu Z, Lu Y, Liu Z, Zhang Q, Guan X, Chen X, Huang J. Communication between the stem cell niche and an adjacent differentiation niche through miRNA and EGFR signaling orchestrates exit from the stem cell state in the Drosophila ovary. PLoS Biol 2024; 22:e3002515. [PMID: 38512963 PMCID: PMC10986965 DOI: 10.1371/journal.pbio.3002515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/02/2024] [Accepted: 01/22/2024] [Indexed: 03/23/2024] Open
Abstract
The signaling environment, or niche, often governs the initial difference in behavior of an adult stem cell and a derivative that initiates a path towards differentiation. The transition between an instructive stem cell niche and differentiation niche must generally have single-cell resolution, suggesting that multiple mechanisms might be necessary to sharpen the transition. Here, we examined the Drosophila ovary and found that Cap cells, which are key constituents of the germline stem cell (GSC) niche, express a conserved microRNA (miR-124). Surprisingly, loss of miR-124 activity in Cap cells leads to a defect in differentiation of GSC derivatives. We present evidence that the direct functional target of miR-124 in Cap cells is the epidermal growth factor receptor (EGFR) and that failure to limit EGFR expression leads to the ectopic expression of a key anti-differentiation BMP signal in neighboring somatic escort cells (ECs), which constitute a differentiation niche. We further found that Notch signaling connects EFGR activity in Cap cells to BMP expression in ECs. We deduce that the stem cell niche communicates with the differentiation niche through a mechanism that begins with the selective expression of a specific microRNA and culminates in the suppression of the major anti-differentiation signal in neighboring cells, with the functionally important overall role of sharpening the spatial distinction between self-renewal and differentiation environments.
Collapse
Affiliation(s)
- Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaosqun Li
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiwei Wu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qichao Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Eslahi M, Nematbakhsh N, Dastmalchi N, Teimourian S, Safaralizadeh R. Signaling Pathways in Drosophila gonadal Stem Cells. Curr Stem Cell Res Ther 2024; 19:154-165. [PMID: 36788694 DOI: 10.2174/1574888x18666230213144531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023]
Abstract
The stem cells' ability to divide asymmetrically to produce differentiating and self-renewing daughter cells is crucial to maintain tissue homeostasis and development. Stem cell maintenance and differentiation rely on their regulatory microenvironment termed 'niches'. The mechanisms of the signal transduction pathways initiated from the niche, regulation of stem cell maintenance and differentiation were quite challenging to study. The knowledge gained from the study of Drosophila melanogaster testis and ovary helped develop our understanding of stem cell/niche interactions and signal pathways related to the regulatory mechanisms in maintaining homeostasis of adult tissue. In this review, we discuss the role of signaling pathways in Drosophila gonadal stem cell regeneration, competition, differentiation, dedifferentiation, proliferation, and fate determination. Furthermore, we present the current knowledge on how these signaling pathways are implicated in cancer, and how they contribute as potential candidates for effective cancer treatment.
Collapse
Affiliation(s)
- Maede Eslahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Nematbakhsh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Tu R, Tang XA, Xu R, Ping Z, Yu Z, Xie T. Gap junction-transported cAMP from the niche controls stem cell progeny differentiation. Proc Natl Acad Sci U S A 2023; 120:e2304168120. [PMID: 37603749 PMCID: PMC10468610 DOI: 10.1073/pnas.2304168120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/23/2023] Open
Abstract
The niche has been shown to control stem cell self-renewal in different tissue types and organisms. Recently, a separate niche has been proposed to control stem cell progeny differentiation, called the differentiation niche. However, it remains poorly understood whether and how the differentiation niche directly signals to stem cell progeny to control their differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells contribute to two separate niche compartments for controlling both germline stem cell (GSC) self-renewal and progeny differentiation. In this study, we show that IGS cells express Inx2 protein, which forms gap junctions (GJs) with germline-specific Zpg protein to control stepwise GSC lineage development, including GSC self-renewal, germline cyst formation, meiotic double-strand DNA break formation, and oocyte specification. Germline-specific Zpg and IGS-specific Inx2 knockdowns cause similar defects in stepwise GSC development. Additionally, secondary messenger cAMP is transported from IGS cells to GSCs and their progeny via GJs to activate PKA signaling for controlling stepwise GSC development. Therefore, this study demonstrates that the niche directly controls GSC progeny differentiation via the GJ-cAMP-PKA signaling axis, which provides important insights into niche control of stem cell differentiation and highlights the importance of GJ-transported cAMP in tissue regeneration. This may represent a general strategy for the niche to control adult stem cell development in various tissue types and organisms since GJs and cAMP are widely distributed.
Collapse
Affiliation(s)
- Renjun Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Xiaohan Alex Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Rui Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
| | - Zhaohua Ping
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region (SAR), China
- Stowers Institute for Medical Research, Kansas City, MO64110
| |
Collapse
|
6
|
Dong Z, Pang L, Liu Z, Sheng Y, Li X, Thibault X, Reilein A, Kalderon D, Huang J. Single-cell expression profile of Drosophila ovarian follicle stem cells illuminates spatial differentiation in the germarium. BMC Biol 2023; 21:143. [PMID: 37340484 PMCID: PMC10283321 DOI: 10.1186/s12915-023-01636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND How stem cell populations are organized and regulated within adult tissues is important for understanding cancer origins and for developing cell replacement strategies. Paradigms such as mammalian gut stem cells and Drosophila ovarian follicle stem cells (FSC) are characterized by population asymmetry, in which stem cell division and differentiation are separately regulated processes. These stem cells behave stochastically regarding their contributions to derivative cells and also exhibit dynamic spatial heterogeneity. Drosophila FSCs provide an excellent model for understanding how a community of active stem cells maintained by population asymmetry is regulated. Here, we use single-cell RNA sequencing to profile the gene expression patterns of FSCs and their immediate derivatives to investigate heterogeneity within the stem cell population and changes associated with differentiation. RESULTS We describe single-cell RNA sequencing studies of a pre-sorted population of cells that include FSCs and the neighboring cell types, escort cells (ECs) and follicle cells (FCs), which they support. Cell-type assignment relies on anterior-posterior (AP) location within the germarium. We clarify the previously determined location of FSCs and use spatially targeted lineage studies as further confirmation. The scRNA profiles among four clusters are consistent with an AP progression from anterior ECs through posterior ECs and then FSCs, to early FCs. The relative proportion of EC and FSC clusters are in good agreement with the prevalence of those cell types in a germarium. Several genes with graded profiles from ECs to FCs are highlighted as candidate effectors of the inverse gradients of the two principal signaling pathways, Wnt and JAK-STAT, that guide FSC differentiation and division. CONCLUSIONS Our data establishes an important resource of scRNA-seq profiles for FSCs and their immediate derivatives that is based on precise spatial location and functionally established stem cell identity, and facilitates future genetic investigation of regulatory interactions guiding FSC behavior.
Collapse
Affiliation(s)
- Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Xavier Thibault
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amy Reilein
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Taniguchi K, Igaki T. Sas-Ptp10D shapes germ-line stem cell niche by facilitating JNK-mediated apoptosis. PLoS Genet 2023; 19:e1010684. [PMID: 36972315 PMCID: PMC10079222 DOI: 10.1371/journal.pgen.1010684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/06/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
The function of the stem cell system is supported by a stereotypical shape of the niche structure. In Drosophila ovarian germarium, somatic cap cells form a dish-like niche structure that allows only two or three germ-line stem cells (GSCs) reside in the niche. Despite extensive studies on the mechanism of stem cell maintenance, the mechanisms of how the dish-like niche structure is shaped and how this structure contributes to the stem cell system have been elusive. Here, we show that a transmembrane protein Stranded at second (Sas) and its receptor Protein tyrosine phosphatase 10D (Ptp10D), effectors of axon guidance and cell competition via epidermal growth factor receptor (Egfr) inhibition, shape the dish-like niche structure by facilitating c-Jun N-terminal kinase (JNK)-mediated apoptosis. Loss of Sas or Ptp10D in gonadal apical cells, but not in GSCs or cap cells, during the pre-pupal stage results in abnormal shaping of the niche structure in the adult, which allows excessive, four to six GSCs reside in the niche. Mechanistically, loss of Sas-Ptp10D elevates Egfr signaling in the gonadal apical cells, thereby suppressing their naturally-occurring JNK-mediated apoptosis that is essential for the shaping of the dish-like niche structure by neighboring cap cells. Notably, the abnormal niche shape and resulting excessive GSCs lead to diminished egg production. Our data propose a concept that the stereotypical shaping of the niche structure optimizes the stem cell system, thereby maximizing the reproductive capacity.
