1
|
Zheng H, Li L, Wang D, Zhang S, Li W, Cheng M, Ge C, Chen J, Qiang Y, Chen F, Yu Y. FoxO is required for neoblast differentiation during planarian regeneration. Int J Biol Macromol 2025; 288:138729. [PMID: 39672403 DOI: 10.1016/j.ijbiomac.2024.138729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Stem cells are of great importance in the maintenance and regeneration of tissues, with Forkhead box O (FoxO) proteins emerging as pivotal regulators of their functions. However, the precise impact of FoxO proteins on stem cell behavior within regenerative environments remains ambiguous. Planarians, renowned for their abundance of adult stem cells (neoblasts), serve as an excellent model for investigating the dynamics of stem cells during regeneration. In this study, we identified DjfoxO, a conserved foxO gene in the planarian Dugesia japonica, and demonstrated its expression in neoblasts, with elevated levels detected in the regenerative blastema during the regeneration process. Using a FoxO inhibitor (AS1842856) together with RNA interference techniques, we demonstrated that inhibition of FoxO signaling in planarians hinders the regeneration of missing tissues, including the central nervous system, eyespots, anterior intestinal branches, and pharynx. It is noteworthy that the knockdown of DjfoxO does not significantly affect the mitotic activity of neoblasts. Conversely, it impedes the production of lineage-specific progenitors, potentially via modulation of the Erk pathway. These findings elucidate the instructive function of FoxO signaling in regulating stem cell differentiation and provide valuable insights into its potential for improving stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Linfeng Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Du Wang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Shengchao Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Wenhui Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Cui Ge
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiayi Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yanmei Qiang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Chen X. Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians. Heliyon 2025; 11:e41833. [PMID: 39877626 PMCID: PMC11773080 DOI: 10.1016/j.heliyon.2025.e41833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage. Positional information in muscle cells governs the polarity and patterning of the body plan during homeostasis and regeneration. For planarians, removal of neoblasts disables the regenerative feats and disruption of positional information results in the regeneration of inappropriate missing body regions, only the combination of neoblasts and positional information enables regeneration. Here, I summarize the current state of the field in neoblast lineage potential, subclasses and specification, and in the roles of positional information for proper tissue turnover and regeneration in planarians.
Collapse
Affiliation(s)
- Xuhui Chen
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China
| |
Collapse
|
3
|
Scimone ML, Canales BII, Aoude P, Atabay KD, Reddien PW. Coordinated neuron-glia regeneration through Notch signaling in planarians. PLoS Genet 2025; 21:e1011577. [PMID: 39869602 PMCID: PMC11801701 DOI: 10.1371/journal.pgen.1011577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/06/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood. In planarians, neurons and glia are regenerated from distinct progenitors. We found that planarians first regenerate neurons expressing a Delta-encoding gene, delta-2, at key positions in the central and peripheral nervous systems. Planarian glia are specified later from dispersed Notch-1-expressing mesoderm-like phagocytic progenitors. Inhibition of delta-2 or notch-1 severely reduced glia in planarians, but did not affect the specification of other phagocytic cell types. Loss of several delta-2-expressing neuron classes prevented differentiation of the glia associated with them, whereas transplantation of delta-2-expressing photoreceptor neurons was sufficient for glia formation at an ectopic location. Our results suggest a model in which patterned delta-2-expressing neurons instruct phagocytic progenitors to locally differentiate into glia, presenting a mechanism for coordinated regeneration of numbers and pattern of cell types.
Collapse
Affiliation(s)
- M. Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Bryanna Isela-Inez Canales
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Patrick Aoude
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kutay D. Atabay
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Peter W. Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
Hulett RE, Rivera-López C, Gehrke AR, Gompers A, Srivastava M. A wound-induced differentiation trajectory for neurons. Proc Natl Acad Sci U S A 2024; 121:e2322864121. [PMID: 38976727 PMCID: PMC11260127 DOI: 10.1073/pnas.2322864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/03/2024] [Indexed: 07/10/2024] Open
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.
