1
|
Liu Y, Qu HQ, Chang X, Mentch FD, Qiu H, Nguyen K, Ostberg K, Wang T, Glessner J, Hakonarson H. Deciphering protective genomic factors of tumor development in pediatric down syndrome via deep learning approach to whole genome and RNA sequencing. Cancer Commun (Lond) 2024. [PMID: 39387321 DOI: 10.1002/cac2.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Haijun Qiu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kayleigh Ostberg
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tiancheng Wang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Cano-Martínez A, Rubio-Ruiz ME, Guarner-Lans V. Homeostasis and evolution in relation to regeneration and repair. J Physiol 2024; 602:2627-2648. [PMID: 38781025 DOI: 10.1113/jp284426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Homeostasis constitutes a key concept in physiology and refers to self-regulating processes that maintain internal stability when adjusting to changing external conditions. It diminishes internal entropy constituting a driving force behind evolution. Natural selection might act on homeostatic regulatory mechanisms and control mechanisms including homeodynamics, allostasis, hormesis and homeorhesis, where different stable stationary states are reached. Regeneration is under homeostatic control through hormesis. Damage to tissues initiates a response to restore the impaired equilibrium caused by mild stress using cell proliferation, cell differentiation and cell death to recover structure and function. Repair is a homeorhetic change leading to a new stable stationary state with decreased functionality and fibrotic scarring without reconstruction of the 3-D pattern. Mechanisms determining entrance of the tissue or organ to regeneration or repair include the balance between innate and adaptive immune cells in relation to cell plasticity and stromal stem cell responses, and redox balance. The regenerative and reparative capacities vary in different species, distinct tissues and organs, and at different stages of development including ageing. Many cell signals and pathways play crucial roles determining regeneration or repair by regulating protein synthesis, cellular growth, inflammation, proliferation, autophagy, lysosomal function, metabolism and metalloproteinase cell signalling. Attempts to favour the entrance of damaged tissues to regeneration in those with low proliferative rates have been made; however, there are evolutionary constraint mechanisms leading to poor proliferation of stem cells in unfavourable environments or tumour development. More research is required to better understand the regulatory processes of these mechanisms.
Collapse
Affiliation(s)
- Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, México, México
| | | | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, México, México
| |
Collapse
|
3
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Seifert AW, Duncan EM, Zayas RM. Enduring questions in regenerative biology and the search for answers. Commun Biol 2023; 6:1139. [PMID: 37945686 PMCID: PMC10636051 DOI: 10.1038/s42003-023-05505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
The potential for basic research to uncover the inner workings of regenerative processes and produce meaningful medical therapies has inspired scientists, clinicians, and patients for hundreds of years. Decades of studies using a handful of highly regenerative model organisms have significantly advanced our knowledge of key cell types and molecular pathways involved in regeneration. However, many questions remain about how regenerative processes unfold in regeneration-competent species, how they are curtailed in non-regenerative organisms, and how they might be induced (or restored) in humans. Recent technological advances in genomics, molecular biology, computer science, bioengineering, and stem cell research hold promise to collectively provide new experimental evidence for how different organisms accomplish the process of regeneration. In theory, this new evidence should inform the design of new clinical approaches for regenerative medicine. A deeper understanding of how tissues and organs regenerate will also undoubtedly impact many adjacent scientific fields. To best apply and adapt these new technologies in ways that break long-standing barriers and answer critical questions about regeneration, we must combine the deep knowledge of developmental and evolutionary biologists with the hard-earned expertise of scientists in mechanistic and technical fields. To this end, this perspective is based on conversations from a workshop we organized at the Banbury Center, during which a diverse cross-section of the regeneration research community and experts in various technologies discussed enduring questions in regenerative biology. Here, we share the questions this group identified as significant and unanswered, i.e., known unknowns. We also describe the obstacles limiting our progress in answering these questions and how expanding the number and diversity of organisms used in regeneration research is essential for deepening our understanding of regenerative capacity. Finally, we propose that investigating these problems collaboratively across a diverse network of researchers has the potential to advance our field and produce unexpected insights into important questions in related areas of biology and medicine.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
5
|
Bedelbaeva K, Cameron B, Latella J, Aslanukov A, Gourevitch D, Davuluri R, Heber-Katz E. Epithelial-mesenchymal transition: an organizing principle of mammalian regeneration. Front Cell Dev Biol 2023; 11:1101480. [PMID: 37965571 PMCID: PMC10641390 DOI: 10.3389/fcell.2023.1101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/27/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction: The MRL mouse strain is one of the few examples of a mammal capable of healing appendage wounds by regeneration, a process that begins with the formation of a blastema, a structure containing de-differentiating mesenchymal cells. HIF-1α expression in the nascent MRL wound site blastema is one of the earliest identified events and is sufficient to initiate the complete regenerative program. However, HIF-1α regulates many cellular processes modulating the expression of hundreds of genes. A later signal event is the absence of a functional G1 checkpoint, leading to G2 cell cycle arrest with increased cellular DNA but little cell division observed in the blastema. This lack of mitosis in MRL blastema cells is also a hallmark of regeneration in classical invertebrate and vertebrate regenerators such as planaria, hydra, and newt. Results and discussion: Here, we explore the cellular events occurring between HIF-1α upregulation and its regulation of the genes involved in G2 arrest (EVI-5, γH3, Wnt5a, and ROR2), and identify epithelial-mesenchymal transition (EMT) (Twist and Slug) and chromatin remodeling (EZH-2 and H3K27me3) as key intermediary processes. The locus of these cellular events is highly regionalized within the blastema, occurring in the same cells as determined by double staining by immunohistochemistry and FACS analysis, and appears as EMT and chromatin remodeling, followed by G2 arrest determined by kinetic expression studies.
Collapse
Affiliation(s)
- Kamila Bedelbaeva
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | - Benjamin Cameron
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | - John Latella
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | - Azamat Aslanukov
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
| | | | | | - Ellen Heber-Katz
- Lankenau Institute for Medical Research (LIMR), Wynnewood, PA, United States
- The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
6
|
Mitobe Y, Suzuki S, Nakagawa-Saito Y, Togashi K, Sugai A, Sonoda Y, Kitanaka C, Okada M. The Novel MDM4 Inhibitor CEP-1347 Activates the p53 Pathway and Blocks Malignant Meningioma Growth In Vitro and In Vivo. Biomedicines 2023; 11:1967. [PMID: 37509605 PMCID: PMC10377688 DOI: 10.3390/biomedicines11071967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this study, we aimed to determine the in vitro and in vivo effects of CEP-1347, a small-molecule inhibitor of MDM4 with known safety in humans. The effects of CEP-1347 and MDM4 knockdown on the p53 pathway in human meningioma cell lines with and without p53 mutation were examined by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 were examined in vitro and in a mouse xenograft model of meningioma. In vitro, CEP-1347 at clinically relevant concentrations inhibited MDM4 expression, activated the p53 pathway in malignant meningioma cells with wild-type p53, and exhibited preferential growth inhibitory effects on cells expressing wild-type p53, which was mostly mimicked by MDM4 knockdown. CEP-1347 effectively inhibited the growth of malignant meningioma xenografts at a dose that was far lower than the maximum dose that could be safely given to humans. Our findings suggest targeting the p53 pathway with CEP-1347 represents a novel and viable approach to treating aggressive meningiomas.