Collapse
Affiliation(s)
- Kiichiro Taniguchi
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyoku, Kyoto, Japan
- * E-mail: (KT); (TI)
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyoku, Kyoto, Japan
- * E-mail: (KT); (TI)
| |
Collapse
|
8
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
9
|
Soriano A, Petit C, Ryan S, Jemc JC. Tracking Follicle Cell Development. Methods Mol Biol 2023; 2626:151-177. [PMID: 36715904 DOI: 10.1007/978-1-0716-2970-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Somatic follicle cells are critical support cells for Drosophila oogenesis, as they provide signals and molecules needed to produce a mature egg. Throughout this process, the follicle cells differentiate into multiple subpopulations and transition between three different cell cycle programs to support nurse cell and oocyte development. The follicle cells are mitotic in early egg chamber development, as they cover the germline cyst. In mid-oogenesis, follicle cells switch from mitosis to endocycling, increasing their ploidy from 2C to 16C. Finally, in late oogenesis, cells transition from endocycling to gene amplification, increasing the copy number of a small subset of genes, including the genes encoding proteins required for egg maturation. In order to explore the genetic regulation of these cell cycle switches and follicle cell development and specification, clonal analysis and the GAL4/UAS system are used frequently to reduce or increase expression of genes of interest. These genetic approaches combined with immunohistochemistry and in situ hybridization are powerful tools for characterizing the mechanisms regulating follicle cell development and the mitosis/endocycle and endocycle/gene amplification transitions. This chapter describes the genetic tools available to manipulate gene expression in follicle cells, as well as the methods and reagents that can be utilized to explore gene expression throughout follicle cell development.
Collapse
Affiliation(s)
- Adrianna Soriano
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Houston Baptist University, Houston, TX, USA
| | | | - Savannah Ryan
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Jennifer C Jemc
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Zhang J, Zhang S, Sun Z, Cai Y, Zhong G, Yi X. Camptothecin Effectively Regulates Germline Differentiation through Bam-Cyclin A Axis in Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24021617. [PMID: 36675143 PMCID: PMC9864452 DOI: 10.3390/ijms24021617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Camptothecin (CPT), first isolated from Chinese tree Camptotheca acuminate, produces rapid and prolonged inhibition of DNA synthesis and induction of DNA damage by targeting topoisomerase I (top1), which is highly activated in cancer cells. CPT thus exhibits remarkable anticancer activities in various cancer types, and is a promising therapeutic agent for the treatment of cancers. However, it remains to be uncovered underlying its cytotoxicity toward germ cells. In this study we found that CPT, a cell cycle-specific anticancer agent, reduced fecundity and exhibited significant cytotoxicity toward GSCs and two-cell cysts. We showed that CPT induced GSC loss and retarded two-cell cysts differentiation in a niche- or apoptosis-independent manner. Instead, CPT induced ectopic expression of a differentiation factor, bag of marbles (Bam), and regulated the expression of cyclin A, which contributed to GSC loss. In addition, CPT compromised two-cell cysts differentiation by decreasing the expression of Bam and inducing cell arrest at G1/S phase via cyclin A, eventually resulting in two-cell accumulation. Collectively, this study demonstrates, for the first time in vivo, that the Bam-cyclin A axis is involved in CPT-mediated germline stem cell loss and two-cell cysts differentiation defects via inducing cell cycle arrest, which could provide information underlying toxicological effects of CPT in the productive system, and feature its potential to develop as a pharmacology-based germline stem cell regulation agent.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Shijie Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhipeng Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 119077, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (X.Y.)
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (G.Z.); (X.Y.)
| |
Collapse
|
11
|
Siddall NA, Casagranda F, Johanson TM, Dominado N, Heaney J, Sutherland JM, McLaughlin EA, Hime GR. MiMIC analysis reveals an isoform specific role for Drosophila Musashi in follicle stem cell maintenance and escort cell function. Cell Death Dis 2022; 8:455. [DOI: 10.1038/s41420-022-01245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
AbstractThe Drosophila ovary is regenerated from germline and somatic stem cell populations that have provided fundamental conceptual understanding on how adult stem cells are regulated within their niches. Recent ovarian transcriptomic studies have failed to identify mRNAs that are specific to follicle stem cells (FSCs), suggesting that their fate may be regulated post-transcriptionally. We have identified that the RNA-binding protein, Musashi (Msi) is required for maintaining the stem cell state of FSCs. Loss of msi function results in stem cell loss, due to a change in differentiation state, indicated by upregulation of Lamin C in the stem cell population. In msi mutant ovaries, Lamin C upregulation was also observed in posterior escort cells that interact with newly formed germ cell cysts. Mutant somatic cells within this region were dysfunctional, as evidenced by the presence of germline cyst collisions, fused egg chambers and an increase in germ cell cyst apoptosis. The msi locus produces two classes of mRNAs (long and short). We show that FSC maintenance and escort cell function specifically requires the long transcripts, thus providing the first evidence of isoform-specific regulation in a population of Drosophila epithelial cells. We further demonstrate that although male germline stem cells have previously been shown to require Msi function to prevent differentiation this is not the case for female germline stem cells, indicating that these similar stem cell types have different requirements for Msi, in addition to the differential use of Msi isoforms between soma and germline. In summary, we show that different isoforms of the Msi RNA-binding protein are expressed in specific cell populations of the ovarian stem cell niche where Msi regulates stem cell differentiation, niche cell function and subsequent germ cell survival and differentiation.
Collapse
|
12
|
Diegmiller R, Nunley H, Shvartsman SY, Imran Alsous J. Quantitative models for building and growing fated small cell networks. Interface Focus 2022; 12:20210082. [PMID: 35865502 PMCID: PMC9184967 DOI: 10.1098/rsfs.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Small cell clusters exhibit numerous phenomena typically associated with complex systems, such as division of labour and programmed cell death. A conserved class of such clusters occurs during oogenesis in the form of germline cysts that give rise to oocytes. Germline cysts form through cell divisions with incomplete cytokinesis, leaving cells intimately connected through intercellular bridges that facilitate cyst generation, cell fate determination and collective growth dynamics. Using the well-characterized Drosophila melanogaster female germline cyst as a foundation, we present mathematical models rooted in the dynamics of cell cycle proteins and their interactions to explain the generation of germline cell lineage trees (CLTs) and highlight the diversity of observed CLT sizes and topologies across species. We analyse competing models of symmetry breaking in CLTs to rationalize the observed dynamics and robustness of oocyte fate specification, and highlight remaining gaps in knowledge. We also explore how CLT topology affects cell cycle dynamics and synchronization and highlight mechanisms of intercellular coupling that underlie the observed collective growth patterns during oogenesis. Throughout, we point to similarities across organisms that warrant further investigation and comment on the extent to which experimental and theoretical findings made in model systems extend to other species.