Collapse
Affiliation(s)
- Ryan E. Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA02138
| | - Andrew R. Gehrke
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Annika Gompers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
McCusker P, Clarke NG, Gardiner E, Armstrong R, McCammick EM, McVeigh P, Robb E, Wells D, Nowak-Roddy M, Albaqami A, Mousley A, Coulter JA, Harrington J, Marks NJ, Maule AG. Neoblast-like stem cells of Fasciola hepatica. PLoS Pathog 2024; 20:e1011903. [PMID: 38805551 PMCID: PMC11161113 DOI: 10.1371/journal.ppat.1011903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
The common liver fluke (Fasciola hepatica) causes the disease fasciolosis, which results in considerable losses within the global agri-food industry. There is a shortfall in the drugs that are effective against both the adult and juvenile life stages within the mammalian host, such that new drug targets are needed. Over the last decade the stem cells of parasitic flatworms have emerged as reservoirs of putative novel targets due to their role in development and homeostasis, including at host-parasite interfaces. Here, we investigate and characterise the proliferating cells that underpin development in F. hepatica. We provide evidence that these cells are capable of self-renewal, differentiation, and are sensitive to ionising radiation- all attributes of neoblasts in other flatworms. Changes in cell proliferation were also noted during the early stages of in vitro juvenile growth/development (around four to seven days post excystment), which coincided with a marked reduction in the nuclear area of proliferating cells. Furthermore, we generated transcriptomes from worms following irradiation-based ablation of neoblasts, identifying 124 significantly downregulated transcripts, including known stem cell markers such as fgfrA and plk1. Sixty-eight of these had homologues associated with neoblast-like cells in Schistosoma mansoni. Finally, RNA interference mediated knockdown of histone h2b (a marker of proliferating cells), ablated neoblast-like cells and impaired worm development in vitro. In summary, this work demonstrates that the proliferating cells of F. hepatica are equivalent to neoblasts of other flatworm species and demonstrate that they may serve as attractive targets for novel anthelmintics.
Collapse
Affiliation(s)
- Paul McCusker
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Nathan G. Clarke
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Erica Gardiner
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Rebecca Armstrong
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Erin M. McCammick
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul McVeigh
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Emily Robb
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Duncan Wells
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Madelyn Nowak-Roddy
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Abdullah Albaqami
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | | | - John Harrington
- Boehringer Ingelheim Animal Health, Duluth, Georgia, United States of America
| | - Nikki J. Marks
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Aaron G. Maule
- Understanding Health & Disease, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
6
|
King HO, Owusu-Boaitey KE, Fincher CT, Reddien PW. A transcription factor atlas of stem cell fate in planarians. Cell Rep 2024; 43:113843. [PMID: 38401119 PMCID: PMC11232438 DOI: 10.1016/j.celrep.2024.113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.
Collapse
Affiliation(s)
- Hunter O King
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwadwo E Owusu-Boaitey
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Christopher T Fincher
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Chevy Chase, MD, USA; Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lindsay-Mosher N, Lusk S, Pearson BJ. Planarians require ced-12/elmo-1 to clear dead cells by excretion through the gut. Cell Rep 2024; 43:113621. [PMID: 38165802 DOI: 10.1016/j.celrep.2023.113621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/13/2023] [Accepted: 12/08/2023] [Indexed: 01/04/2024] Open
Abstract
Cell corpse removal is a critical component of both development and homeostasis throughout the animal kingdom. Extensive research has revealed many of the mechanisms involved in corpse removal, typically involving engulfment and digestion by another cell; however, the dynamics of cell corpse clearance in adult tissues remain unclear. Here, we track cell death in the adult planarian Schmidtea mediterranea and find that, following light-induced cell death, pigment cell corpses transit to the gut and are excreted from the animal. Gut phagocytes, previously only known to phagocytose food, are required for pigment cells to enter the gut lumen. Finally, we show that the planarian ortholog of ced-12/engulfment and cell motility (ELMO) is required for corpse phagocytosis and removal through the gut. In total, we present a mechanism of cell clearance in an adult organism involving transit of dead cells to the gut, transport into the gut by phagocytes, and physical excretion of debris.