Collapse
Affiliation(s)
- Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| |
Collapse
|
7
|
Mehdipour M, Park S, Huang GN. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. J Mol Cell Cardiol 2023; 177:9-20. [PMID: 36801396 PMCID: PMC10699255 DOI: 10.1016/j.yjmcc.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. Cardiomyocytes are irreversibly lost due to cardiac ischemia secondary to disease. This leads to increased cardiac fibrosis, poor contractility, cardiac hypertrophy, and subsequent life-threatening heart failure. Adult mammalian hearts exhibit notoriously low regenerative potential, further compounding the calamities described above. Neonatal mammalian hearts, on the other hand, display robust regenerative capacities. Lower vertebrates such as zebrafish and salamanders retain the ability to replenish lost cardiomyocytes throughout life. It is critical to understand the varying mechanisms that are responsible for these differences in cardiac regeneration across phylogeny and ontogeny. Adult mammalian cardiomyocyte cell cycle arrest and polyploidization have been proposed as major barriers to heart regeneration. Here we review current models about why adult mammalian cardiac regenerative potential is lost including changes in environmental oxygen levels, acquisition of endothermy, complex immune system development, and possible cancer risk tradeoffs. We also discuss recent progress and highlight conflicting reports pertaining to extrinsic and intrinsic signaling pathways that control cardiomyocyte proliferation and polyploidization in growth and regeneration. Uncovering the physiological brakes of cardiac regeneration could illuminate novel molecular targets and offer promising therapeutic strategies to treat heart failure.
Collapse
Affiliation(s)
- Melod Mehdipour
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sangsoon Park
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Sahinyan K, Lazure F, Blackburn DM, Soleimani VD. Decline of regenerative potential of old muscle stem cells: contribution to muscle aging. FEBS J 2023; 290:1267-1289. [PMID: 35029021 DOI: 10.1111/febs.16352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/01/2023]
Abstract
Muscle stem cells (MuSCs) are required for life-long muscle regeneration. In general, aging has been linked to a decline in the numbers and the regenerative potential of MuSCs. Muscle regeneration depends on the proper functioning of MuSCs, which is itself dependent on intricate interactions with its niche components. Aging is associated with both cell-intrinsic and niche-mediated changes, which can be the result of transcriptional, posttranscriptional, or posttranslational alterations in MuSCs or in the components of their niche. The interplay between cell intrinsic alterations in MuSCs and changes in the stem cell niche environment during aging and its impact on the number and the function of MuSCs is an important emerging area of research. In this review, we discuss whether the decline in the regenerative potential of MuSCs with age is the cause or the consequence of aging skeletal muscle. Understanding the effect of aging on MuSCs and the individual components of their niche is critical to develop effective therapeutic approaches to diminish or reverse the age-related defects in muscle regeneration.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
9
|
Wu Z, Ge L, Ma L, Lu M, Song Y, Deng S, Duan P, Du T, Wu Y, Zhang Z, Zhang S. TPM2 attenuates progression of prostate cancer by blocking PDLIM7-mediated nuclear translocation of YAP1. Cell Biosci 2023; 13:39. [PMID: 36823643 PMCID: PMC9948342 DOI: 10.1186/s13578-023-00993-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a common malignant tumor of the genitourinary system. Clinical intervention in advanced PCa remains challenging. Tropomyosins 2 (TPM2) are actin-binding proteins and have been found as a biomarker candidate for certain cancers. However, no studies have explored the role of TPM2 in PCa and its regulatory mechanism. METHODS TPM2 expression was assessed in Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) PCa patient dataset. The effect of TPM2 on PCa progression was assessed in vitro and in vivo by quantifying proliferation, migration, invasion and tumor growth assays, and the mechanism of TPM2 in PCa progression was gradually revealed by Western blotting, immunoprecipitation, and immunofluorescence staining arrays. RESULTS TPM2 was found to be severely downregulated in tumor tissues of PCa patients compared with tumor-adjacent normal tissues. In vitro experiments revealed that TPM2 overexpression inhibited PCa cell proliferation, invasion and androgen-independent proliferation. Moreover, TPM2 overexpression inhibited the growth of subcutaneous xenograft tumors in vivo. Mechanistically, this effect was noted to be dependent on PDZ-binding motif of TPM2. TPM2 competed with YAP1 for binding to PDLIM7 through the PDZ-binding motif. The binding of TPM2 to PDLIM7 subsequently inhibited the nuclear transport function of PDLIM7 for YAP1. YAP1 sequestered in the cytoplasm phosphorylated at S127, resulting in its inactivation or degradation which in turn inhibited the expression of YAP1 downstream target genes. CONCLUSIONS This study investigated the role of TPM2, PDLIM7, and YAP1 in PCa progression and castration resistance. TPM2 attenuates progression of PCa by blocking PDLIM7-mediated nuclear translocation of YAP1. Accordingly, targeting the expression or functional modulation of TPM2, PDLIM7, or YAP1 has the potential to be an effective therapeutic approach to reduce PCa proliferation and prevent the progression of castration-resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Zonglong Wu
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Liyuan Ge
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Lulin Ma
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Min Lu
- grid.11135.370000 0001 2256 9319Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Yimeng Song
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Shaohui Deng
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Peichen Duan
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Tan Du
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Yaqian Wu
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Zhanyi Zhang
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
10
|
Al-Harbi LN, Al-Shammari GM, Subash-Babu P, Mohammed MA, Alkreadees RA, Yagoub AEA. Cinchona officinalis Phytochemicals-Loaded Iron Oxide Nanoparticles Induce Cytotoxicity and Stimulate Apoptosis in MCF-7 Human Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3393. [PMID: 36234520 PMCID: PMC9565860 DOI: 10.3390/nano12193393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to synthesize iron oxide nanoparticles loaded with quinine and alkaloids-rich Cinchona officinalis (Peruvian bark) stem bark extract, and further evaluate their cytotoxic effect and apoptosis mechanisms in MCF-7 breast cancer cells. Nanoparticles were prepared by biological reduction of iron oxide with Cinchona officinalis extract, using the green synthesis method. The nanoparticles were characterized by XRD, FT-IR, and UV-vis spectroscopy and transmission electron microscopy (TEM). In vitro cytotoxicity analyses of Cinchona officinalis extract, ferrous oxide, and Cinchona officinalis extract-loaded iron oxide nanoparticles (CO-NPs) were carried out using the MTT test for 24 h and 48 h. We found that CO-NPs reduced the MCF-7 cell viability with IC50 values of 16.2 and 9 µg/mL in 24 h and 48 h, respectively. In addition, CO-NPs were tested with normal hMSCs to determine their toxicity, and we did not find noticeable cytotoxicity. Confocal fluorescent microscopy revealed that CO-NPs efficiently increased the nuclear condensation and chromatin damage in propidium iodide staining; meanwhile, there was decreased mitochondrial membrane potential in CO-NPs-treated MCF-7 cells. In addition, AO-EB staining confirmed the late apoptotic and apoptotic morphology of cancer cells. Further gene expression analysis confirmed that the upregulation of tumor suppressors, Cdkn1A, Prb, and p53 was significantly increased, and inflammatory traits such as TNF-α and Nf-κb were increased in cancer cells treated with CO-NPs. Apoptotic stimulators such as Bax and caspase-3 expression were highly significantly increased, while mdm-2 and Bcl-2 were significantly decreased. Overall, the enhanced cytotoxic potential of the Cinchona officianlis stem bark extract loaded CO-NPs versus free Cinchona officianlis extract might be due to the functional stabilization of bioactive compounds, such as alkaloids, quinine, flavonoids, phenolics, etc., into the iron oxide, providing bioavailability and internalization of cinchona metabolites intracellularly.
