1
|
Bobzin L, Nickle A, Ko S, Ince M, Huang A, Bhojwani A, Roberts R, Merrill AE. FGFR2 directs inhibition of WNT signaling to regulate anterior fontanelle closure during skull development. Development 2025; 152:dev204264. [PMID: 39775862 DOI: 10.1242/dev.204264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, and Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study, we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics. We find that AF cells, marked by the tendon/ligament factor SCX, are spatially organized into ecto- and endocranial domains that selectively differentiate into ligament, bone, and cartilage to form the posterior frontal suture. We show that AF cell differentiation is non-autonomously regulated by FGFR2 signaling in osteogenic front cells of the frontal bones, which regulate WNT signaling in neighboring AF cells by expressing the secreted WNT inhibitor Wif1. Upon loss of Fgfr2, Wif1 expression is downregulated, and AF cells fail to form the posterior frontal suture. This study identifies an FGF-WNT signaling circuit that that directs suture formation within the AF during postnatal development.
Collapse
Affiliation(s)
- Lauren Bobzin
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Audrey Nickle
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Sebastian Ko
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Michaela Ince
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Aaron Huang
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Arshia Bhojwani
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan Roberts
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Joyner AL, Ortigão-Farias JR, Kornberg T. Conserved roles of engrailed: patterning tissues and specifying cell types. Development 2024; 151:dev204250. [PMID: 39671171 DOI: 10.1242/dev.204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
More than 40 years ago, studies of the Drosophila engrailed and Hox genes led to major discoveries that shaped the history of developmental biology. We learned that these genes define the state of determination of cells that populate particular spatially defined regions: the identity of segmental domains by Hox genes, and the identity of posterior developmental compartments by engrailed. Hence, the boundaries that delimit spatial domains depend on engrailed. Here, we review the engrailed field, which now includes orthologs in Drosophila and mouse, as well as many other animals. We focus on fly and mouse and highlight additional functions that span early stages of embryogenesis and neural development.
Collapse
Affiliation(s)
- Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Biochemistry, Cell & Molecular Biology Program and Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | - Thomas Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Farmer DT, Dukov JE, Chen HJ, Arata C, Hernandez-Trejo J, Xu P, Teng CS, Maxson RE, Crump JG. Cellular transitions during cranial suture establishment in zebrafish. Nat Commun 2024; 15:6948. [PMID: 39138165 PMCID: PMC11322166 DOI: 10.1038/s41467-024-50780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Cranial sutures separate neighboring skull bones and are sites of bone growth. A key question is how osteogenic activity is controlled to promote bone growth while preventing aberrant bone fusions during skull expansion. Using single-cell transcriptomics, lineage tracing, and mutant analysis in zebrafish, we uncover key developmental transitions regulating bone formation at sutures during skull expansion. In particular, we identify a subpopulation of mesenchyme cells in the mid-suture region that upregulate a suite of genes including BMP antagonists (e.g. grem1a) and pro-angiogenic factors. Lineage tracing with grem1a:nlsEOS reveals that this mid-suture subpopulation is largely non-osteogenic. Moreover, combinatorial mutation of BMP antagonists enriched in this mid-suture subpopulation results in increased BMP signaling in the suture, misregulated bone formation, and abnormal suture morphology. These data reveal establishment of a non-osteogenic mesenchyme population in the mid-suture region that restricts bone formation through local BMP antagonism, thus ensuring proper suture morphology.
Collapse
Affiliation(s)
- D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Jennifer E Dukov
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Hung-Jhen Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Claire Arata
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jose Hernandez-Trejo
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pengfei Xu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Camilla S Teng
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Robert E Maxson
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
4
|
Bobzin L, Nickle A, Ko S, Ince M, Bhojwani A, Merrill AE. FGF Signaling Regulates Development of the Anterior Fontanelle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603452. [PMID: 39071418 PMCID: PMC11275813 DOI: 10.1101/2024.07.14.603452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The calvarial bones of the infant skull are connected by transient fibrous joints known as sutures and fontanelles, which are essential for reshaping during birth and postnatal growth. Genetic disorders such as Apert, Pfeiffer, Crouzon, and Bent bone dysplasia linked to FGFR2 variants often exhibit multi-suture craniosynostosis and a persistently open anterior fontanelle (AF). This study leverages mouse genetics and single-cell transcriptomics to determine how Fgfr2 regulates closure of the AF closure and its transformation into the frontal suture during postnatal development. We find that cells of the AF, marked by the tendon/ligament factor SCX, are spatially restricted to ecto- or endocranial domains and undergo regionally selective differentiation into ligament, bone, and cartilage. Differentiation of SCX+ AF cells is dependent on FGFR2 signaling in cells of the osteogenic fronts which, when fueled by FGF18 from the ectocranial mesenchyme, express the secreted WNT inhibitor WIF1 to regulate WNT signaling in neighboring AF cells. Upon loss of Fgfr2 , Wif1 expression is lost, and cells of the AF retain a connective tissue-like fate failing to form the posterior frontal suture. This study provides new insights into regional differences in suture development by identifying an FGF-WNT signaling circuit within the AF that links frontal bone advancement with suture joint formation.
Collapse
|
5
|
Casey-Clyde T, Liu SJ, Serrano JAC, Teng C, Jang YG, Vasudevan HN, Bush JO, Raleigh DR. Eed controls craniofacial osteoblast differentiation and mesenchymal proliferation from the neural crest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584903. [PMID: 38558995 PMCID: PMC10979956 DOI: 10.1101/2024.03.13.584903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of neural crest development can cause severe congenital malformations. PRC2 is necessary for neural crest induction, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.
Collapse
Affiliation(s)
- Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Juan Antonio Camara Serrano
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Camilla Teng
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yoon-Gu Jang
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Li D, Jiang X, Xiao J, Liu C. A novel perspective of calvarial development: the cranial morphogenesis and differentiation regulated by dura mater. Front Cell Dev Biol 2024; 12:1420891. [PMID: 38979034 PMCID: PMC11228331 DOI: 10.3389/fcell.2024.1420891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
There are lasting concerns on calvarial development because cranium not only accommodates the growing brain, but also safeguards it from exogenous strikes. In the past decades, most studies attributed the dynamic expansion and remodeling of cranium to the proliferation of osteoprecursors in cranial primordium, and the proliferation of osteoprogenitors at the osteogenic front of cranial suture mesenchyme. Further investigations identified series genes expressed in suture mesenchymal cells as the markers of the progenitors, precursors and postnatal stem cells in cranium. However, similar to many other organs, it is suggested that the reciprocal interactions among different tissues also play essential roles in calvarial development. Actually, there are increasing evidence indicating that dura mater (DM) is indispensable for the calvarial morphogenesis and osteogenesis by secreting multiple growth factors, cytokines and extracellular matrix (ECM). Thus, in this review, we first briefly introduce the development of cranium, suture and DM, and then, comprehensively summarize the latest studies exploring the involvement of ECM in DM and cranium development. Eventually, we discussed the reciprocal interactions between calvarium and DM in calvarial development. Actually, our review provides a novel perspective for cranium development by integrating previous classical researches with a spotlight on the mutual interplay between the developing DM and cranium.
Collapse
Affiliation(s)
| | | | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Polsani N, Yung T, Thomas E, Phung-Rojas M, Gupta I, Denker J, Lau K, Feng X, Ibarra B, Hopyan S, Atit RP. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion. Development 2024; 151:dev202596. [PMID: 38814743 PMCID: PMC11234264 DOI: 10.1242/dev.202596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral to calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. Time-lapse light-sheet imaging of mouse embryos revealed calvarial progenitors intercalate in 3D in the CM above the eye, and exhibit protrusive and crawling activity more apically. CM cells express non-canonical Wnt/planar cell polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand Wnt5a-/- mutants have less dynamic cell rearrangements and protrusive activity. Loss of CM-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of Osx+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.
Collapse
Affiliation(s)
- Nikaya Polsani
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Phung-Rojas
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Isha Gupta
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Denker
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kimberly Lau
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaotian Feng
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatriz Ibarra
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Orthopedics, The Hospital for Sick Children and Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Radhika P. Atit
- Department of Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Dermatology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Genetics and Genome Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
8
|
Ollonen J, Khannoon ER, Macrì S, Vergilov V, Kuurne J, Saarikivi J, Soukainen A, Aalto IM, Werneburg I, Diaz RE, Di-Poï N. Dynamic evolutionary interplay between ontogenetic skull patterning and whole-head integration. Nat Ecol Evol 2024; 8:536-551. [PMID: 38200368 DOI: 10.1038/s41559-023-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.