Collapse
Affiliation(s)
- Nicole Lindsay-Mosher
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada
| | - Sarah Lusk
- Papé Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada; University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada; Papé Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
8
|
Molina MD, Abduljabbar D, Guixeras A, Fraguas S, Cebrià F. LIM-HD transcription factors control axial patterning and specify distinct neuronal and intestinal cell identities in planarians. Open Biol 2023; 13:230327. [PMID: 38086422 PMCID: PMC10715919 DOI: 10.1098/rsob.230327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Adult planarians can regenerate the gut, eyes and even a functional brain. Proper identity and patterning of the newly formed structures require signals that guide and commit their adult stem cells. During embryogenesis, LIM-homeodomain (LIM-HD) transcription factors act in a combinatorial 'LIM code' to control cell fate determination and differentiation. However, our understanding about the role these genes play during regeneration and homeostasis is limited. Here, we report the full repertoire of LIM-HD genes in Schmidtea mediterranea. We found that lim homeobox (lhx) genes appear expressed in complementary patterns along the cephalic ganglia and digestive system of the planarian, with some of them being co-expressed in the same cell types. We have identified that Smed-islet1, -lhx1/5-1, -lhx2/9-3, -lhx6/8, -lmx1a/b-2 and -lmx1a/b-3 are essential to pattern and size the planarian brain as well as for correct regeneration of specific subpopulations of dopaminergic, serotonergic, GABAergic and cholinergic neurons, while Smed-lhx1/5.2 and -lhx2/9.2 are required for the proper expression of intestinal cell type markers, specifically the goblet subtype. LIM-HD are also involved in controlling axonal pathfinding (lhx6/8), axial patterning (islet1, lhx1/5-1, lmx1a/b-3), head/body proportions (islet2) and stem cell proliferation (lhx3/4, lhx2/9-3, lmx1a/b-2, lmx1a/b-3). Altogether, our results suggest that planarians might present a combinatorial LIM code that controls axial patterning and axonal growing and specifies distinct neuronal and intestinal cell identities.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Dema Abduljabbar
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Anna Guixeras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
9
|
Wiggans M, Zhu SJ, Molinaro AM, Pearson BJ. The BAF chromatin remodeling complex licenses planarian stem cells access to ectodermal and mesodermal cell fates. BMC Biol 2023; 21:227. [PMID: 37864247 PMCID: PMC10589948 DOI: 10.1186/s12915-023-01730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The flatworm planarian, Schmidtea mediterranea, has a large population of adult stem cells (ASCs) that replace any cell type during tissue turnover or regeneration. How planarian ASCs (called neoblasts) manage self-renewal with the ability to produce daughter cells of different cell lineages (multipotency) is not well understood. Chromatin remodeling complexes ultimately control access to DNA regions of chromosomes and together with specific transcription factors determine whether a gene is transcribed in a given cell type. Previous work in planarians determined that RNAi of core components of the BAF chromatin remodeling complex, brg1 and smarcc2, caused increased ASCs and failed regeneration, but how these cellular defects arise at the level of gene regulation in neoblasts is unknown. RESULTS Here, we perform ATAC and RNA sequencing on purified neoblasts, deficient for the BAF complex subunits brg-1 and smarcc2. The data demonstrate that the BAF complex promotes chromatin accessibility and facilitates transcription at target loci, as in other systems. Interestingly, we find that the BAF complex enables access to genes known to be required for the generation of mesoderm- and ectoderm-derived lineages, including muscle, parenchymal cathepsin, neural, and epithelial lineages. BAF complex knockdowns result in disrupted differentiation into these cell lineages and functional consequences on planarian regeneration and tissue turnover. Notably, we did not detect a role for the BAF complex in neoblasts making endodermal lineages. CONCLUSIONS Our study provides functional insights into how the BAF complex contributes to cell fate decisions in planarian ASCs in vivo.