Collapse
|
11
|
Sandoval AGW, Maden M, Bates LE, Silva JC. Tumor suppressors inhibit reprogramming of African spiny mouse ( Acomys) fibroblasts to induced pluripotent stem cells. Wellcome Open Res 2022; 7:215. [PMID: 36060301 PMCID: PMC9437536 DOI: 10.12688/wellcomeopenres.18034.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The African spiny mouse ( Acomys) is an emerging mammalian model for scar-free regeneration, and further study of Acomys could advance the field of regenerative medicine. Isolation of pluripotent stem cells from Acomys would allow for development of transgenic or chimeric animals and in vitro study of regeneration; however, the reproductive biology of Acomys is not well characterized, complicating efforts to derive embryonic stem cells. Thus, we sought to generate Acomys induced pluripotent stem cells (iPSCs) by reprogramming somatic cells back to pluripotency. Methods: To generate Acomys iPSCs, we attempted to adapt established protocols developed in Mus. We utilized a PiggyBac transposon system to genetically modify Acomys fibroblasts to overexpress the Yamanaka reprogramming factors as well as mOrange fluorescent protein under the control of a doxycycline-inducible TetON operon system. Results: Reprogramming factor overexpression caused Acomys fibroblasts to undergo apoptosis or senescence. When SV40 Large T antigen (SV40 LT) was added to the reprogramming cocktail, Acomys cells were able to dedifferentiate into pre-iPSCs. Although use of 2iL culture conditions induced formation of colonies resembling Mus PSCs, these Acomys iPS-like cells lacked pluripotency marker expression and failed to form embryoid bodies. An EOS-GiP system was unsuccessful in selecting for bona fide Acomys iPSCs; however, inclusion of Nanog in the reprogramming cocktail along with 5-azacytidine in the culture medium allowed for generation of Acomys iPSC-like cells with increased expression of several naïve pluripotency markers. Conclusions: There are significant roadblocks to reprogramming Acomys cells, necessitating future studies to determine Acomys-specific reprogramming factor and/or culture condition requirements. The requirement for SV40 LT during Acomys dedifferentiation may suggest that tumor suppressor pathways play an important role in Acomys regeneration and that Acomys may possess unreported cancer resistance.
Collapse
Affiliation(s)
- Aaron Gabriel W. Sandoval
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lawrence E. Bates
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jose C.R. Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| |
Collapse
|
12
|
Jaiswal SK, Raj S, DePamphilis ML. Developmental Acquisition of p53 Functions. Genes (Basel) 2021; 12:genes12111675. [PMID: 34828285 PMCID: PMC8622856 DOI: 10.3390/genes12111675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkably, the p53 transcription factor, referred to as “the guardian of the genome”, is not essential for mammalian development. Moreover, efforts to identify p53-dependent developmental events have produced contradictory conclusions. Given the importance of pluripotent stem cells as models of mammalian development, and their applications in regenerative medicine and disease, resolving these conflicts is essential. Here we attempt to reconcile disparate data into justifiable conclusions predicated on reports that p53-dependent transcription is first detected in late mouse blastocysts, that p53 activity first becomes potentially lethal during gastrulation, and that apoptosis does not depend on p53. Furthermore, p53 does not regulate expression of genes required for pluripotency in embryonic stem cells (ESCs); it contributes to ESC genomic stability and differentiation. Depending on conditions, p53 accelerates initiation of apoptosis in ESCs in response to DNA damage, but cell cycle arrest as well as the rate and extent of apoptosis in ESCs are p53-independent. In embryonic fibroblasts, p53 induces cell cycle arrest to allow repair of DNA damage, and cell senescence to prevent proliferation of cells with extensive damage.
Collapse
Affiliation(s)
- Sushil K. Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA;
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
- Correspondence:
| |
Collapse
|
13
|
Arenas Gómez CM, Echeverri K. Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Curr Top Dev Biol 2021; 145:235-275. [PMID: 34074531 PMCID: PMC8186737 DOI: 10.1016/bs.ctdb.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salamanders are recognized for their ability to regenerate a broad range of tissues. They have also have been used for hundreds of years for classical developmental biology studies because of their large accessible embryos. The range of tissues these animals can regenerate is fascinating, from full limbs to parts of the brain or heart, a potential that is missing in humans. Many promising research efforts are working to decipher the molecular blueprints shared across the organisms that naturally have the capacity to regenerate different tissues and organs. Salamanders are an excellent example of a vertebrate that can functionally regenerate a wide range of tissue types. In this review, we outline some of the significant insights that have been made that are aiding in understanding the cellular and molecular mechanisms of tissue regeneration in salamanders and discuss why salamanders are a worthy model in which to study regenerative biology and how this may benefit research fields like regenerative medicine to develop therapies for humans in the future.
Collapse
Affiliation(s)
- Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, United States.
| |
Collapse
|
14
|
Cutie S, Huang GN. Vertebrate cardiac regeneration: evolutionary and developmental perspectives. CELL REGENERATION 2021; 10:6. [PMID: 33644818 PMCID: PMC7917145 DOI: 10.1186/s13619-020-00068-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Cardiac regeneration is an ancestral trait in vertebrates that is lost both as more recent vertebrate lineages evolved to adapt to new environments and selective pressures, and as members of certain species developmentally progress towards their adult forms. While higher vertebrates like humans and rodents resolve cardiac injury with permanent fibrosis and loss of cardiac output as adults, neonates of these same species can fully regenerate heart structure and function after injury - as can adult lower vertebrates like many teleost fish and urodele amphibians. Recent research has elucidated several broad factors hypothesized to contribute to this loss of cardiac regenerative potential both evolutionarily and developmentally: an oxygen-rich environment, vertebrate thermogenesis, a complex adaptive immune system, and cancer risk trade-offs. In this review, we discuss the evidence for these hypotheses as well as the cellular participators and molecular regulators by which they act to govern heart regeneration in vertebrates.
