1
|
Hormann FM, Hoogkamer AQ, Boeree A, Sonneveld E, Escherich G, den Boer ML, Boer JM. Integrating copy number data of 64 iAMP21 BCP-ALL patients narrows the common region of amplification to 1.57 Mb. Front Oncol 2023; 13:1128560. [PMID: 36910655 PMCID: PMC9996016 DOI: 10.3389/fonc.2023.1128560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Background and purpose Intrachromosomal amplification of chromosome 21 (iAMP21) is a rare subtype of B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). It is unknown how iAMP21 contributes to leukaemia. The currently known commonly amplified region is 5.1 Mb. Methods We aimed to narrow down the common region of amplification by using high resolution techniques. Array comparative genomic hybridization (aCGH) was used to determine copy number aberrations, Affymetrix U133 Plus2 expression arrays were used to determine gene expression. Genome-wide expression correlations were evaluated using Globaltest. Results We narrowed down the common region of amplification by combining copy number data from 12 iAMP21 cases with 52 cases from literature. The combined common region of amplification was 1.57 Mb, located from 36.07 to 37.64 Mb (GRCh38). This region is located telomeric from, but not including, RUNX1, which is the locus commonly used to diagnose iAMP21. This narrow region, which falls inside the Down Syndrome critical region, includes 13 genes of which the expression of eight genes was significantly upregulated compared with 143 non-iAMP21 B-other cases. Among these, transcriptional repressor RIPPLY3 (also known as DSCR6) was the highest overexpressed gene (fold change = 4.2, FDR < 0.001) and most strongly correlated (R = 0.58) with iAMP21-related genome-wide expression changes. Discussion The more precise definition of the common region of amplification could be beneficial in the diagnosis of iAMP21 based on copy number analysis from DNA sequencing or arrays as well as stimulate functional research into the role of the included genes in iAMP21 biology.
Collapse
Affiliation(s)
- Femke M Hormann
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands.,Erasmus Medical Center (MC) - Sophia Children's Hospital, Department of Pediatric Oncology and Hematology, Rotterdam, Netherlands
| | - Alex Q Hoogkamer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Aurélie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Dutch Childhood Oncology Group, Utrecht, Netherlands
| | - Gabriele Escherich
- Cooperative study group for childhood acute lymphoblastic leukaemia (COALL) - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany.,Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monique L den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands.,Erasmus Medical Center (MC) - Sophia Children's Hospital, Department of Pediatric Oncology and Hematology, Rotterdam, Netherlands.,Dutch Childhood Oncology Group, Utrecht, Netherlands
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
2
|
Zhong LK, Deng XY, Shen F, Cai WS, Feng JH, Gan XX, Jiang S, Liu CZ, Zhang MG, Deng JW, Zheng BX, Xie XZ, Ning LQ, Huang H, Chen SS, Miao JH, Xu B. Identification of a 3-Gene Prognostic Index for Papillary Thyroid Carcinoma. Front Mol Biosci 2022; 9:807931. [PMID: 35372518 PMCID: PMC8966665 DOI: 10.3389/fmolb.2022.807931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
The accurate determination of the risk of cancer recurrence is a critical unmet need in managing thyroid cancer (TC). Although numerous studies have successfully demonstrated the use of high throughput molecular diagnostics in TC prediction, it has not been successfully applied in routine clinical use, particularly in Chinese patients. In our study, we objective to screen for characteristic genes specific to PTC and establish an accurate model for diagnosis and prognostic evaluation of PTC. We screen the differentially expressed genes by Python 3.6 in The Cancer Genome Atlas (TCGA) database. We discovered a three-gene signature Gap junction protein beta 4 (GJB4), Ripply transcriptional repressor 3 (RIPPLY3), and Adrenoceptor alpha 1B (ADRA1B) that had a statistically significant difference. Then we used Gene Expression Omnibus (GEO) database to establish a diagnostic and prognostic model to verify the three-gene signature. For experimental validation, immunohistochemistry in tissue microarrays showed that thyroid samples’ proteins expressed by this three-gene are differentially expressed. Our protocol discovered a robust three-gene signature that can distinguish prognosis, which will have daily clinical application.