Collapse
Affiliation(s)
- Mallory Wiggans
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Shu Jun Zhu
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alyssa M Molinaro
- Present address: Oregon Health & Science University, Portland, OR, 97239, USA
| | - Bret J Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Present address: Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
10
|
Montagne J, Preza M, Koziol U. Stem cell proliferation and differentiation during larval metamorphosis of the model tapeworm Hymenolepis microstoma. Front Cell Infect Microbiol 2023; 13:1286190. [PMID: 37908761 PMCID: PMC10614006 DOI: 10.3389/fcimb.2023.1286190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Background Tapeworm larvae cause important diseases in humans and domestic animals. During infection, the first larval stage undergoes a metamorphosis where tissues are formed de novo from a population of stem cells called germinative cells. This process is difficult to study for human pathogens, as these larvae are infectious and difficult to obtain in the laboratory. Methods In this work, we analyzed cell proliferation and differentiation during larval metamorphosis in the model tapeworm Hymenolepis microstoma, by in vivo labelling of proliferating cells with the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU), tracing their differentiation with a suite of specific molecular markers for different cell types. Results Proliferating cells are very abundant and fast-cycling during early metamorphosis: the total number of cells duplicates every ten hours, and the length of G2 is only 75 minutes. New tegumental, muscle and nerve cells differentiate from this pool of proliferating germinative cells, and these processes are very fast, as differentiation markers for neurons and muscle cells appear within 24 hours after exiting the cell cycle, and fusion of new cells to the tegumental syncytium can be detected after only 4 hours. Tegumental and muscle cells appear from early stages of metamorphosis (24 to 48 hours post-infection); in contrast, most markers for differentiating neurons appear later, and the detection of synapsin and neuropeptides correlates with scolex retraction. Finally, we identified populations of proliferating cells that express conserved genes associated with neuronal progenitors and precursors, suggesting the existence of tissue-specific lineages among germinative cells. Discussion These results provide for the first time a comprehensive view of the development of new tissues during tapeworm larval metamorphosis, providing a framework for similar studies in human and veterinary pathogens.
Collapse
Affiliation(s)
| | | | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Akheralie Z, Scidmore TJ, Pearson BJ. aristaless-like homeobox-3 is wound induced and promotes a low-Wnt environment required for planarian head regeneration. Development 2023; 150:dev201777. [PMID: 37681295 PMCID: PMC10560571 DOI: 10.1242/dev.201777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The planarian Schmidtea mediterranea is a well-established model of adult regeneration, which is dependent on a large population of adult stem cells called neoblasts. Upon amputation, planarians undergo transcriptional wounding programs and coordinated stem cell proliferation to give rise to missing tissues. Interestingly, the Wnt signaling pathway is key to guiding what tissues are regenerated, yet less known are the transcriptional regulators that ensure proper activation and timing of signaling pathway components. Here, we have identified an aristaless-like homeobox transcription factor, alx-3, that is enriched in a population of putative neural-fated progenitor cells at homeostasis, and is also upregulated in stem cells and muscle cells at anterior-facing wounds upon amputation. Knockdown of alx-3 results in failure of head regeneration and patterning defects in amputated tail fragments. alx-3 is required for the expression of several early wound-induced genes, including the Wnt inhibitor notum, which is required to establish anterior polarity during regeneration. Together, these findings reveal a role for alx-3 as an early wound-response transcriptional regulator in both muscle cells and stem cells that is required for anterior regeneration by promoting a low-Wnt environment.
Collapse
Affiliation(s)
- Zaleena Akheralie
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| | - Tanner J. Scidmore
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| | - Bret J. Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| |
Collapse
|
12
|
Chandra B, Voas MG, Davies EL, Roberts-Galbraith RH. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 2023; 150:dev201666. [PMID: 37665145 PMCID: PMC10508700 DOI: 10.1242/dev.201666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Collapse
Affiliation(s)
- Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew G. Voas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin L. Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
13
|
Hulett RE, Gehrke AR, Gompers A, Rivera-López C, Srivastava M. A wound-induced differentiation trajectory for neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540286. [PMID: 37214981 PMCID: PMC10197691 DOI: 10.1101/2023.05.10.540286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully-functional new organs, de novo . The regeneration of a new brain requires the formation of diverse neuronal cell types and their assembly into an organized structure and correctly-wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neuronal subpopulations, however how these transcriptional programs are initiated upon amputation remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia , to study wound-induced transcriptional regulatory events that lead to the production of neurons. Footprinting analysis using chromatin accessibility data on an improved genome assembly revealed that binding sites for the NFY transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal functional. Single-cell transcriptome analysis combined with functional studies identified sox4 + stem cells as the likely progenitor population for multiple neuronal subtypes. Further, we found that wound-induced sox4 expression is likely under direct transcriptional control by NFY, uncovering a mechanism for how early wound-induced binding of a transcriptional regulator results in the initiation of a neuronal differentiation pathway. Highlights A new chromosome-scale assembly for Hofstenia enables comprehensive analysis of transcription factor binding during regeneration NFY motifs become dynamically bound by 1hpa in regenerating tail fragments, particularly in the loci of neural genes A sox4 + neural-specialized stem cell is identified using scRNA-seq sox4 is wound-induced and required for differentiation of multiple neural cell types NFY regulates wound-induced expression of sox4 during regeneration.