Collapse
Affiliation(s)
- Stephen Cutie
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
15
|
Grigoryan EN. Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine. J Dev Biol 2021; 9:2. [PMID: 33477527 PMCID: PMC7838874 DOI: 10.3390/jdb9010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
16
|
Degan M, Dalla Valle L, Alibardi L. Gene expression in regenerating and scarring tails of lizard evidences three main key genes (wnt2b, egfl6, and arhgap28) activated during the regulated process of tail regeneration. PROTOPLASMA 2021; 258:3-17. [PMID: 32852660 DOI: 10.1007/s00709-020-01545-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
We have analyzed the expression of key genes orchestrating tail regeneration in lizard under normal and scarring conditions after cauterization. At 1-day post-cauterization (1 dpc), the injured blastema contains degenerating epithelial and mesenchymal cells, numerous mast cells, and immune cells. At 3 and 7 dpc, a stratified wound epidermis is forming while fibrocytes give rise to a scarring connective tissue. Oncogenes such as wnt2b, egfl6, wnt6, and mycn and the tumor suppressor arhgap28 are much more expressed than other oncogenes (hmga2, rhov, fgf8, fgfr4, tert, shh) and tumor suppressors (apcdd1, p63, rb, fat2, bcl11b) in the normal blastema and at 7 dpc. Blastemas at 3 dpc feature the lowest upregulation of most genes, likely derived from damage after cauterization. Immunomodulator genes nfatc4 and lef1 are more expressed at 7 dpc than in normal blastema and 3 dpc suggesting the induction of immune response favoring scarring. Balanced over-expression of oncogenes, tumor suppressor genes, and immune modulator genes determines regulation of cell proliferation (anti-oncogenic), of movement (anti-metastatic), and immunosuppression in the normal blastema. Significant higher expression of oncogenes wnt2b and egfl6 in normal blastema and higher expression of the tumor suppressor arhgap28 in the 7 dpc blastema indicate that they are among the key/master genes that determine the regulated regeneration of the tail.
Collapse
Affiliation(s)
- Massimo Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | | | - Lorenzo Alibardi
- Comparative Histolab Padova, Padua, Italy.
- Department of Biology, University of Bologna, Via Semi 3, 40126, Bologna, Italy.
| |
Collapse
|
17
|
Xu C, Palade J, Fisher RE, Smith CI, Clark AR, Sampson S, Bourgeois R, Rawls A, Elsey RM, Wilson-Rawls J, Kusumi K. Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis). Sci Rep 2020; 10:20122. [PMID: 33208803 PMCID: PMC7674433 DOI: 10.1038/s41598-020-77052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Reptiles are the only amniotes that maintain the capacity to regenerate appendages. This study presents the first anatomical and histological evidence of tail repair with regrowth in an archosaur, the American alligator. The regrown alligator tails constituted approximately 6–18% of the total body length and were morphologically distinct from original tail segments. Gross dissection, radiographs, and magnetic resonance imaging revealed that caudal vertebrae were replaced by a ventrally-positioned, unsegmented endoskeleton. This contrasts with lepidosaurs, where the regenerated tail is radially organized around a central endoskeleton. Furthermore, the regrown alligator tail lacked skeletal muscle and instead consisted of fibrous connective tissue composed of type I and type III collagen fibers. The overproduction of connective tissue shares features with mammalian wound healing or fibrosis. The lack of skeletal muscle contrasts with lizards, but shares similarities with regenerated tails in the tuatara and regenerated limbs in Xenopus adult frogs, which have a cartilaginous endoskeleton surrounded by connective tissue, but lack skeletal muscle. Overall, this study of wild-caught, juvenile American alligator tails identifies a distinct pattern of wound repair in mammals while exhibiting features in common with regeneration in lepidosaurs and amphibia.
Collapse
Affiliation(s)
- Cindy Xu
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Joanna Palade
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Rebecca E Fisher
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.,Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Cameron I Smith
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Andrew R Clark
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Samuel Sampson
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | | | - Alan Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, 70643, USA
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, AZ, 85287, USA.
| |
Collapse
|
18
|
Lee S, Hesse R, Tamaki S, Garland C, Pomerantz JH. Human ARF Specifically Inhibits Epimorphic Regeneration in the Zebrafish Heart. Genes (Basel) 2020; 11:genes11060666. [PMID: 32570883 PMCID: PMC7349231 DOI: 10.3390/genes11060666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
The Alternative Reading Frame (ARF) protein is a tumor suppressor encoded by the Cyclin Dependent Kinase Inhibitor 2A gene in mammals but not lower regenerative vertebrates, and has been previously implicated as a context-sensitive suppressor of regeneration in murine skeletal muscle and humanized ARF-expressing zebrafish fins. This study extends our investigation of the role of ARF in the regeneration of other solid tissues, including the zebrafish heart and the mammalian digit. Heart regeneration after cryoinjury was used to mimic massive myocardial infarction. ARF gene expression was upregulated during the cardiac regenerative process and slowed the rate of morphological recovery. ARF specifically impacts cardiomyocytes, neovascularization, and the endothelial-mesenchymal transition, while not affecting epicardial proliferation. This suggests that in the context of regeneration, ARF is specifically expressed in cells undergoing dedifferentiation. To investigate ARF as a suppressor of epimorphic regeneration in mammalian systems, we also tested whether the absence of ARF was permissive for murine digit regeneration, but found that ARF absence alone was insufficient to significantly alter digit restoration. These findings provide additional evidence that ARF suppresses epimorphic regeneration, but suggests that modulation of ARF alone is insufficient to permit regeneration.
Collapse
Affiliation(s)
- Solomon Lee
- Department of Surgery, Division of Plastic Surgery, Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA;
| | - Robert Hesse
- Department of Surgery and Orofacial Sciences, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; (R.H.); (S.T.)
| | - Stanley Tamaki
- Department of Surgery and Orofacial Sciences, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; (R.H.); (S.T.)
| | - Catharine Garland
- Department of Surgery, Division of Plastic Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Jason H. Pomerantz
- Department of Surgery and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
- Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
19
|
Arzate DM, Covarrubias L. Adult Neurogenesis in the Context of Brain Repair and Functional Relevance. Stem Cells Dev 2020; 29:544-554. [PMID: 31910108 DOI: 10.1089/scd.2019.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urodeles and some fishes possess a remarkable capacity to regenerate their limbs/fins, a property that correlates with their additional ability to regenerate large areas of the brain and/or produce a variety of new neurons during adulthood. In contrast, neurogenesis in adult mammals is apparently restricted to two main regions, the subventricular zone of lateral ventricles and the subgranular zone of the hippocampus. There, astrocyte-like neural stem cells (NSCs) reside and derive into new neurons. Although it is becoming apparent that other brain regions carry out neurogenesis, in many cases, its functional significance is controversial, particularly, because very few putative NSCs capable of deriving into new neurons have been found. Hence, is renewal of certain neurons a requirement for a healthy brain? Are there specific physiological conditions that stimulate neurogenesis in a particular region? Does the complexity of the brain demand reduced neurogenesis? In this study, we review the production of new neurons in the vertebrate adult brain in the context of a possible functional relevance. In addition, we consider the intrinsic properties of potential cellular sources of new neurons, as well as the contribution of the milieu surrounding them to estimate the reparative capacity of the brain upon injury or a neurodegenerative condition. The conclusion of this review should bring into debate the potential and convenience of promoting neuronal regeneration in the adult human brain.
Collapse
|
20
|
Wouters A, Ploem JP, Langie SAS, Artois T, Aboobaker A, Smeets K. Regenerative responses following DNA damage - β-catenin mediates head regrowth in the planarian Schmidtea mediterranea. J Cell Sci 2020; 133:jcs237545. [PMID: 32107291 DOI: 10.1242/jcs.237545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.