Collapse
Affiliation(s)
- Lin-Kun Zhong
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Xing-Yan Deng
- Thyroid, Vascular Surgery Department, Maoming People’s Hospital, Maoming, China
| | - Fei Shen
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Song Cai
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian-Hua Feng
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Xiong Gan
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shan Jiang
- Reproductive Medicine Center, Boai Hsopital of Zhongshan, Zhongshan, China
| | - Chi-Zhuai Liu
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Ming-Guang Zhang
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Jiang-Wei Deng
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Bing-Xing Zheng
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Xiao-Zhang Xie
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Li-Qing Ning
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Hui Huang
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Shan-Shan Chen
- Department of Intensive Care Medicine, Zhongshan City People’s Hospital, Zhongshan, China
| | - Jian-Hang Miao
- Department of General Surgery, Zhongshan City People’s Hospital, Zhongshan, China
- *Correspondence: Jian-Hang Miao, ; Bo Xu, , https://orcid.org/0000-0001-6384-6685
| | - Bo Xu
- Thyroid, Vascular Surgery Department, Maoming People’s Hospital, Maoming, China
- *Correspondence: Jian-Hang Miao, ; Bo Xu, , https://orcid.org/0000-0001-6384-6685
| |
Collapse
|
3
|
Loreti M, Shi DL, Carron C. The regulatory proteins DSCR6 and Ezh2 oppositely regulate Stat3 transcriptional activity in mesoderm patterning during Xenopus development. J Biol Chem 2020; 295:2724-2735. [PMID: 31996376 DOI: 10.1074/jbc.ra119.010719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Embryonic cell fate specification and axis patterning requires integration of several signaling pathways that orchestrate region-specific gene expression. The transcription factor signal transducer and activator of transcription 3 (Stat3) plays important roles during early development, but it is unclear how Stat3 is activated. Here, using Xenopus as a model, we analyzed the post-translational regulation and functional consequences of Stat3 activation in dorsoventral axis patterning. We show that Stat3 phosphorylation, lysine methylation, and transcriptional activity increase before gastrulation and induce ventral mesoderm formation. Down syndrome critical region gene 6 (DSCR6), a RIPPLY family member that induces dorsal mesoderm by releasing repressive polycomb group proteins from chromatin, bound to the Stat3 C-terminal region and antagonized its transcriptional and ventralizing activities by interfering with its lysine methylation. Enhancer of zeste 2 polycomb-repressive complex 2 subunit (Ezh2) also bound to this region; however, its methyltransferase activity was required for Stat3 methylation and activation. Loss of Ezh2 resulted in dorsalization of ventral mesoderm and formation of a secondary axis. Furthermore, interference with Ezh2 phosphorylation also prevented Stat3 lysine methylation and transcriptional activity. Thus, inhibition of either Ezh2 phosphorylation or Stat3 lysine methylation compensated for the absence of DSCR6 function. These results reveal that DSCR6 and Ezh2 critically and post-translationally regulate Stat3 transcriptional activity. Ezh2 promotes Stat3 activation in ventral mesoderm formation independently of epigenetic regulation, whereas DSCR6 specifies dorsal fate by counteracting this ventralizing activity. This antagonism helps pattern the mesoderm along the dorsoventral axis, representing a critical facet of cell identity regulation during development.
Collapse
Affiliation(s)
- Mafalda Loreti
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France
| | - De-Li Shi
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France.
| | - Clémence Carron
- Sorbonne Université, CNRS UMR7622, IBPS-Developmental Biology Laboratory, 75005 Paris, France.
| |
Collapse
|
4
|
Song YC, Dohn TE, Rydeen AB, Nechiporuk AV, Waxman JS. HDAC1-mediated repression of the retinoic acid-responsive gene ripply3 promotes second heart field development. PLoS Genet 2019; 15:e1008165. [PMID: 31091225 PMCID: PMC6538190 DOI: 10.1371/journal.pgen.1008165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Coordinated transcriptional and epigenetic mechanisms that direct development of the later differentiating second heart field (SHF) progenitors remain largely unknown. Here, we show that a novel zebrafish histone deacetylase 1 (hdac1) mutant allele cardiac really gone (crg) has a deficit of ventricular cardiomyocytes (VCs) and smooth muscle within the outflow tract (OFT) due to both cell and non-cell autonomous loss in SHF progenitor proliferation. Cyp26-deficient embryos, which have increased retinoic acid (RA) levels, have similar defects in SHF-derived OFT development. We found that nkx2.5+ progenitors from Hdac1 and Cyp26-deficient embryos have ectopic expression of ripply3, a transcriptional co-repressor of T-box transcription factors that is normally restricted to the posterior pharyngeal endoderm. Furthermore, the ripply3 expression domain is expanded anteriorly into the posterior nkx2.5+ progenitor domain in crg mutants. Importantly, excess ripply3 is sufficient