Collapse
Affiliation(s)
- Joni Ollonen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eraqi R Khannoon
- Biology Department, College of Science, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Vladislav Vergilov
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jaakko Kuurne
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jarmo Saarikivi
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Arttu Soukainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ida-Maria Aalto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard Karls Universität, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, CA, USA
- Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Amano K, Okuzaki D, Kitaoka Y, Kato S, Fujiwara M, Tanaka S, Iida S. Pth1r in Neural Crest Cells Regulates Nasal Cartilage Differentiation. J Dent Res 2024; 103:308-317. [PMID: 38234039 DOI: 10.1177/00220345231221954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Neural crest cells (NCC) arise from the dorsal margin of the neural plate border and comprise a unique cell population that migrates to and creates the craniofacial region. Although factors including Shh, Fgf8, and bone morphogenetic proteins have been shown to regulate these biological events, the role of parathyroid hormone 1 receptor (Pth1r) has been less studied. We generated an NCC-specific mouse model for Pth1r and researched gene expression, function, and interaction focusing on nasal cartilage framework and midfacial development. Wnt1-Cre;Pth1rfl/fl;Tomatofl/+ mice had perinatal lethality, but we observed short snout and jaws, tongue protrusion, reduced NCC-derived cranial length, increased mineralization in nasal septum and hyoid bones, and less bone mineralization at interfrontal suture in mutants at E18.5. Importantly, the mutant nasal septum and turbinate cartilage histologically revealed gradual, premature accelerated hypertrophic differentiation. We then studied the underlying molecular mechanisms by performing RNA seq analysis and unexpectedly found that expression of Ihh and related signaling molecules was enhanced in mutant nasomaxillary tissues. To see if Pth1r and Ihh signaling are associated, we generated a Wnt1-Cre; Ihhfl/fl;Pth1rfl/fl;Tomatofl/+ (DKO) mouse and compared the phenotypes to those of each single knockout mouse: Wnt1-Cre; Ihhfl/fl;Pth1rfl/+;Tomatofl/+ (Ihh-CKO) and Wnt1-Cre;Ihhfl/+;Pth1rfl/fl;Tomatofl/+ (Pth1r-CKO). Ihh-CKO mice displayed a milder effect. Of note, the excessive hypertrophic conversion of the nasal cartilage framework observed in Pth1r-CKO was somewhat rescued DKO embryos. Further, a half cAMP responsive element and the 4 similar sequences containing 2 mismatches were identified from the promoter to the first intron in Ihh gene. Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+, a Pth1r-deficient model targeted in hedgehog responsive cells, demonstrated the enlarged hypertrophic layer and significantly more Tomato-positive chondrocytes accumulated in the nasal septum and ethmoidal endochondral ossification. Collectively, the data suggest a relevant Pth1r/Ihh interaction. Our findings obtained from novel mouse models for Pth1r signaling illuminate previously unknown aspects in craniofacial biology and development.
Collapse
Affiliation(s)
- K Amano
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - D Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Y Kitaoka
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Kato
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Fujiwara
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S Tanaka
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
10
|
Doro D, Liu A, Lau JS, Rajendran AK, Healy C, Krstic M, Grigoriadis AE, Iseki S, Liu KJ. Cranial suture lineage and contributions to repair of the mouse skull. Development 2024; 151:dev202116. [PMID: 38345329 PMCID: PMC10911112 DOI: 10.1242/dev.202116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
The cranial sutures are proposed to be a stem cell niche, harbouring skeletal stem cells that are directly involved in development, homeostasis and healing. Like the craniofacial bones, the sutures are formed from both mesoderm and neural crest. During cranial bone repair, neural crest cells have been proposed to be key players; however, neural crest contributions to adult sutures are not well defined, and the relative importance of suture proximity is unclear. Here, we use genetic approaches to re-examine the neural crest-mesoderm boundaries in the adult mouse skull. These are combined with calvarial wounding experiments suggesting that suture proximity improves the efficiency of cranial repair. Furthermore, we demonstrate that Gli1+ and Axin2+ skeletal stem cells are present in all calvarial sutures examined. We propose that the position of the defect determines the availability of neural crest-derived progenitors, which appear to be a key element in the repair of calvarial defects.
Collapse
Affiliation(s)
- Daniel Doro
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Annie Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Jia Shang Lau
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Arun Kumar Rajendran
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Marko Krstic
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Agamemnon E. Grigoriadis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Ma X, Zhao LL, Yu YC, Cheng Y. Engrailed: Pathological and physiological effects of a multifunctional developmental gene. Genesis 2024; 62:e23557. [PMID: 37830136 DOI: 10.1002/dvg.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Liang-Liang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Chun Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
12
|
Polsani N, Yung T, Thomas E, Phung-Rojas M, Gupta I, Denker J, Feng X, Ibarra B, Hopyan S, Atit RP. Mesenchymal Wnts are required for morphogenetic movements of calvarial osteoblasts during apical expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570300. [PMID: 38106005 PMCID: PMC10723314 DOI: 10.1101/2023.12.05.570300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Apical expansion of calvarial osteoblast progenitors from the cranial mesenchyme (CM) above the eye is integral for calvarial growth and enclosure of the brain. The cellular behaviors and signals underlying the morphogenetic process of calvarial expansion are unknown. During apical expansion, we found that mouse calvarial primordia have consistent cellular proliferation, density, and survival with complex tissue scale deformations, raising the possibility that morphogenetic movements underlie expansion. Time lapse light sheet imaging of mouse embryos revealed that calvarial progenitors intercalate in 3D to converge supraorbital arch mesenchyme mediolaterally and extend it apically. In contrast, progenitors located further apically exhibited protrusive and crawling activity. CM cells express non-canonical Wnt/Planar Cell Polarity (PCP) core components and calvarial osteoblasts are bidirectionally polarized. We found non-canonical ligand, Wnt5a-/- mutants have less dynamic cell rearrangements, protrusive activity, and a flattened head shape. Loss of cranial mesenchyme-restricted Wntless (CM-Wls), a gene required for secretion of all Wnt ligands, led to diminished apical expansion of OSX+ calvarial osteoblasts in the frontal bone primordia in a non-cell autonomous manner without perturbing proliferation or survival. Calvarial osteoblast polarization, progressive cell elongation and enrichment for actin cytoskeleton protein along the baso-apical axis were dependent on CM-Wnts. Thus, CM-Wnts regulate cellular behaviors during calvarial morphogenesis and provide tissue level cues for efficient apical expansion of calvarial osteoblasts. These findings also offer potential insights into the etiologies of calvarial dysplasias.
Collapse
Affiliation(s)
- Nikaya Polsani
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Phung-Rojas
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Isha Gupta
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Denker
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaotian Feng
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Beatriz Ibarra
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Orthopedics, The Hospital for Sick Children and Departments of Molecular Genetics and Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Radhika P. Atit
- Department of Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Dermatology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Genetics and Genome Sciences, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
13
|
Ohkura N, Nam HK, Liu F, Hatch N. Cranial Neural Crest Specific Deletion of Alpl (TNAP) via P0-Cre Causes Abnormal Chondrocyte Maturation and Deficient Cranial Base Growth. Int J Mol Sci 2023; 24:15401. [PMID: 37895082 PMCID: PMC10607232 DOI: 10.3390/ijms242015401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Bone growth plate abnormalities and skull shape defects are seen in hypophosphatasia, a heritable disorder in humans that occurs due to the deficiency of tissue nonspecific alkaline phosphatase (TNAP, Alpl) enzyme activity. The abnormal development of the cranial base growth plates (synchondroses) and abnormal skull shapes have also been demonstrated in global Alpl-/- mice. To distinguish local vs. systemic effects of TNAP on skull development, we utilized P0-Cre to knockout Alpl only in cranial neural crest-derived tissues using Alpl flox mice. Here, we show that Alpl deficiency using P0-Cre in cranial neural crest leads to skull shape defects and the deficient growth of the intersphenoid synchondrosis (ISS). ISS chondrocyte abnormalities included increased proliferation in resting and proliferative zones with decreased apoptosis in hypertrophic zones. ColX expression was increased, which is indicative of premature differentiation in the absence of Alpl. Sox9 expression was increased in both the resting and prehypertrophic zones of mutant mice. The expression of Parathyroid hormone related protein (PTHrP) and Indian hedgehog homolog (IHH) were also increased. Finally, cranial base organ culture revealed that inorganic phosphate (Pi) and pyrophosphate (PPi) have specific effects on cell signaling and phenotype changes in the ISS. Together, these results demonstrate that the TNAP expression downstream of Alpl in growth plate chondrocytes is essential for normal development, and that the mechanism likely involves Sox9, PTHrP, IHH and PPi.