Collapse
Affiliation(s)
- Rocky Diegmiller
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Hayden Nunley
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Stanislav Y. Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA,Department of Molecular Biology, Princeton University, Princeton, NJ, USA,Flatiron Institute, Simons Foundation, New York, NY, USA
| | | |
Collapse
|
13
|
Hong W, Wang B, Zhu Y, Wu J, Qiu L, Ling S, Zhou Z, Dai Y, Zhong Z, Zheng Y. Female germline stem cells: aging and anti-aging. J Ovarian Res 2022; 15:79. [PMID: 35787298 PMCID: PMC9251950 DOI: 10.1186/s13048-022-01011-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
The delay of ovarian aging and the fertility preservation of cancer patients are the eternal themes in the field of reproductive medicine. Acting as the pacemaker of female physiological aging, ovary is also considered as the principle player of cancer, cardiovascular diseases, cerebrovascular diseases, neurodegenerative diseases and etc. However, its aging mechanism and preventive measures are still unclear. Some researchers attempt to activate endogenous ovarian female germline stem cells (FGSCs) to restore ovarian function, as the most promising approach. FGSCs are stem cells in the adult ovaries that can be infinitely self-renewing and have the potential of committed differention. This review aims to elucidate FGSCs aging mechanism from multiple perspectives such as niches, immune disorder, chronic inflammation and oxidative stress. Therefore, the rebuilding nichs of FGSCs, regulation of immune dysfunction, anti-inflammation and oxidative stress remission are expected to restore or replenish FGSCs, ultimately to delay ovarian aging.
Collapse
Affiliation(s)
- Wenli Hong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China.,Shenzhen University Health Science Center, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Baofeng Wang
- ARTcenter, Shenzhen Hengsheng Hospital, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yasha Zhu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Jun'e Wu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Li Qiu
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Shuyi Ling
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Ziqiong Zhou
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yuqing Dai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China.
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong, 518000, People's Republic of China.
| |
Collapse
|
14
|
Martin ET, Sarkar K, McCarthy A, Rangan P. Oo-site: A dashboard to visualize gene expression during Drosophila oogenesis suggests meiotic entry is regulated post-transcriptionally. Biol Open 2022; 11:bio059286. [PMID: 35579517 PMCID: PMC9148541 DOI: 10.1242/bio.059286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Determining how stem cell differentiation is controlled has important implications for understanding the etiology of degenerative disease and designing regenerative therapies. In vivo analyses of stem cell model systems have revealed regulatory paradigms for stem cell self-renewal and differentiation. The germarium of the female Drosophila gonad, which houses both germline and somatic stem cells, is one such model system. Bulk mRNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and bulk translation efficiency (polysome-seq) of mRNAs are available for stem cells and their differentiating progeny within the Drosophila germarium. However, visualizing those data is hampered by the lack of a tool to spatially map gene expression and translational data in the germarium. Here, we have developed Oo-site (https://www.ranganlab.com/Oo-site), a tool for visualizing bulk RNA-seq, scRNA-seq, and translational efficiency data during different stages of germline differentiation, which makes these data accessible to non-bioinformaticians. Using this tool, we recapitulated previously reported expression patterns of developmentally regulated genes and discovered that meiotic genes, such as those that regulate the synaptonemal complex, are regulated at the level of translation.
Collapse
Affiliation(s)
- Elliot T. Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Kahini Sarkar
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
15
|
Cyromazine Effects the Reproduction of Drosophila by Decreasing the Number of Germ Cells in the Female Adult Ovary. INSECTS 2022; 13:insects13050414. [PMID: 35621750 PMCID: PMC9144682 DOI: 10.3390/insects13050414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
Simple Summary Cyromazine, an insect growth regulator, is used to control the Dipteran pest population. Previous findings observed that treatment with cyromazine increased the larval mortality, by interfering with the ecdysone signaling. In addition, the application of exogenous 20E significantly reduced the mortality caused by cyromazine. Many studies have also supported the role of ecdysone signaling in the maintenance of germline stem cells (GSCs), where mutations in ecdysone signaling-related genes significantly decreased the number of GSCs. However, to date, no study has reported the effect of cyromazine on the GSCs of Drosophila melanogaster. In the present study, we observed that cyromazine significantly reduced the number of both GSCs and cystoblasts (CBs) in the ovary of adult female. To further understand the effect of cyromazine on germ cells, we selected some key genes related to the ecdysone signaling pathway and evaluated their expression through RT-qPCR. Additionally, we measured the ecdysone titer from the cyromazine-treated ovaries. Our results indicated a significant decrease in the expression of ecdysone signaling-related genes and also in the ecdysone titer. These results further supported our findings that cyromazine reduced the number of germ cells by interfering with the ecdysone signaling pathway. Abstract In the present study, we observed a 58% decrease in the fecundity of Drosophila melanogaster, after treatment with the cyromazine. To further elucidate the effects of cyromazine on reproduction, we counted the number of both germline stem cells (GSCs) and cystoblasts (CBs) in the ovary of a 3-day-old adult female. The results showed a significant decrease in the number of GSCs and CBs as compared to the control group. The mode of action of cyromazine is believed to be through the ecdysone signaling pathway. To further support this postulate, we observed the expression of key genes involved in the ecdysone signaling pathway and also determined the ecdysone titer from cyromazine-treated ovaries. Results indicated a significant decrease in the expression of ecdysone signaling-related genes as compared to the control group. Furthermore, the titer of the ecdysone hormone was also markedly reduced (90%) in cyromazine-treated adult ovaries, suggesting that ecdysone signaling was directly related to the decrease in the number of GSCs and CBs. However, further studies are required to understand the mechanism by which cyromazine affects the GSCs and CBs in female adult ovaries.
Collapse
|
16
|
Chen TA, Lin KY, Yang SM, Tseng CY, Wang YT, Lin CH, Luo L, Cai Y, Hsu HJ. Canonical Wnt Signaling Promotes Formation of Somatic Permeability Barrier for Proper Germ Cell Differentiation. Front Cell Dev Biol 2022; 10:877047. [PMID: 35517512 PMCID: PMC9062081 DOI: 10.3389/fcell.2022.877047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Morphogen-mediated signaling is critical for proper organ development and stem cell function, and well-characterized mechanisms spatiotemporally limit the expression of ligands, receptors, and ligand-binding cell-surface glypicans. Here, we show that in the developing Drosophila ovary, canonical Wnt signaling promotes the formation of somatic escort cells (ECs) and their protrusions, which establish a physical permeability barrier to define morphogen territories for proper germ cell differentiation. The protrusions shield germ cells from Dpp and Wingless morphogens produced by the germline stem cell (GSC) niche and normally only received by GSCs. Genetic disruption of EC protrusions allows GSC progeny to also receive Dpp and Wingless, which subsequently disrupt germ cell differentiation. Our results reveal a role for canonical Wnt signaling in specifying the ovarian somatic cells necessary for germ cell differentiation. Additionally, we demonstrate the morphogen-limiting function of this physical permeability barrier, which may be a common mechanism in other organs across species.
Collapse
Affiliation(s)
- Ting-An Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shun-Min Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Chen-Yuan Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chi-Hung Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Lichao Luo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Hwei-Jan Hsu,
| |
Collapse
|
17
|
Shore T, Levi T, Kalifa R, Dreifuss A, Rekler D, Weinberg-Shukron A, Nevo Y, Bialistoky T, Moyal V, Gold MY, Leebhoff S, Zangen D, Deshpande G, Gerlitz O. Nucleoporin107 mediates female sexual differentiation via Dsx. eLife 2022; 11:72632. [PMID: 35311642 PMCID: PMC8975549 DOI: 10.7554/elife.72632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
We recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of BMP signaling hyperactivation. Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex and tissue specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.