to repress VC development, while genetic depletion of Ripply3 and Tbx1 in crg mutants can partially restore VC number. We find that the epigenetic signature at RA response elements (RAREs) that can associate with Hdac1 and RA receptors (RARs) becomes indicative of transcriptional activation in crg mutants. Our study highlights that transcriptional repression via the epigenetic regulator Hdac1 facilitates OFT development through directly preventing expression of the RA-responsive gene ripply3 within SHF progenitors. Congenital heart defects are the most common malformations found in newborns, with many of these defects disrupting development of the outflow tract, the structure where blood is expelled from the heart. Despite their frequency, we do not have a grasp of the molecular and genetic mechanisms that underlie most congenital heart defects. Here, we show that zebrafish embryos containing a mutation in a gene called histone deacetylase 1 (hdac1) have smaller hearts with a reduction in the size of the ventricle and outflow tract. Hdac1 proteins limit accessibility to DNA and repress gene expression. We find that loss of Hdac1 in zebrafish embryos leads to increased expression of genes that are also induced by excess retinoic acid, a teratogen that induces similar outflow tract defects. Genetic loss-of-function studies support that ectopic expression of ripply3, a common target of both Hdac1 and retinoic acid signaling that is normally restricted to a subset of posterior pharyngeal cells, contributes to the smaller hearts found in zebrafish hdac1 mutants. Our study establishes a mechanism whereby the coordinated repression of genes downstream of Hdac1 and retinoic acid signaling is necessary for normal vertebrate outflow tract development.
Collapse
Affiliation(s)
- Yuntao Charlie Song
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Tracy E Dohn
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ariel B Rydeen
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, United States of America
| | - Alex V Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR, United States of America
| | - Joshua S Waxman
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
5
|
Sena E, Rocques N, Borday C, Amin HSM, Parain K, Sitbon D, Chesneau A, Durand BC. Barhl2 maintains T-cell factors as repressors, and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation. Development 2019; 146:dev.173112. [DOI: 10.1242/dev.173112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
A hallmark of Wnt/β-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in β-Catenin, which detaches the transcription factor T-cell Factor-7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/β-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/β-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.
Collapse
Affiliation(s)
- Elena Sena
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Nathalie Rocques
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
| | - Caroline Borday
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Harem Sabr Muhamad Amin
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - David Sitbon
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Albert Chesneau
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Béatrice C. Durand
- Institut Curie, Research Division, PSL Research University, Université Paris Sud, CNRS UMR 3347, INSERM U1021, Centre Universitaire, Bâtiment 110 F-91405 Orsay Cedex
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, S1.7 CNRS 8197, INSERM U1024 46 rue d'Ulm 75005, Paris F-75005, France
| |
Collapse
|
6
|
Leucine repeat adaptor protein 1 interacts with Dishevelled to regulate gastrulation cell movements in zebrafish. Nat Commun 2017; 8:1353. [PMID: 29116181 PMCID: PMC5677176 DOI: 10.1038/s41467-017-01552-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
Gastrulation is a fundamental morphogenetic event that requires polarised cell behaviours for coordinated asymmetric cell movements. Wnt/PCP signalling plays a critical role in this process. Dishevelled is an important conserved scaffold protein that relays Wnt/PCP signals from membrane receptors to the modulation of cytoskeleton organisation. However, it remains unclear how its activity is regulated for the activation of downstream effectors. Here, we report that Lurap1 is a Dishevelled-interacting protein that regulates Wnt/PCP signalling in convergence and extension movements during vertebrate gastrulation. Its loss-of-function leads to enhanced Dishevelled membrane localisation and increased JNK activity. In maternal-zygotic lurap1 mutant zebrafish embryos, cell polarity and directional movement are disrupted. Time-lapse analyses indicate that Lurap1, Dishevelled, and JNK functionally interact to orchestrate polarised cellular protrusive activity, and Lurap1 is required for coordinated centriole/MTOC positioning in movement cells. These findings demonstrate that Lurap1 functions to regulate cellular polarisation and motile behaviours during gastrulation movements. Gastrulation is an early morphogenic event driven by coordinated asymmetric/polarised cell movements. Here, the authors show in zebrafish that Lurap1, a protein that interacts with Dishevelled, regulates Wnt and planar cell polarity, coordinating centriole positioning during convergence and extension.