Collapse
Affiliation(s)
- Naoto Ohkura
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| | - Fei Liu
- Department of Biomaterials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (N.O.); (H.K.N.)
| |
Collapse
|
14
|
Amano K, Kitaoka Y, Kato S, Fujiwara M, Okuzaki D, Aikawa T, Kogo M, Iida S. Pth1r Signal in Gli1+ Cells Maintains Postnatal Cranial Base Synchondrosis. J Dent Res 2023; 102:1241-1251. [PMID: 37575041 DOI: 10.1177/00220345231184405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Cranial base synchondroses are the endochondral ossification centers for cranial base growth and thus indispensable for proper skull, brain, and midfacial development. The synchondroses are composed of mirror-image growth plates that are continuously maintained from the embryonic to postnatal stage through chondrocyte differentiation. Several factors, including Pth1r signaling, are known to control fetal synchondrosis development. However, there are currently no reports regarding any role for Pth1r signaling in postnatal cranial base and synchondrosis development. Also, the mesenchymal cells that source Pth1r signaling for synchondroses are not known. Here, we employed an inducible mouse model, a hedgehog-responsive Gli1-CreERT2 driver, focusing on the postnatal study. We performed 2 inducible protocols using Gli1-CreERT2;Tomatofl/+ mice that uncovered distinct patterning of Gli1-positive and Gli1-negative chondrocytes in the synchondrosis cartilage. Moreover, we generated Gli1-CreERT2;Pth1rfl/fl;Tomatofl/+ mice to assess their functions in postnatal synchondrosis and found that the mutants had survived postnatally. The mutant skulls morphologically presented unambiguous phenotypes where we noticed the shortened cranial base and premature synchondrosis closure. Histologically, gradual disorganization in mutant synchondroses caused an uncommon remaining central zone between hypertrophic zones on both sides while the successive differentiation of round, flat, and hypertrophic chondrocytes was observed in control sections. These mutant synchondroses disappeared and were finally replaced by bone. Of note, the mutant fusing synchondroses lost their characteristic patterning of Gli1-positive and Gli1-negative chondrocytes, suggesting that loss of Pth1r signaling alters the distribution of hedgehog-responsive chondrocytes. Moreover, we performed laser microdissection and RNA sequencing to characterize the flat proliferative and round resting chondrocytes where we found flat chondrocytes have a characteristic feature of both chondrocyte proliferation and maturation. Taken together, these data demonstrate that Pth1r signaling in Gli1-positive cells is essential for postnatal development and maintenance in cranial base synchondroses. Our findings will elucidate previously unknown aspects of Pth1r functions in cranial biology and development.
Collapse
Affiliation(s)
- K Amano
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Y Kitaoka
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Kato
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Fujiwara
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
- The Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - D Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - T Aikawa
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M Kogo
- The first department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - S Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
15
|
Changmeng Z, Hongfei W, Cheung MCH, Chan YS, Shea GKH. Revealing the developmental origin and lineage predilection of neural progenitors within human bone marrow via single-cell analysis: implications for regenerative medicine. Genome Med 2023; 15:66. [PMID: 37667405 PMCID: PMC10476295 DOI: 10.1186/s13073-023-01224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Human bone marrow stromal cells (BMSCs) are an easily accessible and expandable progenitor population with the capacity to generate neural cell types in addition to mesoderm. Lineage tracing studies in transgenic animals have indicated Nestin + BMSCs to be descended from the truncal neural crest. Single-cell analysis provides a means to identify the developmental origin and identity of human BMSC-derived neural progenitors when lineage tracing remains infeasible. This is a prerequisite towards translational application. METHODS We attained transcriptomic profiles of embryonic long bone, adult human bone marrow, cultured BMSCs and BMSC-derived neurospheres. Integrated scRNAseq analysis was supplemented by characterization of cells during culture expansion and following provision of growth factors and signalling agonists to bias lineage. RESULTS Reconstructed pseudotime upon the integrated dataset indicated distinct neural and osteogenic differentiation trajectories. The starting state towards the neural differentiation trajectory consisted of Nestin + /MKI67 + BMSCs, which could also be diverted towards the osteogenic trajectory via a branch point. Nestin + /PDGFRA + BMSCs responded to neurosphere culture conditions to generate a subpopulation of cells with a neuronal phenotype according to marker expression and gene ontogeny analysis that occupied the end state along the neural differentiation trajectory. Reconstructed pseudotime also revealed an upregulation of BMP4 expression during culture of BMSC-neurospheres. This provided the rationale for culture supplementation with the BMP signalling agonist SB4, which directed progenitors to upregulate Pax6 and downregulate Nestin. CONCLUSIONS This study suggested BMSCs originating from truncal neural crest to be the source of cells within long bone marrow possessing neural differentiation potential. Unravelling the transcriptomic dynamics of BMSC-derived neural progenitors promises to enhance differentiation efficiency and safety towards clinical application in cell therapy and disease modelling.
Collapse
Affiliation(s)
- Zhang Changmeng
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wang Hongfei
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Martin Chi-Hang Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Graham Ka-Hon Shea
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
16
|
Cabrera Pereira A, Dasgupta K, Ho TV, Pacheco-Vergara M, Kim J, Kataria N, Liang Y, Mei J, Yu J, Witek L, Chai Y, Jeong J. Lineage-specific mutation of Lmx1b provides new insights into distinct regulation of suture development in different areas of the calvaria. Front Physiol 2023; 14:1225118. [PMID: 37593235 PMCID: PMC10427921 DOI: 10.3389/fphys.2023.1225118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The calvaria (top part of the skull) is made of pieces of bone as well as multiple soft tissue joints called sutures. The latter is crucial to the growth and morphogenesis of the skull, and thus a loss of calvarial sutures can lead to severe congenital defects in humans. During embryogenesis, the calvaria develops from the cranial mesenchyme covering the brain, which contains cells originating from the neural crest and the mesoderm. While the mechanism that patterns the cranial mesenchyme into bone and sutures is not well understood, function of Lmx1b, a gene encoding a LIM-domain homeodomain transcription factor, plays a key role in this process. In the current study, we investigated a difference in the function of Lmx1b in different parts of the calvaria using neural crest-specific and mesoderm-specific Lmx1b mutants. We found that Lmx1b was obligatory for development of the interfrontal suture and the anterior fontanel along the dorsal midline of the skull, but not for the posterior fontanel over the midbrain. Also, Lmx1b mutation in the neural crest-derived mesenchyme, but not the mesoderm-derived mesenchyme, had a non-cell autonomous effect on coronal suture development. Furthermore, overexpression of Lmx1b in the neural crest lineage had different effects on the position of the coronal suture on the apical part and the basal part. Other unexpected phenotypes of Lmx1b mutants led to an additional finding that the coronal suture and the sagittal suture are of dual embryonic origin. Together, our data reveal a remarkable level of regional specificity in regulation of calvarial development.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Krishnakali Dasgupta
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Maria Pacheco-Vergara
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Julie Kim
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Niam Kataria
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Yaowei Liang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| | - Jeslyn Mei
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
| | - Jinyeong Yu
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
- Department of Biology, College of Arts and Sciences, New York University, New York, NY, United States
| | - Lukasz Witek
- Biomaterials Division, New York University College of Dentistry, New York, NY, United States
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Juhee Jeong
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, United States
| |
Collapse
|
17
|
Umar M, Bartoletti G, Dong C, Gahankari A, Browne D, Deng A, Jaramillo J, Sammarco M, Simkin J, He F. Characterizing the role of Pdgfra in calvarial development. Dev Dyn 2023; 252:589-604. [PMID: 36606407 PMCID: PMC10159935 DOI: 10.1002/dvdy.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mammalian calvarium is composed of flat bones developed from two origins, neural crest, and mesoderm. Cells from both origins exhibit similar behavior but express distinct transcriptomes. It is intriguing to ask whether genes shared by both origins play similar or distinct roles in development. In the present study, we have examined the role of Pdgfra, which is expressed in both neural crest and mesoderm, in specific lineages during calvarial development. RESULTS We found that in calvarial progenitor cells, Pdgfra is needed to maintain normal proliferation and migration of neural crest cells but only proliferation of mesoderm cells. Later in calvarial osteoblasts, we found that Pdgfra is necessary for both proliferation and differentiation of neural crest-derived cells, but not for differentiation of mesoderm-derived cells. We also examined the potential interaction between Pdgfra and other signaling pathway involved in calvarial osteoblasts but did not identify significant alteration of Wnt or Hh signaling activity in Pdgfra genetic models. CONCLUSIONS Pdgfra is required for normal calvarial development in both neural crest cells and mesoderm cells, but these lineages exhibit distinct responses to alteration of Pdgfra activity.