Collapse
Affiliation(s)
- Tikva Shore
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Tgst Levi
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Rachel Kalifa
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Amatzia Dreifuss
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Dina Rekler
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | | | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, The Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tzofia Bialistoky
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Victoria Moyal
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Merav Yaffa Gold
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - Shira Leebhoff
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| | - David Zangen
- Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Offer Gerlitz
- Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
18
|
Dunipace L, Newcomb S, Stathopoulos A. brinker levels regulated by a promoter proximal element support germ cell homeostasis. Development 2022; 149:274023. [PMID: 35037688 PMCID: PMC8918798 DOI: 10.1242/dev.199890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022]
Abstract
ABSTRACT
A limited BMP signaling range in the stem cell niche of the ovary protects against germ cell tumors and promotes germ cell homeostasis. The canonical repressor of BMP signaling in both the Drosophila embryo and wing disc is the transcription factor Brinker (Brk), yet the expression and potential role of Brk in the germarium has not previously been described. Here, we find that brk expression requires a promoter-proximal element (PPE) to support long-distance enhancer action as well as to drive expression in the germarium. Furthermore, PPE subdomains have different activities; in particular, the proximal portion acts as a damper to regulate brk levels precisely. Using PPE mutants as well as tissue-specific RNA interference and overexpression, we show that altering brk expression within either the soma or the germline affects germ cell homeostasis. Remarkably, we find that Decapentaplegic (Dpp), the main BMP ligand and canonical antagonist of Brk, is upregulated by Brk in the escort cells of the germarium, demonstrating that Brk can positively regulate this pathway.
Collapse
Affiliation(s)
- Leslie Dunipace
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, MC114-96, Pasadena, CA 91125, USA
| | - Susan Newcomb
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, MC114-96, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- Division of Biology, California Institute of Technology, 1200 East California Boulevard, MC114-96, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Valer FB, Spegiorim GC, Espreafico EM, Ramos RGP. The IRM cell adhesion molecules Hibris, Kin of irre and Roughest control egg morphology by modulating ovarian muscle contraction in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104344. [PMID: 34896373 DOI: 10.1016/j.jinsphys.2021.104344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The Irre Cell Recognition Module (IRM) is an evolutionarily conserved group of transmembrane glycoproteins required for cell-cell recognition and adhesion in metazoan development. In Drosophila melanogaster ovaries, four members of this group - Roughest (Rst), Kin of irre (Kirre), Hibris (Hbs) and Sticks and stones (Sns) - play important roles in germ cell encapsulation and muscle sheath organization during early pupal stages, as well as in the progression to late oogenesis in the adult. Females carrying some of the mutant rst alleles are viable but sterile, and previous work from our laboratory had identified defects in the organization of the peritoneal and epithelial muscle sheaths of these mutants that could underlie their sterile phenotype. In this study, besides further characterizing the sterility phenotype associated with rst mutants, we investigated the role of the IRM molecules Rst, Kirre and Hbs in maintaining the functionality of the ovarian muscle sheaths. We found that knocking down any of the three genes in these structures, either individually or in double heterozygous combinations, not only decreases contraction frequency but also irregularly increases contraction amplitude. Furthermore, these alterations can significantly impact the morphology of eggs laid by IRM-depleted females demonstrating a hitherto unknown role of IRM molecules in egg morphogenesis.
Collapse
Affiliation(s)
- Felipe Berti Valer
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giulia Covolo Spegiorim
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
20
|
Abstract
A simple, universal and fundamental definition of adult stem cell communities is proposed. Key principles of cell lineage methods for defining adult stem cell numbers, locations and behaviors are critically evaluated, emphasizing the imperatives of capturing the full spectrum of individual stem cell behaviors, examining a variety of experimental time periods and avoiding unwarranted assumptions. The focus is first on defining fundamentals and then addresses stem cell heterogeneity, potential hierarchies and how individual cells serve the function of a stem cell community.
Collapse
|
21
|
Yuen AC, Hillion KH, Wang R, Amoyel M. Germ cells commit somatic stem cells to differentiation following priming by PI3K/Tor activity in the Drosophila testis. PLoS Genet 2021; 17:e1009609. [PMID: 34898607 PMCID: PMC8699969 DOI: 10.1371/journal.pgen.1009609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 01/05/2023] Open
Abstract
How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline. Stem cells are unique in their ability to regenerate adult tissues by dividing to provide new stem cells, a process called self-renewal, and cells that will differentiate and maintain tissue function. How and when the daughters that differentiate lose the ability to self-renew is still poorly understood. Self-renewal depends on signals that are provided by the supportive micro-environment, or niche, in which the stem cells reside. It was assumed that simply losing access to this environment and the signals it provides was sufficient to direct differentiation. Here we use the Drosophila testis as a model to show that this is not the case. Instead, differentiation must be actively induced by signalling, and stem cells deprived of all signals can be maintained. Studying the relative timings of the various inputs into differentiation leads us to propose that a series of events ensure appropriate differentiation. First, stem cells receive differentiation-inducing signals that promote a permissive, or primed, state which is reversible and does not preclude self-renewal. The final commitment comes from interacting with other cells in the tissue, ensuring that differentiation always occurs in a coordinated manner among the different cell types composing this tissue.
Collapse
Affiliation(s)
- Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kenzo-Hugo Hillion
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Ruoxu Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Reilein A, Kogan HV, Misner R, Park KS, Kalderon D. Adult stem cells and niche cells segregate gradually from common precursors that build the adult Drosophila ovary during pupal development. eLife 2021; 10:69749. [PMID: 34590579 PMCID: PMC8536258 DOI: 10.7554/elife.69749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Production of proliferative follicle cells (FCs) and quiescent escort cells (ECs) by follicle stem cells (FSCs) in adult Drosophila ovaries is regulated by niche signals from anterior (cap cells, ECs) and posterior (polar FCs) sources. Here we show that ECs, FSCs, and FCs develop from common pupal precursors, with different fates acquired by progressive separation of cells along the AP axis and a graded decline in anterior cell proliferation. ECs, FSCs, and most FCs derive from intermingled cell (IC) precursors interspersed with germline cells. Precursors also accumulate posterior to ICs before engulfing a naked germline cyst projected out of the germarium to form the first egg chamber and posterior polar FC signaling center. Thus, stem and niche cells develop in appropriate numbers and spatial organization through regulated proliferative expansion together with progressive establishment of spatial signaling cues that guide adult cell behavior, rather than through rigid early specification events.
Collapse
Affiliation(s)
- Amy Reilein
- Department of Biological Sciences, Columbia University, New York, United States
| | - Helen V Kogan
- Department of Biological Sciences, Columbia University, New York, United States
| | - Rachel Misner
- Department of Biological Sciences, Columbia University, New York, United States
| | - Karen Sophia Park
- Department of Biological Sciences, Columbia University, New York, United States
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
23
|
Slaidina M, Gupta S, Banisch TU, Lehmann R. A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res 2021; 31:1938-1951. [PMID: 34389661 DOI: 10.1101/gr.274340.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Organ function relies on the spatial organization and functional coordination of numerous cell types. The Drosophila ovary is a widely used model system to study the cellular activities underlying organ function, including stem cell regulation, cell signaling and epithelial morphogenesis. However, the relative paucity of cell type-specific reagents hinders investigation of molecular functions at the appropriate cellular resolution. Here, we used single-cell RNA sequencing to characterize all cell types of the stem cell compartment and early follicles of the Drosophila ovary. We computed transcriptional signatures and identified specific markers for nine states of germ cell differentiation, and 23 somatic cell types and subtypes. We uncovered an unanticipated diversity of escort cells, the somatic cells that directly interact with differentiating germline cysts. Three escort cell subtypes reside in discrete anatomical positions, and express distinct sets of secreted and transmembrane proteins, suggesting that diverse micro-environments support the progressive differentiation of germ cells. Finally, we identified 17 follicle cell subtypes, and characterized their transcriptional profiles. Altogether, we provide a comprehensive resource of gene expression, cell type-specific markers, spatial coordinates and functional predictions for 34 ovarian cell types and subtypes.