Collapse
|
7
|
Janesick A, Tang W, Nguyen TTL, Blumberg B. RARβ2 is required for vertebrate somitogenesis. Development 2017; 144:1997-2008. [PMID: 28432217 DOI: 10.1242/dev.144345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARβ has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the Xenopus system, we show that RARβ2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. Rarβ2 is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARβ2 positively regulates Tbx3 a marker of hypaxial muscle, and negatively regulates Tbx6 via Ripply2 to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARβ2 in vertebrate somitogenesis.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Weiyi Tang
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Tuyen T L Nguyen
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ, Shi DL. Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J Biol Chem 2017; 292:5898-5908. [PMID: 28223363 DOI: 10.1074/jbc.m116.772509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/19/2017] [Indexed: 12/20/2022] Open
Abstract
Dishevelled (Dvl) is a key intracellular signaling molecule that mediates the activation of divergent Wnt pathways. It contains three highly conserved domains known as DIX, PDZ, and DEP, the functions of which have been well characterized in β-catenin-dependent canonical and β-catenin-independent noncanonical Wnt signaling. The C-terminal region is also highly conserved from invertebrates to vertebrates. However, its function in regulating the activation of different Wnt signals remains unclear. We reported previously that Dvl conformational change triggered by the highly conserved PDZ-binding C terminus is important for the pathway specificity. Here we provide further evidence demonstrating that binding of the C terminus to the PDZ domain results in Dvl autoinhibition in the Wnt signaling pathways. Therefore, the forced binding of the C terminus to the PDZ domain reduces the activity of Dvl in noncanonical Wnt signaling, whereas obstruction of this interaction releases Dvl autoinhibition, impairs its functional interaction with LRP6 in canonical Wnt signaling, and increases its specificity in noncanonical Wnt signaling, which is closely correlated with an enhanced Dvl membrane localization. Our findings highlight the importance of the C terminus in keeping Dvl in an appropriate autoinhibited state, accessible for regulation by other partners to switch pathway specificity. Particularly, the C-terminally tagged Dvl fusion proteins that have been widely used to study the function and cellular localization of Dvl may not truly represent the wild-type Dvl because those proteins cannot be autoinhibited.
Collapse
Affiliation(s)
- Jing Qi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China.,the Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China, and
| | - Ho-Jin Lee
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678
| | - Audrey Saquet
- the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| | - Xiao-Ning Cheng
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Jie J Zheng
- the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, .,the Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095.,the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - De-Li Shi
- From the School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China, .,the Institut de Biologie Paris-Seine (IBPS)-Developmental Biology Laboratory, Sorbonne Universités-Université Pierre et Marie Curie (UPMC), University of Paris 06, CNRS UMR7622, 75005 Paris, France
| |
Collapse
|
9
|
Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594:3245-70. [PMID: 26864374 PMCID: PMC4908029 DOI: 10.1113/jp271930] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xenopus laevis craniofacial development is a good system for the study of Andersen-Tawil Syndrome (ATS)-associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular-genetic and biophysical techniques are available for the study of ion-dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages. Forced expression of WT or variant Kcnj2 changes the normal pattern of Vmem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes. Expression of other potassium channels and two different light-activated channels, all of which have an effect on Vmem , causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl(-) channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion- or channel-specific signalling. Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting Vmem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in Vmem induced late in neurulation do not affect craniofacial development. We interpret these data as strong evidence, consistent with our hypothesis, that ATS-associated CFAs are caused by the effect of variant Kcnj2 on the Vmem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux-modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. ABSTRACT Variants in potassium channel KCNJ2 cause Andersen-Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS-associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells' resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non-neural cells in embryos, we show that developmentally patterned K(+) flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin Akagi
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Donald Wlodkowic
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Pamela Crotty Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adrian Devitt-Lee
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Jean-Francois Pare
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
10
|
Carron C, Shi DL. Specification of anteroposterior axis by combinatorial signaling during Xenopus development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:150-68. [PMID: 26544673 DOI: 10.1002/wdev.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