Collapse
Affiliation(s)
- Annelies Wouters
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jan-Pieter Ploem
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Sabine A S Langie
- Vito Health, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Karen Smeets
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
21
|
Pascual-Carreras E, Marin-Barba M, Herrera-Úbeda C, Font-Martín D, Eckelt K, de Sousa N, García-Fernández J, Saló E, Adell T. Planarian cell number depends on blitzschnell, a novel gene family that balances cell proliferation and cell death. Development 2020; 147:dev.184044. [PMID: 32122990 DOI: 10.1242/dev.184044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023]
Abstract
Control of cell number is crucial to define body size during animal development and to restrict tumoral transformation. The cell number is determined by the balance between cell proliferation and cell death. Although many genes are known to regulate those processes, the molecular mechanisms underlying the relationship between cell number and body size remain poorly understood. This relationship can be better understood by studying planarians, flatworms that continuously change their body size according to nutrient availability. We identified a novel gene family, blitzschnell (bls), that consists of de novo and taxonomically restricted genes that control cell proliferation:cell death ratio. Their silencing promotes faster regeneration and increases cell number during homeostasis. Importantly, this increase in cell number leads to an increase in body size only in a nutrient-rich environment; in starved planarians, silencing results in a decrease in cell size and cell accumulation that ultimately produces overgrowths. bls expression is downregulated after feeding and is related to activity of the insulin/Akt/mTOR network, suggesting that the bls family evolved in planarians as an additional mechanism for restricting cell number in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Daniel Font-Martín
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Kay Eckelt
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Nidia de Sousa
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Jordi García-Fernández
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine, Universitat de Barcelona, Barcelona 08028, Catalunya, Spain .,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Catalunya, Spain
| |
Collapse
|
22
|
Huang XQ, Hao S, Zhou ZQ, Huang B, Fang JY, Tang Y, Zhang JH, Xia JC. The Roles of Ubiquitination Factor E4B (UBE4B) in the Postoperative Prognosis of Patients with Renal Cell Carcinoma and in Renal Tumor Cells Growth and Metastasis. Onco Targets Ther 2020; 13:185-197. [PMID: 32021266 PMCID: PMC6956714 DOI: 10.2147/ott.s229577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
Object This study aimed at investigating the clinical significance and biological function of ubiquitination factor E4B (UBE4B) in human renal cell carcinoma (RCC). Methods 19 paired clear cell renal cell carcinoma (ccRCC) tumor samples and the matched neighboring non-tumor samples were used to detect the expression of UBE4B in RCC tumor by Western blotting and RT-qPCR. UBE4B expression was also detected in 151 ccRCC paraffin-embedded tumor samples by using immunohistochemistry. Overall survival (OS) in different UBE4B expression groups were compared with Log rank test. The prognostic value of UBE4B expression in OS was evaluated with the univariate and multivariate Cox regression models. UBE4B was knocked down by small interfering RNA (siRNA) technology, and the effect of UBE4B on cell proliferation, colony formation, metastasis, apoptosis and cell cycle of RCC cells were examined in vitro. Results Both protein and mRNA levels of UBE4B were up-regulated in ccRCC tumor tissues in contrast to the corresponding adjacent nontumor ones. UBE4B expression was positively associated with tumor-node-metastasis (TNM) stage and distant metastasis in ccRCC patients. Survival analyses indicated that low expression of UBE4B was associated with increased OS in ccRCC patients. Functional analyses demonstrated that siRNA silencing of UBE4B expression in SKRC39 and ACHN cells further reduced the growth, motility and invasiveness of RCC cells. Moreover, siRNA silencing of UBE4B in the RCC cell lines did not induce apoptosis, and an increase in the cell population was observed during the G0/G1 phase of the cell cycle. Conclusion UBE4B might act as an oncogene in regulating RCC development. Therefore it could be served as an effective indicator to predict OS and a potential biomarker for targeted therapy of RCC patients.
Collapse
Affiliation(s)
- Xu-Qiong Huang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Shuai Hao
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Bin Huang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jia-Ying Fang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan Tang
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| | - Jian-Hua Zhang
- Department of Health Service Management, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
23
|
Recent advancements in understanding fin regeneration in zebrafish. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e367. [DOI: 10.1002/wdev.367] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 11/07/2022]
|
24
|
Miller BM, Johnson K, Whited JL. Common themes in tetrapod appendage regeneration: a cellular perspective. EvoDevo 2019; 10:11. [PMID: 31236203 PMCID: PMC6572735 DOI: 10.1186/s13227-019-0124-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/08/2019] [Indexed: 01/13/2023] Open
Abstract
Complete and perfect regeneration of appendages is a process that has fascinated and perplexed biologists for centuries. Some tetrapods possess amazing regenerative abilities, but the regenerative abilities of others are exceedingly limited. The reasons underlying these differences have largely remained mysterious. A great deal has been learned about the morphological events that accompany successful appendage regeneration, and a handful of experimental manipulations can be reliably applied to block the process. However, only in the last decade has the goal of attaining a thorough molecular and cellular biological understanding of appendage regeneration in tetrapods become within reach. Advances in molecular and genetic tools for interrogating these remarkable events are now allowing for unprecedented access to the fundamental biology at work in appendage regeneration in a variety of species. This information will be critical for integrating the large body of detailed observations from previous centuries with a modern understanding of how cells sense and respond to severe injury and loss of body parts. Understanding commonalities between regenerative modes across diverse species is likely to illuminate the most important aspects of complex tissue regeneration.
Collapse
Affiliation(s)
- Bess M. Miller
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Kimberly Johnson
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138 USA
| |
Collapse
|
25
|
Cary GA, Wolff A, Zueva O, Pattinato J, Hinman VF. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol 2019; 17:16. [PMID: 30795750 PMCID: PMC6385403 DOI: 10.1186/s12915-019-0633-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Metazoan lineages exhibit a wide range of regenerative capabilities that vary among developmental stage and tissue type. The most robust regenerative abilities are apparent in the phyla Cnidaria, Platyhelminthes, and Echinodermata, whose members are capable of whole-body regeneration (WBR). This phenomenon has been well characterized in planarian and hydra models, but the molecular mechanisms of WBR are less established within echinoderms, or any other deuterostome system. Thus, it is not clear to what degree aspects of this regenerative ability are shared among metazoa. Results We characterize regeneration in the larval stage of the Bat Star (Patiria miniata). Following bisection along the anterior-posterior axis, larvae progress through phases of wound healing and re-proportioning of larval tissues. The overall number of proliferating cells is reduced following bisection, and we find evidence for a re-deployment of genes with known roles in embryonic axial patterning. Following axial respecification, we observe a significant localization of proliferating cells to the wound region. Analyses of transcriptome data highlight the molecular signatures of functions that are common to regeneration, including specific signaling pathways and cell cycle controls. Notably, we find evidence for temporal similarities among orthologous genes involved in regeneration from published Platyhelminth and Cnidarian regeneration datasets. Conclusions These analyses show that sea star larval regeneration includes phases of wound response, axis respecification, and wound-proximal proliferation. Commonalities of the overall process of regeneration, as well as gene usage between this deuterostome and other species with divergent evolutionary origins reveal a deep similarity of whole-body regeneration among the metazoa. Electronic supplementary material The online version of this article (10.1186/s12915-019-0633-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Andrew Wolff
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Joseph Pattinato
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
26
|
Stevens AS, Wouters A, Ploem JP, Pirotte N, Van Roten A, Willems M, Hellings N, Franken C, Koppen G, Artois T, Plusquin M, Smeets K. Planarians Customize Their Stem Cell Responses Following Genotoxic Stress as a Function of Exposure Time and Regenerative State. Toxicol Sci 2019; 162:251-263. [PMID: 29145667 DOI: 10.1093/toxsci/kfx247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aiming to in vivo characterize the responses of pluripotent stem cells and regenerative tissues to carcinogenic stress, we employed the highly regenerative organism Schmidtea mediterranea. Its broad regenerative capacities are attributable to a large pool of pluripotent stem cells, which are considered key players in the lower vulnerability toward chemically induced carcinogenesis observed in regenerative organisms. Schmidtea mediterranea is, therefore, an ideal model to study pluripotent stem cell responses with stem cells residing in their natural environment. Including microenvironmental alterations is important, as the surrounding niche influences the onset of oncogenic events. Both short- (3 days) and long-term (17 days) exposures to the genotoxic carcinogen methyl methanesulfonate (50 µM) were evaluated during homeostasis and animal regeneration, two situations that render altered cellular niches. In both cases, MMS-induced DNA damage was observed, which provoked a decrease in proliferation on the short term. The outcome of DNA damage responses following long-term exposure differed between homeostatic and regenerating animals. During regeneration, DNA repair systems were more easily activated than in animals in homeostasis, where apoptosis was an important outcome. Knockdown experiments confirmed the importance of DNA repair systems during carcinogenic exposure in regenerating animals as knockdown of rad51 induced a stem cell-depleted phenotype, after regeneration was completed.