Collapse
Affiliation(s)
| | - Selena Gupta
- Skirball Institute, NYU Grossman School of Medicine
| | | | | |
Collapse
|
24
|
Banisch TU, Slaidina M, Gupta S, Ho M, Gilboa L, Lehmann R. A transitory signaling center controls timing of primordial germ cell differentiation. Dev Cell 2021; 56:1742-1755.e4. [PMID: 34081907 PMCID: PMC8330407 DOI: 10.1016/j.devcel.2021.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/07/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Organogenesis requires exquisite spatiotemporal coordination of cell morphogenesis, migration, proliferation, and differentiation of multiple cell types. For gonads, this involves complex interactions between somatic and germline tissues. During Drosophila ovary morphogenesis, primordial germ cells (PGCs) either are sequestered in stem cell niches and are maintained in an undifferentiated germline stem cell state or transition directly toward differentiation. Here, we identify a mechanism that links hormonal triggers of somatic tissue morphogenesis with PGC differentiation. An early ecdysone pulse initiates somatic swarm cell (SwC) migration, positioning these cells close to PGCs. A second hormone peak activates Torso-like signal in SwCs, which stimulates the Torso receptor tyrosine kinase (RTK) signaling pathway in PGCs promoting their differentiation by de-repression of the differentiation gene, bag of marbles. Thus, systemic temporal cues generate a transitory signaling center that coordinates ovarian morphogenesis with stem cell self-renewal and differentiation programs, highlighting a more general role for such centers in reproductive and developmental biology.
Collapse
Affiliation(s)
- Torsten U Banisch
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| | - Maija Slaidina
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Selena Gupta
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Megan Ho
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Lilach Gilboa
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Lehmann
- Department of Cell Biology, Howard Hughes Medical Institute, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
25
|
Kahney EW, Zion EH, Sohn L, Viets-Layng K, Johnston R, Chen X. Characterization of histone inheritance patterns in the Drosophila female germline. EMBO Rep 2021; 22:e51530. [PMID: 34031963 PMCID: PMC8406404 DOI: 10.15252/embr.202051530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
Stem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that during a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combine histone labeling with DNA Oligopaints to distinguish old versus new histones and visualize their inheritance patterns at a single‐gene resolution in asymmetrically dividing cells in vivo. This strategy can be applied to other biological systems involving cell fate change during development or tissue homeostasis in multicellular organisms.
Collapse
Affiliation(s)
| | - Emily H Zion
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Lydia Sohn
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Kayla Viets-Layng
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Robert Johnston
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Sênos Demarco R, Jones DL. Redox signaling as a modulator of germline stem cell behavior: Implications for regenerative medicine. Free Radic Biol Med 2021; 166:67-72. [PMID: 33592309 PMCID: PMC8021480 DOI: 10.1016/j.freeradbiomed.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Germline stem cells (GSCs) are crucial for the generation of gametes and propagation of the species. Both intrinsic signaling pathways and environmental cues are employed in order to tightly control GSC behavior, including mitotic divisions, the choice between self-renewal or onset of differentiation, and survival. Recently, oxidation-reduction (redox) signaling has emerged as an important regulator of GSC and gamete behavior across species. In this review, we will highlight the primary mechanisms through which redox signaling acts to influence GSC behavior in different model organisms (Caenorhabditis elegans, Drosophila melanogaster and Mus musculus). In addition, we will summarize the latest research on the use of antioxidants to support mammalian spermatogenesis and discuss potential strategies for regenerative medicine in humans to enhance reproductive fitness.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Hu X, Li M, Hao X, Lu Y, Zhang L, Wu G. The Osa-Containing SWI/SNF Chromatin-Remodeling Complex Is Required in the Germline Differentiation Niche for Germline Stem Cell Progeny Differentiation. Genes (Basel) 2021; 12:genes12030363. [PMID: 33806269 PMCID: PMC7998989 DOI: 10.3390/genes12030363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Drosophila ovary is recognized as a powerful model to study stem cell self-renewal and differentiation. Decapentaplegic (Dpp) is secreted from the germline stem cell (GSC) niche to activate Bone Morphogenic Protein (BMP) signaling in GSCs for their self-renewal and is restricted in the differentiation niche for daughter cell differentiation. Here, we report that Switch/sucrose non-fermentable (SWI/SNF) component Osa depletion in escort cells (ECs) results in a blockage of GSC progeny differentiation. Further molecular and genetic analyses suggest that the defective germline differentiation is partially attributed to the elevated dpp transcription in ECs. Moreover, ectopic Engrailed (En) expression in osa-depleted ECs partially contributes to upregulated dpp transcription. Furthermore, we show that Osa regulates germline differentiation in a Brahma (Brm)-associated protein (BAP)-complex-dependent manner. Additionally, the loss of EC long cellular processes upon osa depletion may also partly contribute to the germline differentiation defect. Taken together, these data suggest that the epigenetic factor Osa plays an important role in controlling EC characteristics and germline lineage differentiation.
Collapse
Affiliation(s)
- Xiaolong Hu
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
| | - Mengjie Li
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
| | - Xue Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; (X.H.); (Y.L.); (L.Z.)
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou 215121, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, The Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.H.); (M.L.)
- Correspondence:
| |
Collapse
|
28
|
A Progressive Somatic Cell Niche Regulates Germline Cyst Differentiation in the Drosophila Ovary. Curr Biol 2021; 31:840-852.e5. [PMID: 33340458 DOI: 10.1016/j.cub.2020.11.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 10/02/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
Abstract
In the germarium of the Drosophila ovary, developing germline cysts are surrounded by a population of somatic escort cells that are known to function as the niche cells for germline differentiation;1 however, the underlying molecular mechanisms of this niche function remain poorly understood. Through single-cell gene expression profiling combined with genetic analyses, we here demonstrate that the escort cells can be spatially and functionally divided into two successive domains. The anterior escort cells (aECs) specifically produce ecdysone, which acts on the cystoblast to promote synchronous cell division, whereas the posterior escort cells (pECs) respond to ecdysone signaling and regulate soma-germline cell adhesion to promote the transition from 16-cell cyst-to-egg chamber formation. The patterning of the aEC and pEC domains is independent of the germline but is dependent on JAK/STAT signaling activity, which emanates from the posterior. Thus, a heterogeneous population of escort cells constitutes a stepwise niche environment to orchestrate cystoblast division and differentiation toward egg chamber formation.
Collapse
|
29
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
30
|
Tu R, Duan B, Song X, Chen S, Scott A, Hall K, Blanck J, DeGraffenreid D, Li H, Perera A, Haug J, Xie T. Multiple Niche Compartments Orchestrate Stepwise Germline Stem Cell Progeny Differentiation. Curr Biol 2020; 31:827-839.e3. [PMID: 33357404 DOI: 10.1016/j.cub.2020.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/17/2020] [Accepted: 12/15/2020] [Indexed: 11/28/2022]
Abstract
The niche controls stem cell self-renewal and progenitor differentiation for maintaining adult tissue homeostasis in various organisms. However, it remains unclear whether the niche is compartmentalized to control stem cell self-renewal and stepwise progeny differentiation. In the Drosophila ovary, inner germarial sheath (IGS) cells form a niche for controlling germline stem cell (GSC) progeny differentiation. In this study, we have identified four IGS subpopulations, which form linearly arranged niche compartments for controlling GSC maintenance and multi-step progeny differentiation. Single-cell analysis of the adult ovary has identified four IGS subpopulations (IGS1-IGS4), the identities and cellular locations of which have been further confirmed by fluorescent in situ hybridization. IGS1 and IGS2 physically interact with GSCs and mitotic cysts to control GSC maintenance and cyst formation, respectively, whereas IGS3 and IGS4 physically interact with 16-cell cysts to regulate meiosis, oocyte development, and cyst morphological change. Finally, one follicle cell progenitor population has also been transcriptionally defined for facilitating future studies on follicle stem cell regulation. Therefore, this study has structurally revealed that the niche is organized into multiple compartments for orchestrating stepwise adult stem cell development and has also provided useful resources and tools for further functional characterization of the niche in the future.