Collapse
Affiliation(s)
- Meenakshi Umar
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Garrett Bartoletti
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Chunmin Dong
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Apurva Gahankari
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Danielle Browne
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Alastair Deng
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Josue Jaramillo
- Department of Surgery, Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Mimi Sammarco
- Department of Surgery, Tulane School of Medicine, New Orleans, Louisiana, USA
| | - Jennifer Simkin
- Department of Orthopaedic Surgery, Health Sciences Center, Louisiana State University, New Orleans, Louisiana, USA
| | - Fenglei He
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
18
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
19
|
Aristizábal O, Qiu Z, Gallego E, Aristizábal M, Mamou J, Wang Y, Ketterling JA, Turnbull DH. Longitudinal in Utero Analysis of Engrailed-1 Knockout Mouse Embryonic Phenotypes Using High-Frequency Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:356-367. [PMID: 36283941 PMCID: PMC9712241 DOI: 10.1016/j.ultrasmedbio.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Large-scale international efforts to generate and analyze loss-of-function mutations in each of the approximately 20,000 protein-encoding gene mutations are ongoing using the "knockout" mouse as a model organism. Because one-third of gene knockouts are expected to result in embryonic lethality, it is important to develop non-invasive in utero imaging methods to detect and monitor mutant phenotypes in mouse embryos. We describe the utility of 3-D high-frequency (40-MHz) ultrasound (HFU) for longitudinal in utero imaging of mouse embryos between embryonic days (E) 11.5 and E14.5, which represent critical stages of brain and organ development. Engrailed-1 knockout (En1-ko) mouse embryos and their normal control littermates were imaged with HFU in 3-D, enabling visualization of morphological phenotypes in the developing brains, limbs and heads of the En1-ko embryos. Recently developed deep learning approaches were used to automatically segment the embryonic brain ventricles and bodies from the 3-D HFU images, allowing quantitative volumetric analyses of the En1-ko brain phenotypes. Taken together, these results show great promise for the application of longitudinal 3-D HFU to analyze knockout mouse embryos in utero.
Collapse
Affiliation(s)
- Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ziming Qiu
- Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, New York, USA
| | - Estefania Gallego
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Matias Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jonathan Mamou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yao Wang
- Department of Electrical and Computer Engineering, New York University Tandon School of Engineering, New York, New York, USA
| | | | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
20
|
Ang PS, Matrongolo MJ, Zietowski ML, Nathan SL, Reid RR, Tischfield MA. Cranium growth, patterning and homeostasis. Development 2022; 149:dev201017. [PMID: 36408946 PMCID: PMC9793421 DOI: 10.1242/dev.201017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.
Collapse
Affiliation(s)
- Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Shelby L. Nathan
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
21
|
HOXC10 intronic duplication is associated with unsealed skull and crest in crested chicken with cerebral hernia. Gene 2022; 840:146758. [PMID: 35905851 DOI: 10.1016/j.gene.2022.146758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
Abstract
The genetic basis and developmental mechanism of unsealed skull in crested chicken with cerebral hernia remain unclear. Here, a genomic region including six HOXC genes was mapped by bulked segregant analysis (BSA) in a crested chicken resource population. A 195-bp intronic tandem duplication was further confirmed in the HOXC10 gene. HOXC genes, particularly HOXC10, were expressed ectopically in fetal skin and meningeal tissues of crested chicken with cerebral hernia, indicating its impact on the cranial mesenchymal tissues that drive the development of scalp skin, frontal bone, and meninges. The restricted expansion of frontal bone progenitors labeled with anti-RUNX2 antibody in the supraorbital mesenchyme of the fetal head implied abnormal migration, which contributed to the formation of the unsealed skull. This study suggests that HOXC genes were potent drivers for the abnormalities of the head crest and unsealed skull observed in crested chicken with cerebral hernia.
Collapse
|
22
|
Pitirri MK, Durham EL, Romano NA, Santos JI, Coupe AP, Zheng H, Chen DZ, Kawasaki K, Jabs EW, Richtsmeier JT, Wu M, Motch Perrine SM. Meckel's Cartilage in Mandibular Development and Dysmorphogenesis. Front Genet 2022; 13:871927. [PMID: 35651944 PMCID: PMC9149363 DOI: 10.3389/fgene.2022.871927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Fgfr2cC342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel’s cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2cC342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c+/+). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2cC342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2cC342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2cC342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2cC342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Natalie A Romano
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Jacob I Santos
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
23
|
Stanton E, Urata M, Chen JF, Chai Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis Model Mech 2022; 15:dmm049390. [PMID: 35451466 PMCID: PMC9044212 DOI: 10.1242/dmm.049390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis is a major congenital craniofacial disorder characterized by the premature fusion of cranial suture(s). Patients with severe craniosynostosis often have impairments in hearing, vision, intracranial pressure and/or neurocognitive functions. Craniosynostosis can result from mutations, chromosomal abnormalities or adverse environmental effects, and can occur in isolation or in association with numerous syndromes. To date, surgical correction remains the primary treatment for craniosynostosis, but it is associated with complications and with the potential for re-synostosis. There is, therefore, a strong unmet need for new therapies. Here, we provide a comprehensive review of our current understanding of craniosynostosis, including typical craniosynostosis types, their clinical manifestations, cranial suture development, and genetic and environmental causes. Based on studies from animal models, we present a framework for understanding the pathogenesis of craniosynostosis, with an emphasis on the loss of postnatal suture mesenchymal stem cells as an emerging disease-driving mechanism. We evaluate emerging treatment options and highlight the potential of mesenchymal stem cell-based suture regeneration as a therapeutic approach for craniosynostosis.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
24
|
Liao J, Huang Y, Wang Q, Chen S, Zhang C, Wang D, Lv Z, Zhang X, Wu M, Chen G. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci 2022; 79:158. [PMID: 35220463 PMCID: PMC11072871 DOI: 10.1007/s00018-022-04208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiang Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenyang Zhang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Mengrui Wu
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
25
|
Kague E, Medina-Gomez C, Boyadjiev SA, Rivadeneira F. The genetic overlap between osteoporosis and craniosynostosis. Front Endocrinol (Lausanne) 2022; 13:1020821. [PMID: 36225206 PMCID: PMC9548872 DOI: 10.3389/fendo.2022.1020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is the most prevalent bone condition in the ageing population. This systemic disease is characterized by microarchitectural deterioration of bone, leading to increased fracture risk. In the past 15 years, genome-wide association studies (GWAS), have pinpointed hundreds of loci associated with bone mineral density (BMD), helping elucidate the underlying molecular mechanisms and genetic architecture of fracture risk. However, the challenge remains in pinpointing causative genes driving GWAS signals as a pivotal step to drawing the translational therapeutic roadmap. Recently, a skull BMD-GWAS uncovered an intriguing intersection with craniosynostosis, a congenital anomaly due to premature suture fusion in the skull. Here, we recapitulate the genetic contribution to both osteoporosis and craniosynostosis, describing the biological underpinnings of this overlap and using zebrafish models to leverage the functional investigation of genes associated with skull development and systemic skeletal homeostasis.