Collapse
|
14
|
Hulett RE, Kimura JO, Bolaños DM, Luo YJ, Rivera-López C, Ricci L, Srivastava M. Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells. Nat Commun 2023; 14:2612. [PMID: 37147314 PMCID: PMC10163032 DOI: 10.1038/s41467-023-38016-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
15
|
Guo Y, Sun Y, Ma M, Huang Y, Zhang S, Tian Q. Djsnon, a downstream gene of Djfoxk1, is required for the regeneration of the planarian central nervous system. Biochem Biophys Res Commun 2023; 643:8-15. [PMID: 36584589 DOI: 10.1016/j.bbrc.2022.12.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Regulators of adult neurogenesis are crucial targets for neuronal repair. Freshwater planarians are ideal model systems for studying neuronal regeneration as they can regenerate their entire central nervous system (CNS) using pluripotent adult stem cells. Here, we identified Djfoxk1 in planarian Dugesia japonica to be required for planarian CNS regeneration. Knockdown of Djfoxk1 inhibits the regeneration of the cephalic ganglia, resulting in the failure of eye regeneration. By RNAi screening of Djfoxk1 downstream genes, we identified Djsnon as another regulator of planarian neuronal regeneration. Inhibition of Djsnon with RNA interference (RNAi) results in similar phenotypes caused by Djfoxk1 RNAi without affecting cell proliferation and wound healing. Our findings show that Djsnon as a downstream gene of Djfoxk1 regulates the regeneration of the planarian CNS.
Collapse
Affiliation(s)
- Yajun Guo
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Sun
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengwen Ma
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongding Huang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shoutao Zhang
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China; Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China.
| | - Qingnan Tian
- School of LifeSciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Planarians to schistosomes: an overview of flatworm cell-types and regulators. J Helminthol 2023; 97:e7. [PMID: 36644809 DOI: 10.1017/s0022149x22000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis remains a major neglected tropical disease that afflicts over 200 million people globally. Schistosomes, the aetiological agent of schistosomiasis, are parasitic flatworms that propagate between molluscan and mammalian hosts. Inside the mammalian host, schistosomes rapidly grow over 100-fold in size and develop into a sexually mature male or female that thrives in the bloodstream for several decades. Recent work has identified schistosome stem cells as the source that drives parasite transmission, reproduction and longevity. Moreover, studies have begun to uncover molecular programmes deployed by stem cells that are essential for tissue development and maintenance, parasite survival and immune evasion. Such programmes are reminiscent of neoblast-driven development and regeneration of planarians, the free-living flatworm relative of schistosomes. Over the last few decades, research in planarians has employed modern functional genomic tools that significantly enhanced our understanding of stem cell-driven animal development and regeneration. In this review, we take a broad stroke overview of major flatworm organ systems at the cellular and molecular levels. We summarize recent advances on genetic regulators that play critical roles in differentiation and maintenance of flatworm cell types. Finally, we provide perspectives on how investigation of basic parasite biology is critical to discovering new approaches to battle schistosomiasis.