Collapse
Affiliation(s)
- Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Bo Duan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Kate Hall
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jillian Blanck
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Dustin DeGraffenreid
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jeff Haug
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat Commun 2020; 11:5628. [PMID: 33159074 PMCID: PMC7648648 DOI: 10.1038/s41467-020-19361-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/08/2020] [Indexed: 01/05/2023] Open
Abstract
The Drosophila ovary is a widely used model for germ cell and somatic tissue biology. Here we use single-cell RNA-sequencing (scRNA-seq) to build a comprehensive cell atlas of the adult Drosophila ovary that contains transcriptional profiles for every major cell type in the ovary, including the germline stem cells and their niche cells, follicle stem cells, and previously undescribed subpopulations of escort cells. In addition, we identify Gal4 lines with specific expression patterns and perform lineage tracing of subpopulations of escort cells and follicle cells. We discover that a distinct subpopulation of escort cells is able to convert to follicle stem cells in response to starvation or upon genetic manipulation, including knockdown of escargot, or overactivation of mTor or Toll signalling.
Collapse
|
32
|
Melamed D, Kalderon D. Opposing JAK-STAT and Wnt signaling gradients define a stem cell domain by regulating differentiation at two borders. eLife 2020; 9:61204. [PMID: 33135631 PMCID: PMC7695452 DOI: 10.7554/elife.61204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Many adult stem cell communities are maintained by population asymmetry, where stochastic behaviors of multiple individual cells collectively result in a balance between stem cell division and differentiation. We investigated how this is achieved for Drosophila Follicle Stem Cells (FSCs) by spatially-restricted niche signals. FSCs produce transit-amplifying Follicle Cells (FCs) from their posterior face and quiescent Escort Cells (ECs) to their anterior. We show that JAK-STAT pathway activity, which declines from posterior to anterior, dictates the pattern of divisions over the FSC domain, promotes more posterior FSC locations and conversion to FCs, while opposing EC production. Wnt pathway activity declines from the anterior, promotes anterior FSC locations and EC production, and opposes FC production. The pathways combine to define a stem cell domain through concerted effects on FSC differentiation to ECs and FCs at either end of opposing signaling gradients, and impose a pattern of proliferation that matches derivative production.
Collapse
Affiliation(s)
- David Melamed
- Department of Biological Sciences, Columbia University, New York, United States
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
33
|
Wang M, Chen X, Wu Y, Zheng Q, Chen W, Yan Y, Luan X, Shen C, Fang J, Zheng B, Yu J. RpS13 controls the homeostasis of germline stem cell niche through Rho1-mediated signals in the Drosophila testis. Cell Prolif 2020; 53:e12899. [PMID: 32896929 PMCID: PMC7574871 DOI: 10.1111/cpr.12899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives Stem cell niche regulated the renewal and differentiation of germline stem cells (GSCs) in Drosophila. Previously, we and others identified a series of genes encoding ribosomal proteins that may contribute to the self‐renewal and differentiation of GSCs. However, the mechanisms that maintain and differentiate GSCs in their niches were not well understood. Materials and Methods Flies were used to generate tissue‐specific gene knockdown. Small interfering RNAs were used to knockdown genes in S2 cells. qRT‐PCR was used to examine the relative mRNA expression level. TUNEL staining or flow cytometry assays were used to detect cell survival. Immunofluorescence was used to determine protein localization and expression pattern. Results Herein, using a genetic manipulation approach, we investigated the role of ribosomal protein S13 (RpS13) in testes and S2 cells. We reported that RpS13 was required for the self‐renewal and differentiation of GSCs. We also demonstrated that RpS13 regulated cell proliferation and apoptosis. Mechanistically, we showed that RpS13 regulated the expression of ribosome subunits and could moderate the expression of the Rho1, DE‐cad and Arm proteins. Notably, Rho1 imitated the phenotype of RpS13 in both Drosophila testes and S2 cells, and recruited cell adhesions, which was mediated by the DE‐cad and Arm proteins. Conclusion These findings uncover a novel mechanism of RpS13 that mediates Rho1 signals in the stem cell niche of the Drosophila testis.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xia Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qianwen Zheng
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wanyin Chen
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yidan Yan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xiaojin Luan
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Fang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Yu
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Waghmare I, Wang X, Page-McCaw A. Dally-like protein sequesters multiple Wnt ligands in the Drosophila germarium. Dev Biol 2020; 464:88-102. [PMID: 32473955 DOI: 10.1016/j.ydbio.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Cells in multicellular organisms rely on secreted ligands for development and morphogenesis. Several mechanisms modulate the availability and distribution of secreted ligands, determining their ability to signal locally and at long range from their source. One of these mechanisms is Dally-like protein (Dlp), a cell-surface glypican that exhibits biphasic functions in Drosophila wing discs, promoting Wg signaling at long-range from Wg source cells and inhibiting Wg signaling near source cells. In the germarium at the tip of the ovary, Dlp promotes long-range distribution of Wg from cap cells to follicle stem cells. However, the germarium also expresses other Wnts - Wnt2, Wnt4, and Wnt6 - that function locally in escort cells to promote oogenesis. Whether and how local functions of these Wnts are regulated remains unknown. Here we show that the dlp overexpression phenotype is multifaceted and phenocopies multiple Wnt loss-of-function phenotypes. Each aspect of dlp overexpression phenotype is suppressed by co-expression of individual Wnts, and the suppression pattern exhibited by each Wnt suggests that Wnts have functional specificity in the germarium. Further, dlp knockdown phenocopies Wnt gain-of-function phenotypes. Together these data show that Dlp inhibits the functions of each Wnt. All four Wnts co-immunoprecipitate with Dlp in S2R+ cells, suggesting that in the germarium, Dlp sequesters Wnts to inhibit local paracrine Wnt signaling. Our results indicate that Dlp modulates the availability of multiple extracellular Wnts for local paracrine Wnt signaling in the germarium.
Collapse
Affiliation(s)
- Indrayani Waghmare
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Xiaoxi Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
35
|
Tu R, Duan B, Song X, Xie T. Dlp-mediated Hh and Wnt signaling interdependence is critical in the niche for germline stem cell progeny differentiation. SCIENCE ADVANCES 2020; 6:eaaz0480. [PMID: 32426496 PMCID: PMC7220319 DOI: 10.1126/sciadv.aaz0480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/28/2020] [Indexed: 05/04/2023]
Abstract
Although multiple signaling pathways work synergistically in various niches to control stem cell self-renewal and differentiation, it remains poorly understood how they cooperate with one another molecularly. In the Drosophila ovary, Hh and Wnt pathways function in the niche to promote germline stem cell (GSC) progeny differentiation. Here, we show that glypican Dlp-mediated Hh and Wnt signaling interdependence operates in the niche to promote GSC progeny differentiation by preventing BMP signaling. Hh/Wnt-mediated dlp repression is essential for their signaling interdependence in niche cells and for GSC progeny differentiation by preventing BMP signaling. Mechanistically, Hh and Wnt downstream transcription factors directly bind to the same dlp regulatory region and recruit corepressors composed of transcription factor Croc and Egg/H3K9 trimethylase to repress Dlp expression. Therefore, our study reveals a novel mechanism for Hh/Wnt signaling-mediated direct dlp repression and a novel regulatory mechanism for Dlp-mediated Hh/Wnt signaling interdependence in the GSC differentiation niche.