Collapse
Affiliation(s)
- Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
- *Correspondence: Erika Kague,
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Simeon A. Boyadjiev
- Department of Pediatrics, University of California, Davis, Sacramento, CA, United States
| | - Fernando Rivadeneira
- Department of Oral and Maxillofacial Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
26
|
Holmes G, Gonzalez-Reiche AS, Saturne M, Motch Perrine SM, Zhou X, Borges AC, Shewale B, Richtsmeier JT, Zhang B, van Bakel H, Jabs EW. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat Commun 2021; 12:7132. [PMID: 34880220 PMCID: PMC8655033 DOI: 10.1038/s41467-021-27402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Craniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip-/- coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ana S. Gonzalez-Reiche
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Madrikha Saturne
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Susan M. Motch Perrine
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Xianxiao Zhou
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ana C. Borges
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bhavana Shewale
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Joan T. Richtsmeier
- grid.29857.310000 0001 2097 4281Department of Anthropology, Pennsylvania State University, University Park, PA 16802 USA
| | - Bin Zhang
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Harm van Bakel
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Ethylin Wang Jabs
- grid.59734.3c0000 0001 0670 2351Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.21107.350000 0001 2171 9311Department of Genetic Medicine and Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
27
|
Di Pietro L, Barba M, Palacios D, Tiberio F, Prampolini C, Baranzini M, Parolini O, Arcovito A, Lattanzi W. Shaping modern human skull through epigenetic, transcriptional and post-transcriptional regulation of the RUNX2 master bone gene. Sci Rep 2021; 11:21316. [PMID: 34716352 PMCID: PMC8556228 DOI: 10.1038/s41598-021-00511-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
RUNX2 encodes the master bone transcription factor driving skeletal development in vertebrates, and playing a specific role in craniofacial and skull morphogenesis. The anatomically modern human (AMH) features sequence changes in the RUNX2 locus compared with archaic hominins' species. We aimed to understand how these changes may have contributed to human skull globularization occurred in recent evolution. We compared in silico AMH and archaic hominins' genomes, and used mesenchymal stromal cells isolated from skull sutures of craniosynostosis patients for in vitro functional assays. We detected 459 and 470 nucleotide changes in noncoding regions of the AMH RUNX2 locus, compared with the Neandertal and Denisovan genomes, respectively. Three nucleotide changes in the proximal promoter were predicted to alter the binding of the zinc finger protein Znf263 and long-distance interactions with other cis-regulatory regions. By surface plasmon resonance, we selected nucleotide substitutions in the 3'UTRs able to affect miRNA binding affinity. Specifically, miR-3150a-3p and miR-6785-5p expression inversely correlated with RUNX2 expression during in vitro osteogenic differentiation. The expression of two long non-coding RNAs, AL096865.1 and RUNX2-AS1, within the same locus, was modulated during in vitro osteogenic differentiation and correlated with the expression of specific RUNX2 isoforms. Our data suggest that RUNX2 may have undergone adaptive phenotypic evolution caused by epigenetic and post-transcriptional regulatory mechanisms, which may explain the delayed suture fusion leading to the present-day globular skull shape.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Daniela Palacios
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Tiberio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Prampolini
- Dipartimento Testa-Collo e Organi di Senso, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mirko Baranzini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Arcovito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Wanda Lattanzi
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
28
|
Farmer DT, Mlcochova H, Zhou Y, Koelling N, Wang G, Ashley N, Bugacov H, Chen HJ, Parvez R, Tseng KC, Merrill AE, Maxson RE, Wilkie AOM, Crump JG, Twigg SRF. The developing mouse coronal suture at single-cell resolution. Nat Commun 2021; 12:4797. [PMID: 34376651 PMCID: PMC8355337 DOI: 10.1038/s41467-021-24917-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/15/2021] [Indexed: 11/08/2022] Open
Abstract
Sutures separate the flat bones of the skull and enable coordinated growth of the brain and overlying cranium. The coronal suture is most commonly fused in monogenic craniosynostosis, yet the unique aspects of its development remain incompletely understood. To uncover the cellular diversity within the murine embryonic coronal suture, we generated single-cell transcriptomes and performed extensive expression validation. We find distinct pre-osteoblast signatures between the bone fronts and periosteum, a ligament-like population above the suture that persists into adulthood, and a chondrogenic-like population in the dura mater underlying the suture. Lineage tracing reveals an embryonic Six2+ osteoprogenitor population that contributes to the postnatal suture mesenchyme, with these progenitors being preferentially affected in a Twist1+/-; Tcf12+/- mouse model of Saethre-Chotzen Syndrome. This single-cell atlas provides a resource for understanding the development of the coronal suture and the mechanisms for its loss in craniosynostosis.
Collapse
Affiliation(s)
- D'Juan T Farmer
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Hana Mlcochova
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Yan Zhou
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nils Koelling
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Guanlin Wang
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Neil Ashley
- Single cell facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Hung-Jhen Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Riana Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, USA
| | - Robert E Maxson
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
29
|
Fonteles CSR, Finnell RH, George TM, Harshbarger RJ. Craniosynostosis: current conceptions and misconceptions. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.99] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractCranial bones articulate in areas called sutures that must remain patent until skull growth is complete. Craniosynostosis is the condition that results from premature closure of one or more of the cranial vault sutures, generating facial deformities and more importantly, skull growth restrictions with the ability to severely affect brain growth. Typically, craniosynostosis can be expressed as an isolated event, or as part of syndromic phenotypes. Multiple signaling mechanisms interact during developmental stages to ensure proper and timely suture fusion. Clinical outcome is often a product of craniosynostosis subtypes, number of affected sutures and timing of premature suture fusion. The present work aimed to review the different aspects involved in the establishment of craniosynostosis, providing a close view of the cellular, molecular and genetic background of these malformations.
Collapse
Affiliation(s)
- Cristiane Sá Roriz Fonteles
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Richard H. Finnell
- Finnell Birth Defects Research Laboratory, Dell Pediatric Research Institute, The University of Texas at Austin, USA
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, USA
| | - Timothy M. George
- Pediatric Neurosurgery, Dell Children's Medical Center, Professor, Department of Surgery, Dell Medical School, Austin, TX, USA
| | - Raymond J. Harshbarger
- Plastic Surgery, Craniofacial Team at the Dell Children's Medical Center of Central Texas, Austin, USA
| |
Collapse
|
30
|
White HE, Goswami A, Tucker AS. The Intertwined Evolution and Development of Sutures and Cranial Morphology. Front Cell Dev Biol 2021; 9:653579. [PMID: 33842480 PMCID: PMC8033035 DOI: 10.3389/fcell.2021.653579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Phenotypic variation across mammals is extensive and reflects their ecological diversification into a remarkable range of habitats on every continent and in every ocean. The skull performs many functions to enable each species to thrive within its unique ecological niche, from prey acquisition, feeding, sensory capture (supporting vision and hearing) to brain protection. Diversity of skull function is reflected by its complex and highly variable morphology. Cranial morphology can be quantified using geometric morphometric techniques to offer invaluable insights into evolutionary patterns, ecomorphology, development, taxonomy, and phylogenetics. Therefore, the skull is one of the best suited skeletal elements for developmental and evolutionary analyses. In contrast, less attention is dedicated to the fibrous sutural joints separating the cranial bones. Throughout postnatal craniofacial development, sutures function as sites of bone growth, accommodating expansion of a growing brain. As growth frontiers, cranial sutures are actively responsible for the size and shape of the cranial bones, with overall skull shape being altered by changes to both the level and time period of activity of a given cranial suture. In keeping with this, pathological premature closure of sutures postnatally causes profound misshaping of the skull (craniosynostosis). Beyond this crucial role, sutures also function postnatally to provide locomotive shock absorption, allow joint mobility during feeding, and, in later postnatal stages, suture fusion acts to protect the developed brain. All these sutural functions have a clear impact on overall cranial function, development and morphology, and highlight the importance that patterns of suture development have in shaping the diversity of cranial morphology across taxa. Here we focus on the mammalian cranial system and review the intrinsic relationship between suture development and morphology and cranial shape from an evolutionary developmental biology perspective, with a view to understanding the influence of sutures on evolutionary diversity. Future work integrating suture development into a comparative evolutionary framework will be instrumental to understanding how developmental mechanisms shaping sutures ultimately influence evolutionary diversity.