Collapse
Affiliation(s)
- An-Sofie Stevens
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Annelies Wouters
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jan-Pieter Ploem
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Nicky Pirotte
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Andromeda Van Roten
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Maxime Willems
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.,Laboratory of Environmental Toxicology & Aquatic Ecology, Ghent University, 9000 Ghent, Belgium
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Carmen Franken
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tom Artois
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Michelle Plusquin
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
27
|
Mokalled MH, Poss KD. A Regeneration Toolkit. Dev Cell 2019; 47:267-280. [PMID: 30399333 DOI: 10.1016/j.devcel.2018.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
Abstract
The ability of animals to replace injured body parts has been a subject of fascination for centuries. The emerging importance of regenerative medicine has reinvigorated investigations of innate tissue regeneration, and the development of powerful genetic tools has fueled discoveries into how tissue regeneration occurs. Here, we present an overview of the armamentarium employed to probe regeneration in vertebrates, highlighting areas where further methodology advancement will deepen mechanistic findings.
Collapse
Affiliation(s)
- Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
28
|
Alibardi L. Review: The Regenerating Tail Blastema of Lizards as a Model to Study Organ Regeneration and Tumor Growth Regulation in Amniotes. Anat Rec (Hoboken) 2018; 302:1469-1490. [DOI: 10.1002/ar.24029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology at University of Bologna Bologna Italy
| |
Collapse
|
29
|
Abstract
Most human cancers harbor mutations in the gene encoding p53. As a result, research on p53 in the past few decades has focused primarily on its role as a tumor suppressor. One consequence of this focus is that the functions of p53 in development have largely been ignored. However, recent advances, such as the genomic profiling of embryonic stem cells, have uncovered the significance and mechanisms of p53 functions in mammalian cell differentiation and development. As we review here, these recent findings reveal roles that complement the well-established roles for p53 in tumor suppression.
Collapse
Affiliation(s)
- Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Development Biology, Center for Cancer Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Department of Epigenetics and Molecular Carcinogenesis, Center for Stem Cell and Development Biology, Center for Cancer Epigenetics, The University of Texas MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Liu L, Fu Y, Zhu F, Mu C, Li R, Song W, Shi C, Ye Y, Wang C. Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration. Gene 2018. [PMID: 29524579 DOI: 10.1016/j.gene.2018.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The swimming crab (Portunus trituberculatus) is among the most economically important seawater crustacean species in Asia. Despite its commercial importance and being well-studied status, genomic and transcriptomic data are scarce for this crab species. In the present study, limb bud tissue was collected at different developmental stages post amputation for transcriptomic analysis. Illumina RNA-sequencing was applied to characterise the limb regeneration transcriptome and identify the most characteristic genes. A total of 289,018 transcripts were obtained by clustering and assembly of clean reads, producing 150,869 unigenes with an average length of 956 bp. Subsequent analysis revealed WNT signalling as the key pathway involved in limb regeneration, with WNT4 a key mediator. Overall, limb regeneration appears to be regulated by multiple signalling pathways, with numerous cell differentiation, muscle growth, moult, metabolism, and immune-related genes upregulated, including WNT4, LAMA, FIP2, FSTL5, TNC, HUS1, SWI5, NCGL, SLC22, PLA2, Tdc2, SMOX, GDH, and SMPD4. This is the first experimental study done on regenerating claws of P. trituberculatus. These findings expand existing sequence resources for crab species, and will likely accelerate research into regeneration and development in crustaceans, particularly functional studies on genes involved in limb regeneration.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Yuanyuan Fu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Fang Zhu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
31
|
Simkin J, Seifert AW. Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path? Stem Cells Transl Med 2017; 7:220-231. [PMID: 29271610 PMCID: PMC5788874 DOI: 10.1002/sctm.17-0213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
Despite approaches in regenerative medicine using stem cells, bio‐engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large‐scale, multi‐tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re‐grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro‐regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans. Stem Cells Translational Medicine2018;7:220–231
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
32
|
Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG, Bateman J, Bryant S, Guzikowski AR, Tsai SL, Coyne S, Ye WW, Freeman RM, Peshkin L, Tabin CJ, Regev A, Haas BJ, Whited JL. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Rep 2017; 18:762-776. [PMID: 28099853 PMCID: PMC5419050 DOI: 10.1016/j.celrep.2016.12.063] [Citation(s) in RCA: 530] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022] Open
Abstract
Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.
Collapse
Affiliation(s)
- Donald M Bryant
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Kimberly Johnson
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Tia DiTommaso
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Timothy Tickle
- Broad Institute of MIT and Harvard and Klarman Cell Observatory, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Matthew Brian Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078, USA
| | - Duygu Payzin-Dogru
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Tae J Lee
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Nicholas D Leigh
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Tzu-Hsing Kuo
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Francis G Davis
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Joel Bateman
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Sevara Bryant
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Anna R Guzikowski
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Stephanie L Tsai
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Steven Coyne
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - William W Ye
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard and Klarman Cell Observatory, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Brian J Haas
- Broad Institute of MIT and Harvard and Klarman Cell Observatory, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | - Jessica L Whited
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Abstract
Understanding how and why animals regenerate complex tissues has the potential to transform regenerative medicine. Here we present an overview of genetic approaches that have recently been applied to dissect mechanisms of regeneration. We describe new advances that relate to central objectives of regeneration biologists researching different tissues and species, focusing mainly on vertebrates. These objectives include defining the cellular sources and key cell behaviors in regenerating tissue, elucidating molecular triggers and brakes for regeneration, and defining the earliest events that control the presence of these molecular factors.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
- Regeneration Next, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
34
|
Abstract
Efficient cardiac regeneration is closely associated with the ability of cardiac myocytes to proliferate. Fetal or neonatal mouse hearts containing proliferating cardiac myocytes regenerate even extensive injuries, whereas adult hearts containing mostly post-mitotic cardiac myocytes have lost this ability. The same correlation is seen in some homoiotherm species such as teleost fish and urodelian amphibians leading to the hypothesis that cardiac myocyte proliferation is a major driver of heart regeneration. Although cardiomyocyte proliferation might not be the only prerequisite to restore full organ function after cardiac damage, induction of cardiac myocyte proliferation is an attractive therapeutic option to cure the injured heart and prevent heart failure. To (re)initiate cardiac myocyte proliferation in adult mammalian hearts, a thorough understanding of the molecular circuitry governing cardiac myocyte cell cycle regulation is required. Here, we review the current knowledge in the field focusing on the withdrawal of cardiac myocytes from the cell cycle during the transition from neonatal to adult stages.