Collapse
Affiliation(s)
- Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Bo Duan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Corresponding author.
| |
Collapse
|
36
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
37
|
Zhang H, Cai Y. Signal transduction pathways regulating Drosophila ovarian germline stem cells. CURRENT OPINION IN INSECT SCIENCE 2020; 37:1-7. [PMID: 31726320 DOI: 10.1016/j.cois.2019.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Drosophila female germline stem cells (GSCs) serve as one of the best understood stem cell types. GSCs reside in a special microenvironment, the stem cell niche, and their activity is tightly regulated by niche-derived signals. In addition to the stemness-promoting signaling molecules, the niche also generates other signaling molecules that regulate GSC differentiation. Recent studies are beginning to appreciate the intricate interactions among these signaling molecules in the niche and their effects on GSC behaviour. This review summarizes recent advances to demonstrate how the niche functions as a signaling hub to integrate these niche-derived local signals as well as other organ-produced systemic signals to control GSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 117558, Singapore.
| |
Collapse
|
38
|
Rust K, Nystul T. Signal transduction in the early Drosophila follicle stem cell lineage. CURRENT OPINION IN INSECT SCIENCE 2020; 37:39-48. [PMID: 32087562 PMCID: PMC7155752 DOI: 10.1016/j.cois.2019.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 05/08/2023]
Abstract
The follicle stem cell (FSC) lineage in the Drosophila ovary is a highly informative model of in vivo epithelial stem cell biology. Studies over the past 30 years have identified roles for every major signaling pathway in the early FSC lineage. These pathways regulate a wide variety of cell behaviors, including self-renewal, proliferation, survival and differentiation. Studies of cell signaling in the follicle epithelium have provided new insights into how these cell behaviors are coordinated within an epithelial stem cell lineage and how signaling pathways interact with each other in the native, in vivo context of a living tissue. Here, we review these studies, with a particular focus on how these pathways specify differences between the FSCs and their daughter cells. We also describe common themes that have emerged from these studies, and highlight new research directions that have been made possible by the detailed understanding of the follicle epithelium.
Collapse
|
39
|
Lin KY, Hsu HJ. Regulation of adult female germline stem cells by nutrient-responsive signaling. CURRENT OPINION IN INSECT SCIENCE 2020; 37:16-22. [PMID: 32070932 DOI: 10.1016/j.cois.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Insect oogenesis is greatly affected by nutrient availability. When nutrients are abundant, oocytes are rapidly generated, but the process is slowed to conserve energy under nutrient-deficient conditions. To properly allocate limited resources toward oogenesis, systemic factors coordinate the behavioral response of ovarian germline stem cells (GSCs) to nutritional inputs by acting on the GSC itself, GSC supporting cells (the niche), or the adipose tissue surrounding the ovary. In this review, we describe current knowledge of the Drosophila ovarian GSC-niche-adipocyte system and major nutrient sensing pathways (insulin/IGF signaling, TOR signaling, and GCN2-dependent amino acid sensing) that intrinsically or extrinsically regulate GSC responses to nutrient signals.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
40
|
Sokolova OA, Mikhaleva EA, Kharitonov SL, Abramov YA, Gvozdev VA, Klenov MS. Special vulnerability of somatic niche cells to transposable element activation in Drosophila larval ovaries. Sci Rep 2020; 10:1076. [PMID: 31974416 PMCID: PMC6978372 DOI: 10.1038/s41598-020-57901-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs. Here, we characterized the biological effects of somatic TE activation on germ cell differentiation in flam mutants. We revealed that the choice between normal and tumorous phenotypes of flam mutant ovaries depends on the number of persisting ECs, which is determined at the larval stage. Accordingly, we found much more frequent DNA breaks in somatic cells of flam larval ovaries than in adult ECs. The absence of Chk2 or ATM checkpoint kinases dramatically enhanced oogenesis defects of flam mutants, in contrast to the germline TE-induced defects that are known to be mostly suppressed by сhk2 mutation. These results demonstrate a crucial role of checkpoint kinases in protecting niche cells against deleterious TE activation and suggest substantial differences between DNA damage responses in ovarian somatic and germ cells.
Collapse
Affiliation(s)
- Olesya A Sokolova
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Elena A Mikhaleva
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Sergey L Kharitonov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., 119991, Moscow, Russian Federation
| | - Yuri A Abramov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Vladimir A Gvozdev
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation
| | - Mikhail S Klenov
- Department of Molecular Genetics of the Cell, Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182, Moscow, Russian Federation.
| |
Collapse
|
41
|
Modulation of Cell-Cell Interactions in Drosophila Oocyte Development. Cells 2020; 9:cells9020274. [PMID: 31979180 PMCID: PMC7072342 DOI: 10.3390/cells9020274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.
Collapse
|
42
|
Fadiga J, Nystul TG. The follicle epithelium in the Drosophila ovary is maintained by a small number of stem cells. eLife 2019; 8:e49050. [PMID: 31850843 PMCID: PMC6946398 DOI: 10.7554/elife.49050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The follicle stem cells (FSCs) in the Drosophila ovary are an important experimental model for the study of epithelial stem cell biology. Although decades of research support the conclusion that there are two FSCs per ovariole, a recent study used a novel clonal marking system to conclude that there are 15-16 FSCs per ovariole. We performed clonal analysis using both this novel clonal marking system and standard clonal marking systems, and identified several problems that may have contributed to the overestimate of FSC number. In addition, we developed new methods for accurately measuring clone size, and found that FSC clones produce, on average, half of the follicle cells in each ovariole. Our findings provide strong independent support for the conclusion that there are typically two active FSCs per ovariole, though they are consistent with up to four FSCs per germarium.
Collapse
Affiliation(s)
- Jocelyne Fadiga
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| | - Todd G Nystul
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoUnited States
- Department of OB/GYN-RS, Center for Reproductive SciencesUniversity of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
43
|
Merkle JA, Wittes J, Schüpbach T. Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. Curr Top Dev Biol 2019; 140:55-86. [PMID: 32591083 DOI: 10.1016/bs.ctdb.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.
Collapse
Affiliation(s)
- Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
44
|
Hsu HJ, Bahader M, Lai CM. Molecular control of the female germline stem cell niche size in Drosophila. Cell Mol Life Sci 2019; 76:4309-4317. [PMID: 31300869 PMCID: PMC11105562 DOI: 10.1007/s00018-019-03223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/17/2019] [Accepted: 07/05/2019] [Indexed: 11/26/2022]
Abstract
Adult stem cells have a unique capacity to renew themselves and generate differentiated cells that are needed in the body. These cells are recruited and maintained by the surrounding microenvironment, known as the stem cell niche, during organ development. Thus, the stem cell niche is required for proper tissue homeostasis, and its dysregulation is associated with tumorigenesis and tissue degeneration. The identification of niche components and the mechanisms that regulate niche establishment and maintenance, however, are just beginning to be uncovered. Germline stem cells (GSCs) of the Drosophila ovary provide an excellent model for studying the stem cell niche in vivo because of their well-characterized cell biology and the availability of genetic tools. In this review, we introduce the ovarian GSC niche, and the key signaling pathways for niche precursor segregation, niche specification, and niche extracellular environment establishment and niche maintenance that are involved in regulating niche size during development and adulthood.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| | - Majid Bahader
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Ming Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
45
|
Li M, Hu X, Zhang S, Ho MS, Wu G, Zhang L. Traffic jam regulates the function of the ovarian germline stem cell progeny differentiation niche during pre-adult stage in Drosophila. Sci Rep 2019; 9:10124. [PMID: 31300663 PMCID: PMC6626045 DOI: 10.1038/s41598-019-45317-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/29/2019] [Indexed: 11/28/2022] Open
Abstract
Stem cell self-renewal and the daughter cell differentiation are tightly regulated by the respective niches, which produce extrinsic cues to support the proper development. In Drosophila ovary, Dpp is secreted from germline stem cell (GSC) niche and activates the BMP signaling in GSCs for their self-renewal. Escort cells (ECs) in differentiation niche restrict Dpp outside the GSC niche and extend protrusions to help with proper differentiation of the GSC daughter cells. Here we provide evidence that loss of large Maf transcriptional factor Traffic jam (Tj) blocks GSC progeny differentiation. Spatio-temporal specific knockdown experiments indicate that Tj is required in pre-adult EC lineage for germline differentiation control. Further molecular and genetic analyses suggest that the defective germline differentiation caused by tj-depletion is partly attributed to the elevated dpp in the differentiation niche. Moreover, our study reveals that tj-depletion induces ectopic En expression outside the GSC niche, which contributes to the upregulated dpp expression in ECs as well as GSC progeny differentiation defect. Alternatively, loss of EC protrusions and decreased EC number elicited by tj-depletion may also partially contribute to the germline differentiation defect. Collectively, our findings suggest that Tj in ECs regulates germline differentiation by controlling the differentiation niche characteristics.