The specification of anteroposterior (AP) axis is a fundamental and complex patterning process that sets up the embryonic polarity and shapes a multicellular organism. This process involves the integration of distinct signaling pathways to coordinate temporal-spatial gene expression and morphogenetic movements. In the frog Xenopus, extensive embryological and molecular studies have provided major advance in understanding the mechanism implicated in AP patterning. Following fertilization, cortical rotation leads to the transport of maternal determinants to the dorsal region and creates the primary dorsoventral (DV) asymmetry. The activation of maternal Wnt/ß-catenin signaling and a high Nodal signal induces the formation of the Nieuwkoop center in the dorsal-vegetal cells, which then triggers the formation of the Spemann organizer in the overlying dorsal marginal zone. It is now well established that the Spemann organizer plays a central role in building the vertebrate body axes because it provides patterning information for both DV and AP polarities. The antagonistic interactions between signals secreted in the Spemann organizer and the opposite ventral region pattern the mesoderm along the DV axis, and this DV information is translated into AP positional values during gastrulation. The formation of anterior neural tissue requires simultaneous inhibition of zygotic Wnt and bone morphogenetic protein (BMP) signals, while an endogenous gradient of Wnt, fibroblast growth factors (FGFs), retinoic acid (RA) signaling, and collinearly expressed Hox genes patterns the trunk and posterior regions. Collectively, DV asymmetry is mostly coupled to AP polarity, and cell-cell interactions mediated essentially by the same regulatory networks operate in DV and AP patterning. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clémence Carron
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - De-Li Shi
- Laboratory of Developmental Biology, Sorbonne Universités, Institut de Biologie Paris-Seine (IBPS), Paris, France.,School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
11
|
Karaca E, Yuregir OO, Bozdogan ST, Aslan H, Pehlivan D, Jhangiani SN, Akdemir ZC, Gambin T, Bayram Y, Atik MM, Erdin S, Muzny D, Gibbs RA, Lupski JR. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome. Am J Med Genet A 2015; 167A:2795-9. [PMID: 26238661 DOI: 10.1002/ajmg.a.37263] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023]
Abstract
Klippel-Feil syndrome is a rare disorder represented by a subgroup of segmentation defects of the vertebrae and characterized by fusion of the cervical vertebrae, low posterior hairline, and short neck with limited motion. Both autosomal dominant and recessive inheritance patterns were reported in families with Klippel-Feil. Mutated genes for both dominant (GDF6 and GDF3) and recessive (MEOX1) forms of Klippel-Feil syndrome have been shown to be involved in somite development via transcription regulation and signaling pathways. Heterotaxy arises from defects in proteins that function in the development of left-right asymmetry of the developing embryo. We describe a consanguineous family with a male proband who presents with classical Klippel-Feil syndrome together with heterotaxy (situs inversus totalis). The present patient also had Sprengel's deformity, deformity of the sternum, and a solitary kidney. Using exome sequencing, we identified a homozygous frameshift mutation (c.299delT; p.L100fs) in RIPPLY2, a gene shown to play a crucial role in somitogenesis and participate in the Notch signaling pathway via negatively regulating Tbx6. Our data confirm RIPPLY2 as a novel gene for autosomal recessive Klippel-Feil syndrome, and in addition-from a mechanistic standpoint-suggest the possibility that mutations in RIPPLY2 could also lead to heterotaxy. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ozge O Yuregir
- Department of Medical Genetics, Numune Training and Research Hospital, Adana, Turkey
| | | | - Huseyin Aslan
- Department of Medical Genetics, Medical Faculty of Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Zeynep C Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Mehmed M Atik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Serkan Erdin
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas
| | | |
Collapse
|
12
|
Grifone R, Xie X, Bourgeois A, Saquet A, Duprez D, Shi DL. The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development. Mech Dev 2014; 134:1-15. [PMID: 25217815 DOI: 10.1016/j.mod.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
RNA-binding proteins (RBP) contribute to gene regulation through post-transcriptional events. Despite the important roles demonstrated for several RBP in regulating skeletal myogenesis in vitro, very few RBP coding genes have been characterized during skeletal myogenesis in vertebrate embryo. In the present study we report that Rbm24, which encodes the RNA-binding motif protein 24, is required for skeletal muscle differentiation in vivo. We show that Rbm24 transcripts are expressed at all sites of skeletal muscle formation during embryogenesis of different vertebrates, including axial, limb and head muscles. Interestingly, we find that Rbm24 protein starts to accumulate in MyoD-positive myoblasts and is transiently expressed at the onset of muscle cell differentiation. It accumulates in myotomal and limb myogenic cells, but not in Pax3-positive progenitor cells. Rbm24 expression is under the direct regulation by MyoD, as demonstrated by in vivo chromatin immunoprecipitation assay. Using morpholino knockdown approach, we further show that Rbm24 is required for somitic myogenic progenitor cells to differentiate into muscle cells during chick somitic myogenesis. Altogether, these results highlight Rbm24 as a novel key regulator of the myogenic differentiation program during vertebrate development.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Xin Xie
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Adeline Bourgeois
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Audrey Saquet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - Delphine Duprez
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France
| | - De-Li Shi
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France; CNRS, UMR 7622, Laboratory of Developmental Biology, Paris F-75005, France.
| |
Collapse
|