Collapse
Affiliation(s)
- Heather E White
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Division of Biosciences, University College London, London, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Pagani CA, Huber AK, Hwang C, Marini S, Padmanabhan K, Livingston N, Nunez J, Sun Y, Edwards N, Cheng YH, Visser N, Yu P, Patel N, Greenstein JA, Rasheed H, Nelson R, Kessel K, Vasquez K, Strong AL, Hespe GE, Song JY, Wellik DM, Levi B. Novel Lineage-Tracing System to Identify Site-Specific Ectopic Bone Precursor Cells. Stem Cell Reports 2021; 16:626-640. [PMID: 33606989 PMCID: PMC7940250 DOI: 10.1016/j.stemcr.2021.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
Heterotopic ossification (HO) is a form of pathological cell-fate change of mesenchymal stem/precursor cells (MSCs) that occurs following traumatic injury, limiting range of motion in extremities and causing pain. MSCs have been shown to differentiate to form bone; however, their lineage and aberrant processes after trauma are not well understood. Utilizing a well-established mouse HO model and inducible lineage-tracing mouse (Hoxa11-CreERT2;ROSA26-LSL-TdTomato), we found that Hoxa11-lineage cells represent HO progenitors specifically in the zeugopod. Bioinformatic single-cell transcriptomic and epigenomic analyses showed Hoxa11-lineage cells are regionally restricted mesenchymal cells that, after injury, gain the potential to undergo differentiation toward chondrocytes, osteoblasts, and adipocytes. This study identifies Hoxa11-lineage cells as zeugopod-specific ectopic bone progenitors and elucidates the fate specification and multipotency that mesenchymal cells acquire after injury. Furthermore, this highlights homeobox patterning genes as useful tools to trace region-specific progenitors and enable location-specific gene deletion. Lineage tracing, single-cell RNA-seq and single cell ATAC enable cell specific analysis of in vivo cell fate Hoxa11 lineage marks distinct mesenchymal precursors in the zeugopod Hoxa11 lineage mesenchymal precursors undergo an aberrant cell fate change towards ectopic bone and cartilage
Collapse
Affiliation(s)
- Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Amanda K Huber
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Hwang
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simone Marini
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Johanna Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA
| | - Nicole Edwards
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Visser
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pauline Yu
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph A Greenstein
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Husain Rasheed
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Reagan Nelson
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Kessel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kaetlin Vasquez
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy L Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey E Hespe
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane Y Song
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, 6000 Harry Hines Boulevard, Dallas, TX 75235, USA.
| |
Collapse
|
32
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
33
|
Dlx5-augmentation in neural crest cells reveals early development and differentiation potential of mouse apical head mesenchyme. Sci Rep 2021; 11:2092. [PMID: 33483579 PMCID: PMC7822927 DOI: 10.1038/s41598-021-81434-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
Neural crest cells (NCCs) give rise to various tissues including neurons, pigment cells, bone and cartilage in the head. Distal-less homeobox 5 (Dlx5) is involved in both jaw patterning and differentiation of NCC-derivatives. In this study, we investigated the differentiation potential of head mesenchyme by forcing Dlx5 to be expressed in mouse NCC (NCCDlx5). In NCCDlx5 mice, differentiation of dermis and pigment cells were enhanced with ectopic cartilage (ec) and heterotopic bone (hb) in different layers at the cranial vertex. The ec and hb were derived from the early migrating mesenchyme (EMM), the non-skeletogenic cell population located above skeletogenic supraorbital mesenchyme (SOM). The ec developed within Foxc1+-dura mater with increased PDGFRα signalling, and the hb formed with upregulation of BMP and WNT/β-catenin signallings in Dermo1+-dermal layer from E11.5. Since dermal cells express Runx2 and Msx2 in the control, osteogenic potential in dermal cells seemed to be inhibited by an anti-osteogenic function of Msx2 in normal context. We propose that, after the non-skeletogenic commitment, the EMM is divided into dermis and meninges by E11.5 in normal development. Two distinct responses of the EMM, chondrogenesis and osteogenesis, to Dlx5-augmentation in the NCCDlx5 strongly support this idea.
Collapse
|
34
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
35
|
Genetic background dependent modifiers of craniosynostosis severity. J Struct Biol 2020; 212:107629. [PMID: 32976998 DOI: 10.1016/j.jsb.2020.107629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Craniosynostosis severity varies in patients with identical genetic mutations. To understand causes of this phenotypic variation, we backcrossed the FGFR2+/C342Y mouse model of Crouzon syndrome onto congenic C57BL/6 and BALB/c backgrounds. Coronal suture fusion was observed in C57BL/6 (88% incidence, p < .001 between genotypes) but not in BALB/c FGFR2+/C342Y mutant mice at 3 weeks after birth, establishing that that the two models differ in phenotype severity. To begin identifying pre-existing modifiers of craniosynostosis severity, we compared transcriptome signatures of cranial tissues from C57BL/6 vs. BALB/c FGFR2+/+ mice. We separately analyzed frontal bone with coronal suture tissue from parietal bone with sagittal suture tissues because the coronal suture but not the sagittal suture fuses in FGFR2+/C342Y mice. The craniosynostosis associated Twist and En1 transcription factors were down-regulated, while Runx2 was up-regulated, in C57BL/6 compared to BALB/c tissues, which could predispose to craniosynostosis. Transcriptome analyses under the GO term MAPK cascade revealed that genes associated with calcium ion channels, angiogenesis, protein quality control and cell stress response were central to transcriptome differences associated with genetic background. FGFR2 and HSPA2 protein levels plus ERK1/2 activity were higher in cells isolated from C57BL/6 than BALB/c cranial tissues. Notably, the HSPA2 protein chaperone is central to craniofacial genetic epistasis, and we find that FGFR2 protein is abnormally processed in primary cells from FGFR2+/C342Y but not FGFR2+/+ mice. Therefore, we propose that differences in protein quality control responses may contribute to genetic background influences on craniosynostosis phenotype severity.
Collapse
|
36
|
Ko FC, Sumner DR. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn 2020; 250:377-392. [PMID: 32813296 DOI: 10.1002/dvdy.240] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/19/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Postnatal intramembranous bone regeneration plays an important role during a wide variety of musculoskeletal regeneration processes such as fracture healing, joint replacement and dental implant surgery, distraction osteogenesis, stress fracture healing, and repair of skeletal defects caused by trauma or resection of tumors. The molecular basis of intramembranous bone regeneration has been interrogated using rodent models of most of these conditions. These studies reveal that signaling pathways such as Wnt, TGFβ/BMP, FGF, VEGF, and Notch are invoked, reminiscent of embryonic development of membranous bone. Discoveries of several skeletal stem cell/progenitor populations using mouse genetic models also reveal the potential sources of postnatal intramembranous bone regeneration. The purpose of this review is to compare the underlying molecular signals and progenitor cells that characterize embryonic development of membranous bone and postnatal intramembranous bone regeneration.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - D Rick Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
37
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
38
|
Teng CS, Cavin L, Maxson RE, Sánchez-Villagra MR, Crump JG. Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary. eLife 2019; 8:e52814. [PMID: 31869306 PMCID: PMC6927740 DOI: 10.7554/elife.52814] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The vertebrate skull varies widely in shape, accommodating diverse strategies of feeding and predation. The braincase is composed of several flat bones that meet at flexible joints called sutures. Nearly all vertebrates have a prominent 'coronal' suture that separates the front and back of the skull. This suture can develop entirely within mesoderm-derived tissue, neural crest-derived tissue, or at the boundary of the two. Recent paleontological findings and genetic insights in non-mammalian model organisms serve to revise fundamental knowledge on the development and evolution of this suture. Growing evidence supports a decoupling of the germ layer origins of the mesenchyme that forms the calvarial bones from inductive signaling that establishes discrete bone centers. Changes in these relationships facilitate skull evolution and may create susceptibility to disease. These concepts provide a general framework for approaching issues of homology in cases where germ layer origins have shifted during evolution.
Collapse
Affiliation(s)
- Camilla S Teng
- Department of Stem Cell Biology and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Department of Biochemistry, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Lionel Cavin
- Department of Earth SciencesNatural History Museum of GenevaGenevaSwitzerland
| | - Robert E Maxson
- Department of Biochemistry, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | | | - J Gage Crump
- Department of Stem Cell Biology and Regenerative MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
39
|
Topa A, Rohlin A, Andersson MK, Fehr A, Lovmar L, Stenman G, Kölby L. NGS targeted screening of 100 Scandinavian patients with coronal synostosis. Am J Med Genet A 2019; 182:348-356. [PMID: 31837199 DOI: 10.1002/ajmg.a.61427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Craniosynostosis (CS), the premature closure of one or more cranial sutures, occurs both as part of a syndrome or in isolation (nonsyndromic form). Here, we have studied the prevalence and spectrum of genetic alterations associated with coronal suture closure in 100 Scandinavian patients treated at a single craniofacial unit. All patients were phenotypically assessed and analyzed with a custom-designed 63 gene NGS-panel. Most cases (78%) were syndromic forms of CS. Pathogenic and likely pathogenic variants explaining the phenotype were found in 80% of the families with syndromic CS and in 14% of those with nonsyndromic CS. Sixty-five percent of the families had mutations in the CS core genes FGFR2, TWIST1, FGFR3, TCF12, EFNB1, FGFR1, and POR. Five novel pathogenic/likely pathogenic variants in TWIST1, TCF12, and EFNB1 were identified. We also found novel variants in SPECC1L, IGF1R, and CYP26B1 with a possible modulator phenotypic effect. Our findings demonstrate that NGS targeted sequencing is a powerful tool to detect pathogenic mutations in patients with coronal CS and further emphasize the importance of thorough assessment of the patient's phenotype for reliable interpretation of the molecular findings. This is particularly important in patients with complex phenotypes and rare forms of CS.