Collapse
Affiliation(s)
- Xuejun Yuan
- From the Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (X.Y., T.B.); and Department of Internal Medicine II, Justus Liebig University Giessen, Member of the German Center for Cardiovascular Research (DZHK), Member of the German Center for Lung Research (DZL), Giessen, Germany (T.B.)
| | - Thomas Braun
- From the Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (X.Y., T.B.); and Department of Internal Medicine II, Justus Liebig University Giessen, Member of the German Center for Cardiovascular Research (DZHK), Member of the German Center for Lung Research (DZL), Giessen, Germany (T.B.).
| |
Collapse
|
35
|
E6/E7 oncogenes in epithelial suprabasal layers and estradiol promote cervical growth and ear regeneration. Oncogenesis 2017; 6:e374. [PMID: 28846079 PMCID: PMC5608921 DOI: 10.1038/oncsis.2017.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/10/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Tissue growth is a common characteristic of carcinogenesis and regeneration. Here we show that suprabasal expression of human papillomavirus (HPV)16 E6/E7 oncogenes in Tg(K6b-E6/E7) mice, similar to that observed in HPV-infected human tissue, and estradiol increased cervical epithelium growth and ear-hole closure efficiency. Oncogenes in combination with estradiol had a significant contribution to the proliferation of suprabasal cells of cervical epithelium that correlated with an increased expression of keratin genes. Remarkably, long-term treatments with estradiol resulted in evident cellular and tissue abnormalities indicative of a precancerous phenotype. Regenerating ear epithelium of transgenic mice also showed increased suprabasal cell proliferation and expression of keratin genes. Unexpectedly, we observed higher ear regeneration efficiency in adult than in young female mice, which was further increased by E6/E7 oncogenes. Supporting a role of estradiol in this phenomenon, ovariectomy and treatment with an estrogen receptor inhibitor caused a significant reduction in regenerative capacity. Our data suggest that Tg(K6b-E6/E7) mice are unique to mimic the initial stages of HPV-mediated cervical carcinogenesis, and ear regeneration could facilitate the elucidation of mechanisms involved.
Collapse
|
36
|
Sahu S, Dattani A, Aboobaker AA. Secrets from immortal worms: What can we learn about biological ageing from the planarian model system? Semin Cell Dev Biol 2017; 70:108-121. [PMID: 28818620 DOI: 10.1016/j.semcdb.2017.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Understanding how some animals are immortal and avoid the ageing process is important. We currently know very little about how they achieve this. Research with genetic model systems has revealed the existence of conserved genetic pathways and molecular processes that affect longevity. Most of these established model organisms have relatively short lifespans. Here we consider the use of planarians, with an immortal life-history that is able to entirely avoid the ageing process. These animals are capable of profound feats of regeneration fueled by a population of adult stem cells called neoblasts. These cells are capable of indefinite self-renewal that has underpinned the evolution of animals that reproduce only by fission, having disposed of the germline, and must therefore be somatically immortal and avoid the ageing process. How they do this is only now starting to be understood. Here we suggest that the evidence so far supports the hypothesis that the lack of ageing is an emergent property of both being highly regenerative and the evolution of highly effective mechanisms for ensuring genome stability in the neoblast stem cell population. The details of these mechanisms could prove to be very informative in understanding how the causes of ageing can be avoided, slowed or even reversed.
Collapse
Affiliation(s)
- Sounak Sahu
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
37
|
Abstract
Humans and other mammals are limited in their natural abilities to regenerate lost body parts. By contrast, many salamanders are highly regenerative and can spontaneously replace lost limbs even as adults. Because salamander limbs are anatomically similar to human limbs, knowing how they regenerate should provide important clues for regenerative medicine. Although interest in understanding the mechanics of this process has never wavered, until recently researchers have been vexed by seemingly impenetrable logistics of working with these creatures at a molecular level. Chief among the problems has been the very large size of salamander genomes, and not a single salamander genome has been fully sequenced to date. Recently the enormous gap in sequence information has been bridged by approaches that leverage mRNA as the starting point. Together with functional experimentation, these data are rapidly enabling researchers to finally uncover the molecular mechanisms underpinning the astonishing biological process of limb regeneration.
Collapse
Affiliation(s)
- Brian J Haas
- Broad Institute of Massachusetts Institute of Technology(MIT) and Harvard, Klarman Cell Observatory, 415 Main Street, Cambridge, MA 02142, USA.
| | - Jessica L Whited
- Harvard Medical School, Harvard Stem Cell Institute, and Brigham and Women's Hospital Department of Orthopedic Surgery, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Molchadsky A, Rotter V. p53 and its mutants on the slippery road from stemness to carcinogenesis. Carcinogenesis 2017; 38:347-358. [PMID: 28334334 DOI: 10.1093/carcin/bgw092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Normal development, tissue homeostasis and regeneration following injury rely on the proper functions of wide repertoire of stem cells (SCs) persisting during embryonic period and throughout the adult life. Therefore, SCs employ robust mechanisms to preserve their genomic integrity and avoid heritage of mutations to their daughter cells. Importantly, propagation of SCs with faulty DNA as well as dedifferentiation of genomically altered somatic cells may result in derivation of cancer SCs, which are considered to be the driving force of the tumorigenic process. Multiple experimental evidence suggest that p53, the central tumor suppressor gene, plays a critical regulatory role in determination of SCs destiny, thereby eliminating damaged SCs from the general SC population. Notably, mutant p53 proteins do not only lose the tumor suppressive function, but rather gain new oncogenic function that markedly promotes various aspects of carcinogenesis. In this review, we elaborate on the role of wild type and mutant p53 proteins in the various SCs types that appear under homeostatic conditions as well as in cancer. It is plausible that the growing understanding of the mechanisms underlying cancer SC phenotype and p53 malfunction will allow future optimization of cancer therapeutics in the context of precision medicine.
Collapse
Affiliation(s)
- Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Sarig R, Tzahor E. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians? Carcinogenesis 2017; 38:359-366. [DOI: 10.1093/carcin/bgw103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023] Open
|
40
|
Charni M, Aloni-Grinstein R, Molchadsky A, Rotter V. p53 on the crossroad between regeneration and cancer. Cell Death Differ 2016; 24:8-14. [PMID: 27768121 PMCID: PMC5260496 DOI: 10.1038/cdd.2016.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.