Collapse
Affiliation(s)
- Mengjie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Margaret S Ho
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
46
|
Mao Y, Tu R, Huang Y, Mao D, Yang Z, Lau PK, Wang J, Ni J, Guo Y, Xie T. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development 2019; 146:dev.174615. [PMID: 31142545 DOI: 10.1242/dev.174615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
The niche controls stem cell self-renewal and differentiation in animal tissues. Although the exocyst is known to be important for protein membrane trafficking and secretion, its role in stem cells and niches has never been reported. Here, this study shows that the exocyst functions in the niche to promote germline stem cell (GSC) progeny differentiation in the Drosophila ovary by directly regulating EGFR membrane trafficking and signaling. Inactivation of exocyst components in inner germarial sheath cells, which form the differentiation niche, causes a severe GSC differentiation defect. The exocyst is required for maintaining niche cells and preventing BMP signaling in GSC progeny by promoting EGFR membrane targeting and signaling through direct association with EGFR. Finally, it is also required for EGFR membrane targeting, recycling and signaling in human cells. Therefore, this study reveals a novel function of the exocyst in niche cells to promote stem cell progeny differentiation by directly controlling EGFR membrane trafficking and signaling in vivo, and also provides important insight into how the niche controls stem cell progeny differentiation at the molecular level.
Collapse
Affiliation(s)
- Ying Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Decai Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Yang
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianquan Ni
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| |
Collapse
|
47
|
Loss of putzig in the germline impedes germ cell development by inducing cell death and new niche like microenvironments. Sci Rep 2019; 9:9108. [PMID: 31235815 PMCID: PMC6591254 DOI: 10.1038/s41598-019-45655-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Germline stem cell development and differentiation is tightly controlled by the surrounding somatic cells of the stem cell niche. In Drosophila females, cells of the niche emit various signals including Dpp and Wg to balance stem cell renewal and differentiation. Here, we show that the gene pzg is autonomously required in cells of the germline to sustain the interplay between niche and stem cells. Loss of pzg impairs stem cell differentiation and provokes the death of cells in the germarium. As a consequence of pzg loss, increased growth signalling activity predominantly of Dpp and Wg/Wnt, was observed, eventually disrupting the balance of germ cell self-renewal and differentiation. Whereas in the soma, apoptosis-induced compensatory growth is well established, the induction of self-renewal signals during oogenesis cannot compensate for dying germ cells, albeit inducing a new niche-like microenvironment. Instead, they impair the further development of germ cells and cause in addition a forward and feedback loop of cell death.
Collapse
|
48
|
Ke YT, Hsu HJ. Generation of Inducible Gene-Switched GAL4 Expressed in the Drosophila Female Germline Stem Cell Niche. G3 (BETHESDA, MD.) 2019; 9:2007-2016. [PMID: 31018943 PMCID: PMC6553524 DOI: 10.1534/g3.119.400246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
The stem cell niche, a regulatory microenvironment, houses and regulates stem cells for maintenance of tissues throughout an organism's lifespan. While it is known that stem cell function declines with age, the role of niche cells in this decline is not completely understood. Drosophila exhibits a short lifespan with well-characterized ovarian germline stem cells (GSCs) and niche compartments, providing a good model with which to study stem cell biology. However, no inducible tools for temporal and spatial control of gene expression in the GSC-niche unit have been previously developed for aging studies. The current UAS-GAL4 systems are not ideal for aging studies because fly physiological aging may be affected by the temperature shifts used to manipulate GAL4 activity. Additionally, the actual needs of the aged niche may be masked by continuously driven gene expression. Since GeneSwitch GAL4 is conveniently activated by the steroid RU486 (mifepristone), we conducted an enhancer-trap screen to isolate GeneSwitch GAL4 lines with expression in the GSC-niche unit. We identified six lines with expression in germarial somatic cells, and two lines (#2305 and #2261) with expression in niche cap cells, the major constituent of the GSC niche. The use of lines #2305 or #2261 to overexpress Drosophila insulin-like peptide 2, which maintains GSC lifespan, in aged niche cap cells significantly delayed age-dependent GSC loss. These results support the notion that insulin signaling is beneficial for maintaining aged stem cells and also validate the utility of our GeneSwitch GAL4 lines for studying stem cell aging.
Collapse
Affiliation(s)
- Yi-Teng Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
49
|
Ben-Zvi DS, Volk T. Escort cell encapsulation of Drosophila germline cells is maintained by irre cell recognition module proteins. Biol Open 2019; 8:bio039842. [PMID: 30837217 PMCID: PMC6451344 DOI: 10.1242/bio.039842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Differentiation of germline stem cells (GSCs) in the Drosophila ovary is induced by somatic escort cells (ECs), which extend membrane protrusions encapsulating the germline cells (GCs). Germline encapsulation requires activated epidermal growth factor receptor (Egfr) signaling within the ECs, following secretion of its ligands from the GCs. We show that the conserved family of irre cell recognition module (IRM) proteins is essential for GC encapsulation by ECs, with a requirement for roughest (rst) and kin of irre (kirre) in the germline and for sticks and stones (sns) and hibris (hbs) in ECs. In the absence of IRM components in their respective cell types, EC extensions are reduced concomitantly with a decrease in Egfr signaling in these cells. Reintroducing either activated Egfr in the ECs, or overexpressing its ligand Spitz (Spi) from the germline, rescued the requirement for IRM proteins in both cell types. These experiments introduce novel essential components, the IRM proteins, into the process of inductive interactions between GCs and ECs, and imply that IRM-mediated activity is required upstream of the Egfr signaling.
Collapse
Affiliation(s)
- Doreen S Ben-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
50
|
Gao Y, Mao Y, Xu RG, Zhu R, Zhang M, Sun J, Shen D, Peng P, Xie T, Ni JQ. Defining gene networks controlling the maintenance and function of the differentiation niche by an in vivo systematic RNAi screen. J Genet Genomics 2019; 46:19-30. [PMID: 30745214 DOI: 10.1016/j.jgg.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/02/2018] [Accepted: 10/23/2018] [Indexed: 01/13/2023]
Abstract
In the Drosophila ovary, escort cells (ECs) extrinsically control germline stem cell (GSC) maintenance and progeny differentiation. However, the underlying mechanisms remain poorly understood. In this study, we identified 173 EC genes for their roles in controlling GSC maintenance and progeny differentiation by using an in vivo systematic RNAi approach. Of the identified genes, 10 and 163 are required in ECs to promote GSC maintenance and progeny differentiation, respectively. The genes required for progeny differentiation fall into different functional categories, including transcription, mRNA splicing, protein degradation, signal transduction and cytoskeleton regulation. In addition, the GSC progeny differentiation defects caused by defective ECs are often associated with BMP signaling elevation, indicating that preventing BMP signaling is a general functional feature of the differentiation niche. Lastly, exon junction complex (EJC) components, which are essential for mRNA splicing, are required in ECs to promote GSC progeny differentiation by maintaining ECs and preventing BMP signaling. Therefore, this study has identified the major regulators of the differentiation niche, which provides important insights into how stem cell progeny differentiation is extrinsically controlled.
Collapse
Affiliation(s)
- Yuan Gao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ying Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Rong-Gang Xu
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ruibao Zhu
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ming Zhang
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jin Sun
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Da Shen
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ping Peng
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO, 64110, USA.
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China; Tsingdao Advanced Research Institute, Tongji University, Qingdao, 266000, China.
| |
Collapse
|