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias K Andersson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - André Fehr
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Dasgupta K, Chung JU, Asam K, Jeong J. Molecular patterning of the embryonic cranial mesenchyme revealed by genome-wide transcriptional profiling. Dev Biol 2019; 455:434-448. [PMID: 31351040 PMCID: PMC6842427 DOI: 10.1016/j.ydbio.2019.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
In the head of an embryo, a layer of mesenchyme surrounds the brain underneath the surface ectoderm. This cranial mesenchyme gives rise to the meninges, the calvaria (top part of the skull), and the dermis of the scalp. Abnormal development of these structures, especially the meninges and the calvaria, is linked to significant congenital defects in humans. It has been known that different areas of the cranial mesenchyme have different fates. For example, the calvarial bone develops from the cranial mesenchyme on the baso-lateral side of the head just above the eye (supraorbital mesenchyme, SOM), but not from the mesenchyme apical to SOM (early migrating mesenchyme, EMM). However, the molecular basis of this difference is not fully understood. To answer this question, we compared the transcriptomes of EMM and SOM using high-throughput sequencing (RNA-seq). This experiment identified a large number of genes that were differentially expressed in EMM and SOM, and gene ontology analyses found very different terms enriched in each region. We verified the expression of about 40 genes in the head by RNA in situ hybridization, and the expression patterns were annotated to make a map of molecular markers for 6 subdivisions of the cranial mesenchyme. Our data also provided insights into potential novel regulators of cranial mesenchyme development, including several axon guidance pathways, lectin complement pathway, cyclic-adenosine monophosphate (cAMP) signaling pathway, and ZIC family transcription factors. Together, information in this paper will serve as a unique resource to guide future research on cranial mesenchyme development.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jong Uk Chung
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Kesava Asam
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
41
|
Dong C, Umar M, Bartoletti G, Gahankari A, Fidelak L, He F. Expression pattern of Kmt2d in murine craniofacial tissues. Gene Expr Patterns 2019; 34:119060. [PMID: 31228576 DOI: 10.1016/j.gep.2019.119060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Formation of the calvaria is a multi-staged process and is regulated by multiple genetic factors. Disruption of normal calvarial development usually causes craniosynostosis, a prevalent birth defect characterized by premature fusion of calvarial bone. Recent studies have identified mutations of KMT2D allele in patients with craniosynostosis, indicating a potential role for Kmt2d in calvarial development. KMT2D mutations have also been implicated in Kabuki syndrome, which features a distinct facial appearance, skeletal abnormality, growth retardation and intellectual disability. However, the expression pattern of Kmt2d has not been fully elucidated. In the present study we examined the expression pattern of Kmt2d at multiple stages of embryo development in mice, with a focus on the craniofacial tissues. Our in situ hybridization results showed that Kmt2d mRNA is expressed in the developing calvarial osteoblasts, epithelia and neural tissues. Such an expression pattern is in line with the phenotypes of Kabuki syndrome, suggesting that Kmt2d plays an intrinsic role in normal development and homeostasis of these craniofacial tissues.
Collapse
Affiliation(s)
- Chunmin Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Meenakshi Umar
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Garrett Bartoletti
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Apurva Gahankari
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Lauren Fidelak
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Fenglei He
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
42
|
Abstract
Deviations from the precisely coordinated programme of human head development can lead to craniofacial and orofacial malformations often including a variety of dental abnormalities too. Although the aetiology is still unknown in many cases, during the last decades different intracellular signalling pathways have been genetically linked to specific disorders. Among these pathways, the RAS/extracellular signal-regulated kinase (ERK) signalling cascade is the focus of this review since it encompasses a large group of genes that when mutated cause some of the most common and severe developmental anomalies in humans. We present the components of the RAS/ERK pathway implicated in craniofacial and orodental disorders through a series of human and animal studies. We attempt to unravel the specific molecular targets downstream of ERK that act on particular cell types and regulate key steps in the associated developmental processes. Finally we point to ambiguities in our current knowledge that need to be clarified before RAS/ERK-targeting therapeutic approaches can be implemented.
Collapse
|
43
|
Dasgupta K, Jeong J. Developmental biology of the meninges. Genesis 2019; 57:e23288. [PMID: 30801905 DOI: 10.1002/dvg.23288] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023]
Abstract
The meninges are membranous layers surrounding the central nervous system. In the head, the meninges lie between the brain and the skull, and interact closely with both during development. The cranial meninges originate from a mesenchymal sheath on the surface of the developing brain, called primary meninx, and undergo differentiation into three layers with distinct histological characteristics: the dura mater, the arachnoid mater, and the pia mater. While genetic regulation of meningeal development is still poorly understood, mouse mutants and other models with meningeal defects have demonstrated the importance of the meninges to normal development of the calvaria and the brain. For the calvaria, the interactions with the meninges are necessary for the progression of calvarial osteogenesis during early development. In later stages, the meninges control the patterning of the skull and the fate of the sutures. For the brain, the meninges regulate diverse processes including cell survival, cell migration, generation of neurons from progenitors, and vascularization. Also, the meninges serve as a stem cell niche for the brain in the postnatal life. Given these important roles of the meninges, further investigation into the molecular mechanisms underlying meningeal development can provide novel insights into the coordinated development of the head.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| | - Juhee Jeong
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| |
Collapse
|
44
|
Wang L, Huang J, Moore DC, Song Y, Ehrlich MG, Yang W. SHP2 regulates intramembranous ossification by modifying the TGFβ and BMP2 signaling pathway. Bone 2019; 120:327-335. [PMID: 30471432 PMCID: PMC6360127 DOI: 10.1016/j.bone.2018.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 02/05/2023]
Abstract
SHP2 is a ubiquitously expressed protein tyrosine phosphatase, which is involved in many signaling pathways to regulate the skeletal development. In endochondral ossification, SHP2 is known to modify the osteogenic fate of osteochondroprogenitors and to impair the osteoblastic transdifferentiation of hypertrophic chondrocytes. However, how SHP2 regulates osteoblast differentiation in intramembranous ossification remains incompletely understood. To address this question, we generated a mouse model to ablate SHP2 in the Prrx1-expressing mesenchymal progenitors by using "Cre-loxP"-mediated gene excision and examined the development of calvarial bone, in which the main process of bone formation is intramembranous ossification. Phenotypic characterization showed that SHP2 mutants have severe defects in calvarial bone formation. Cell lineage tracing and in situ hybridization data showed less osteoblast differentiation of mesenchymal cells and reduced osteogenic genes expression, respectively. Further mechanistic studies revealed enhanced TGFβ and suppressed BMP2 signaling in SHP2 ablated mesenchymal progenitors and their derivatives. Our study uncovered the critical role of SHP2 in osteoblast differentiation through intramembranous ossification and might provide a potential target to treat craniofacial skeleton disorders.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903, United States of America
| | - Jiahui Huang
- Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903, United States of America
| | - Douglas C Moore
- Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903, United States of America
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Chengdu 610041, P.R. China
| | - Michael G Ehrlich
- Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903, United States of America
| | - Wentian Yang
- Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903, United States of America.