Collapse
Affiliation(s)
- Meital Charni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Barber A, Farmer K, Martin KR, Smith PD. Retinal regeneration mechanisms linked to multiple cancer molecules: A therapeutic conundrum. Prog Retin Eye Res 2016; 56:19-31. [PMID: 27586058 DOI: 10.1016/j.preteyeres.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022]
Abstract
Over the last decade, a large number of research articles have been published demonstrating regeneration and/or neuroprotection of retinal ganglion cells following manipulation of specific genetic and molecular targets. Interestingly, of the targets that have been identified to promote repair following visual system damage, many are genes known to be mutated in different types of cancer. This review explores recent literature on the potential for modulating cancer genes as a therapeutic strategy for visual system repair and looks at the potential clinical challenges associated with implementing this type of therapy. We also discuss signalling mechanisms that have been implicated in cancer and consider how similar mechanisms may improve axonal regeneration in the optic nerve.
Collapse
Affiliation(s)
- Amanda Barber
- John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Kyle Farmer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Keith R Martin
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Medical Research Council - Wellcome Trust Cambridge Stem Cell Institute, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Patrice D Smith
- John van Geest Centre for Brain Repair, University of Cambridge, UK; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
42
|
Hesse RG, Kouklis GK, Ahituv N, Pomerantz JH. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration. eLife 2015; 4:e07702. [PMID: 26575287 PMCID: PMC4657621 DOI: 10.7554/elife.07702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/02/2015] [Indexed: 12/29/2022] Open
Abstract
The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species' regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF -p53 axis activation.
Collapse
Affiliation(s)
- Robert G Hesse
- Department of Surgery,
Division of Plastic Surgery, Program in Craniofacial Biology,
University of California, San Francisco,
San
Francisco, United States
| | - Gayle K Kouklis
- Department of Surgery,
Division of Plastic Surgery, Program in Craniofacial Biology,
University of California, San Francisco,
San
Francisco, United States
| | - Nadav Ahituv
- Department of
Bioengineering and Therapeutic Sciences and Institute for Human
Genetics, University of California, San
Francisco, San
Francisco, United States
| | - Jason H Pomerantz
- Departments of Surgery
and Orofacial Sciences, Division of Plastic Surgery, Program in Craniofacial
Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell
Research, University of California, San
Francisco, San
Francisco, United States
| |
Collapse
|
43
|
Simpson MT, Venkatesh I, Callif BL, Thiel LK, Coley DM, Winsor KN, Wang Z, Kramer AA, Lerch JK, Blackmore MG. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Mol Cell Neurosci 2015; 68:272-83. [PMID: 26306672 DOI: 10.1016/j.mcn.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023] Open
Abstract
Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension.
Collapse
Affiliation(s)
- Matthew T Simpson
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Ishwariya Venkatesh
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Ben L Callif
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Laura K Thiel
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Denise M Coley
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Kristen N Winsor
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Zimei Wang
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Audra A Kramer
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Jessica K Lerch
- The Ohio State University, The Center for Brain and Spinal Cord Repair, The Department of Neuroscience, 43210, United States
| | - Murray G Blackmore
- Marquette University, Department of Biomedical Sciences, 53201, United States.
| |
Collapse
|
44
|
Wang H, Lööf S, Borg P, Nader GA, Blau HM, Simon A. Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nat Commun 2015; 6:7916. [PMID: 26243583 PMCID: PMC4765497 DOI: 10.1038/ncomms8916] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/24/2015] [Indexed: 01/09/2023] Open
Abstract
The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of ‘undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation. Newts can regenerate amputated limbs via unknown mechanism involving dedifferentiation of cells in the stump into progenitors that contribute to the new appendages. Here the authors show that skeletal muscle dedifferentiation in regenerating newt limbs relies on a diverted programmed cell death response by myofibers.
Collapse
Affiliation(s)
- Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Sara Lööf
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Paula Borg
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Gustavo A Nader
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Stanford University, Stanford, California 94305, United States
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
45
|
Zhang L, Tong X, Li J, Huang Y, Hu X, Chen Y, Huang J, Wang J, Liu B. Apoptotic and autophagic pathways with relevant small-molecule compounds, in cancer stem cells. Cell Prolif 2015; 48:385-97. [PMID: 26013704 DOI: 10.1111/cpr.12191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self-renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self-renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well-studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti-cancer regimes.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xupeng Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjing Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyue Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
46
|
Alibardi L. Immunolocalization of a p53/p63-like protein in the regenerating tail of the wall lizard (Podarcis muralis) suggests it is involved in the differentiation of the epidermis. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Dipartimento di Bigea; Universita' di Bologna; Bologna Italy
| |
Collapse
|
47
|
Henderson JM, Nisperos SV, Weeks J, Ghulam M, Marín I, Zayas RM. Identification of HECT E3 ubiquitin ligase family genes involved in stem cell regulation and regeneration in planarians. Dev Biol 2015; 404:21-34. [PMID: 25956527 DOI: 10.1016/j.ydbio.2015.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 03/14/2015] [Accepted: 04/27/2015] [Indexed: 12/28/2022]
Abstract
E3 ubiquitin ligases constitute a large family of enzymes that modify specific proteins by covalently attaching ubiquitin polypeptides. This post-translational modification can serve to regulate protein function or longevity. In spite of their importance in cell physiology, the biological roles of most ubiquitin ligases remain poorly understood. Here, we analyzed the function of the HECT domain family of E3 ubiquitin ligases in stem cell biology and tissue regeneration in planarians. Using bioinformatic searches, we identified 17 HECT E3 genes that are expressed in the Schmidtea mediterranea genome. Whole-mount in situ hybridization experiments showed that HECT genes were expressed in diverse tissues and most were expressed in the stem cell population (neoblasts) or in their progeny. To investigate the function of all HECT E3 ligases, we inhibited their expression using RNA interference (RNAi) and determined that orthologs of huwe1, wwp1, and trip12 had roles in tissue regeneration. We show that huwe1 RNAi knockdown led to a significant expansion of the neoblast population and death by lysis. Further, our experiments showed that wwp1 was necessary for both neoblast and intestinal tissue homeostasis as well as uncovered an unexpected role of trip12 in posterior tissue specification. Taken together, our data provide insights into the roles of HECT E3 ligases in tissue regeneration and demonstrate that planarians will be a useful model to evaluate the functions of E3 ubiquitin ligases in stem cell regulation.
Collapse
Affiliation(s)
- Jordana M Henderson
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Sean V Nisperos
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Joi Weeks
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Mahjoobah Ghulam
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
48
|
Kumar S, Tomar MS, Acharya A. Activation of p53-dependent/-independent pathways of apoptotic cell death by chelerythrine in a murine T cell lymphoma. Leuk Lymphoma 2015; 56:1846-55. [DOI: 10.3109/10428194.2014.974042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
50
|
Perspective for special Gurdon issue for differentiation: can cell fusion inform nuclear reprogramming? Differentiation 2014; 88:27-28. [PMID: 25150886 DOI: 10.1016/j.diff.2014.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 11/24/2022]
Abstract
Nuclear reprogramming was first shown to be possible by Sir John Gurdon over a half century ago. The process has been revolutionized by the production of induced pluripotent cells by overexpression of the four transcription factors discovered by Shinya Yamanaka, which now enables mammalian applications. Yet, reprogramming by a few transcription factors remains incomplete and inefficient, whether to pluripotent or differentiated cells. We propose that a better understanding of mechanistic insights based on developmental principles gained from heterokaryon studies may inform the process of directing cell fate, fundamentally and clinically.
Collapse
|