| |
Collapse
|
45
|
Defining a critical period in calvarial development for Hedgehog pathway antagonist-induced frontal bone dysplasia in mice. Int J Oral Sci 2019; 11:3. [PMID: 30783111 PMCID: PMC6381108 DOI: 10.1038/s41368-018-0040-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/09/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway is essential for cellular proliferation and differentiation during embryonic development. Gain and loss of function of Hh signalling are known to result in an array of craniofacial malformations. To determine the critical period for Hh pathway antagonist-induced frontal bone hypoplasia, we examined patterns of dysmorphology caused by Hh signalling inhibition. Pregnant mice received a single oral administration of Hh signalling inhibitor GDC-0449 at 100 mg•kg−1 or 150 mg•kg−1 body weight at preselected time points between embryonic days (E)8.5 and 12.5. The optimal teratogenic concentration of GDC-0449 was determined to be 150 mg•kg−1. Exposure between E9.5 and E10.5 induced frontal bone dysplasia, micrognathia and limb defects, with administration at E10.5 producing the most pronounced effects. This model showed decreased ossification of the frontal bone with downregulation of Hh signalling. The osteoid thickness of the frontal bone was significantly reduced. The amount of neural crest-derived frontal bone primordium was reduced after GDC-0449 exposure owing to a decreased rate of cell proliferation and increased cell death. During embryonic development, the Hedgehog signalling pathway regulates the migration, proliferation and differentiation of cranial neural crest cells in the early frontal bone. The Hedgehog signalling pathway transmits information to embryonic cells for their proper cell differentiation, and increased or reduced function of that signalling results in various craniofacial malformations. A team headed by Weihui Chen at Fujian Medical University in China investigated the patterns of abnormalities caused by inhibition of Hedgehog signalling in pregnant mice at preselected embryonic time points. The team was able to identify the critical period for sensitivity to GDC-0449, a potent Hedgehog signalling inhibitor. The authors believe that their mouse model can be effective in further investigating the mechanisms of craniofacial malformations and will have a profound impact on identifying candidate human disease genes and associated environmental factors.
Collapse
|
46
|
Seda M, Geerlings M, Lim P, Jeyabalan-Srikaran J, Cichon AC, Scambler PJ, Beales PL, Hernandez-Hernandez V, Stoker AW, Jenkins D. An FDA-Approved Drug Screen for Compounds Influencing Craniofacial Skeletal Development and Craniosynostosis. Mol Syndromol 2019; 10:98-114. [PMID: 30976283 PMCID: PMC6422125 DOI: 10.1159/000491567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neural crest stem/progenitor cells (NCSCs) populate a variety of tissues, and their dysregulation is implicated in several human diseases including craniosynostosis and neuroblastoma. We hypothesised that small molecules that inhibit NCSC induction or differentiation may represent potential therapeutically relevant drugs in these disorders. We screened 640 FDA-approved compounds currently in clinical use for other conditions to identify those which disrupt development of NCSC-derived skeletal elements that form the zebrafish jaw. In the primary screen, we used heterozygous transgenic sox10:gfp zebrafish to directly visualise NCSC-derived jaw cartilage. We noted partial toxicity of this transgene in relation to jaw patterning, suggesting that our primary screen was sensitised for NCSC defects, and we confirmed 10 novel, 4 previously reported, and 2 functional analogue drug hits in wild-type embryos. Of these drugs, 9/14 and 7/14, respectively, are known to target pathways implicated in osteoarthritis pathogenesis or to cause reduced bone mineral density/increased fracture risk as side effects in patients treated for other conditions, suggesting that our screen enriched for pathways targeting skeletal tissue homeostasis. We selected one drug that inhibited NCSC induction and one drug that inhibits bone mineralisation for further detailed analyses which reflect our initial hypotheses. These drugs were leflunomide and cyclosporin A, respectively, and their functional analogues, teriflunomide and FK506 (tacrolimus). We identified their critical developmental windows of activity, showing that the severity of defects observed related to the timing, duration, and dose of treatment. While leflunomide has previously been shown to inhibit NCSC induction, we demonstrate additional later roles in cartilage remodelling. Both drugs altered expression of extracellular matrix metalloproteinases. As proof-of-concept, we also tested drug treatment of disease-relevant mammalian cells. While leflunomide treatment inhibited the viability of several human NCSC-derived neuroblastoma cell lines coincident with altered expression of genes involved in ribosome biogenesis and transcription, FK506 enhanced murine calvarial osteoblast differentiation and prevented fusion of the coronal suture in calvarial explants taken from Crouzon syndrome mice.
Collapse
Affiliation(s)
- Marian Seda
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Maartje Geerlings
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Peggy Lim
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Ann-Christin Cichon
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Peter J. Scambler
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Philip L. Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Andrew W. Stoker
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| |
Collapse
|
47
|
Wu X, Gu Y. Signaling Mechanisms Underlying Genetic Pathophysiology of Craniosynostosis. Int J Biol Sci 2019; 15:298-311. [PMID: 30745822 PMCID: PMC6367540 DOI: 10.7150/ijbs.29183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis, is the premature fusion of one or more cranial sutures which is the second most common cranial facial anomalies. The premature cranial sutures leads to deformity of skull shape and restricts the growth of brain, which might elicit severe neurologic damage. Craniosynostosis exhibit close correlations with a varieties of syndromes. During the past two decades, as the appliance of high throughput DNA sequencing techniques, steady progresses has been made in identifying gene mutations in both syndromic and nonsyndromic cases, which allow researchers to better understanding the genetic roles in the development of cranial vault. As the enrichment of known mutations involved in the pathogenic of premature sutures fusion, multiple signaling pathways have been investigated to dissect the underlying mechanisms beneath the disease. In addition to genetic etiology, environment factors, especially mechanics, have also been proposed to have vital roles during the pathophysiological of craniosynostosis. However, the influence of mechanics factors in the cranial development remains largely unknown. In this review, we present a brief overview of the updated genetic mutations and environmental factors identified in both syndromic and nonsyndromic craniosynostosis. Furthermore, potential molecular signaling pathways and its relations have been described.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
- National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, PR. China
| |
Collapse
|
48
|
Ferguson J, Atit RP. A tale of two cities: The genetic mechanisms governing calvarial bone development. Genesis 2019; 57:e23248. [PMID: 30155972 PMCID: PMC7433025 DOI: 10.1002/dvg.23248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
The skull bones must grow in a coordinated, three-dimensional manner to coalesce and form the head and face. Mammalian skull bones have a dual embryonic origin from cranial neural crest cells (CNCC) and paraxial mesoderm (PM) and ossify through intramembranous ossification. The calvarial bones, the bones of the cranium which cover the brain, are derived from the supraorbital arch (SOA) region mesenchyme. The SOA is the site of frontal and parietal bone morphogenesis and primary center of ossification. The objective of this review is to frame our current in vivo understanding of the morphogenesis of the calvarial bones and the gene networks regulating calvarial bone initiation in the SOA mesenchyme.
Collapse
Affiliation(s)
- James Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
- Department of Genetics, Case Western Reserve University, Cleveland OH 44106
- Department of Dermatology, Case Western Reserve University, Cleveland OH 44106
| |
Collapse
|
49
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
50
|
Genetic Analysis of the Organization, Development, and Plasticity of Corneal Innervation in Mice. J Neurosci 2018; 39:1150-1168. [PMID: 30587537 DOI: 10.1523/jneurosci.1401-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/05/2018] [Accepted: 11/24/2018] [Indexed: 11/21/2022] Open
Abstract
The cornea has the densest sensory innervation of the body, originating primarily from neurons in the trigeminal ganglion. The basic principles of cornea nerve patterning have been established many years ago using classic neuroanatomical methods, such as immunocytochemistry and electrophysiology. Our understanding of the morphology and distribution of the sensory nerves in the skin has considerably progressed over the past few years through the generation and analysis of a variety of genetically modified mouse lines. Surprisingly, these lines were not used to study corneal axons. Here, we have screened a collection of transgenic and knockin mice (of both sexes) to select lines allowing the visualization and genetic manipulation of corneal nerves. We identified multiple lines, including some in which different types of corneal axons can be simultaneously observed with fluorescent proteins expressed in a combinatorial manner. We also provide the first description of the morphology and arborization of single corneal axons and identify three main types of branching pattern. We applied this genetic strategy to the analysis of corneal nerve development and plasticity. We provide direct evidence for a progressive reduction of the density of corneal innervation during aging. We also show that the semaphorin receptor neuropilin-1 acts cell-autonomously to control the development of corneal axons and that early axon guidance defects have long-term consequences on corneal innervation.SIGNIFICANCE STATEMENT We have screened a collection of transgenic and knockin mice and identify lines allowing the visualization and genetic manipulation of corneal nerves. We provide the first description of the arborization pattern of single corneal axons. We also present applications of this genetic strategy to the analysis of corneal nerve development and remodeling during aging.
Collapse
|