Collapse
|
17
|
Gambino G, Rossi L, Iacopetti P, Ghezzani C, Guidi P, Linsalata S, Ippolito C, Salvetti A. Microtubule-associated protein 1B is implicated in stem cell commitment and nervous system regeneration in planarians. PLoS One 2022; 17:e0278966. [PMID: 36508441 PMCID: PMC9744283 DOI: 10.1371/journal.pone.0278966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated 1B (MAP1B) proteins are expressed at the nervous system level where they control cytoskeleton activity and regulate neurotransmitter release. Here, we report about the identification of a planarian MAP1B factor (DjMap1B) that is enriched in cephalic ganglia and longitudinal nerve cords but not in neoblasts, the plentiful population of adult stem cells present in planarians, thanks to which these animals can continuously cell turnover and regenerate any lost body parts. DjMap1B knockdown induces morphological anomalies in the nervous system and affects neoblast commitment. Our data put forward a correlation between a MAP1B factor and stem cells and suggest a function of the nervous system in non-cell autonomous control of planarian stem cells.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Iacopetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Ghezzani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
18
|
Neiro J, Sridhar D, Dattani A, Aboobaker A. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. eLife 2022; 11:79675. [PMID: 35997250 PMCID: PMC9522251 DOI: 10.7554/elife.79675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Planarians have become an established model system to study regeneration and stem cells, but the regulatory elements in the genome remain almost entirely undescribed. Here, by integrating epigenetic and expression data we use multiple sources of evidence to predict enhancer elements active in the adult stem cell populations that drive regeneration. We have used ChIP-seq data to identify genomic regions with histone modifications consistent with enhancer activity, and ATAC-seq data to identify accessible chromatin. Overlapping these signals allowed for the identification of a set of high-confidence candidate enhancers predicted to be active in planarian adult stem cells. These enhancers are enriched for predicted transcription factor (TF) binding sites for TFs and TF families expressed in planarian adult stem cells. Footprinting analyses provided further evidence that these potential TF binding sites are likely to be occupied in adult stem cells. We integrated these analyses to build testable hypotheses for the regulatory function of TFs in stem cells, both with respect to how pluripotency might be regulated, and to how lineage differentiation programs are controlled. We found that our predicted GRNs were independently supported by existing TF RNAi/RNA-seq datasets, providing further evidence that our work predicts active enhancers that regulate adult stem cells and regenerative mechanisms.
Collapse
Affiliation(s)
- Jakke Neiro
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Divya Sridhar
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Wyss LS, Bray SR, Wang B. Cellular diversity and developmental hierarchy in the planarian nervous system. Curr Opin Genet Dev 2022; 76:101960. [PMID: 35878572 DOI: 10.1016/j.gde.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
Our ability to dissect cell type diversity, development, and plasticity in the nervous system has been transformed by the recent surge of massive sequencing studies at the single-cell level. A large body of this work has focused primarily on organisms with nervous systems established early in development. Using planarian flatworms in which neurons are constantly respecified, replenished, and regenerated, we analyze several existing single-cell transcriptomic datasets and observe features in neuron identity, differentiation, maturation, and function that may provide the planarian nervous system with high levels of adaptability required to respond to various cues including injury. This analysis allows us to place many prior observations made by functional characterizations in a general framework and provide additional hypothesis and predictions to test in future investigations.
Collapse
Affiliation(s)
- Livia S Wyss
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Samuel R Bray
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Coronel-Córdoba P, Molina MD, Cardona G, Fraguas S, Pascual-Carreras E, Saló E, Cebrià F, Adell T. FoxK1 is Required for Ectodermal Cell Differentiation During Planarian Regeneration. Front Cell Dev Biol 2022; 10:808045. [PMID: 35273960 PMCID: PMC8901602 DOI: 10.3389/fcell.2022.808045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Forkhead box (Fox) genes belong to the “winged helix” transcription factor superfamily. The function of some Fox genes is well known, such as the role of foxO in controlling metabolism and longevity and foxA in controlling differentiation of endodermal tissues. However, the role of some Fox factors is not yet well characterized. Such is the case of FoxK genes, which are mainly studied in mammals and have been implicated in diverse processes including cell proliferation, tissue differentiation and carcinogenesis. Planarians are free-living flatworms, whose importance in biomedical research lies in their regeneration capacity. Planarians possess a wide population of pluripotent adult stem cells, called neoblasts, which allow them to regenerate any body part after injury. In a recent study, we identified three foxK paralogs in the genome of Schmidtea mediterranea. In this study, we demonstrate that foxK1 inhibition prevents regeneration of the ectodermal tissues, including the nervous system and the epidermis. These results correlate with foxK1 expression in neoblasts and in neural progenitors. Although the triggering of wound genes expression, polarity reestablishment and proliferation was not affected after foxK1 silencing, the apoptotic response was decreased. Altogether, these results suggest that foxK1 would be required for differentiation and maintenance of ectodermal tissues.
Collapse
Affiliation(s)
- Pablo Coronel-Córdoba
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - M Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Gemma Cardona
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
21
|
Transcription Factors Active in the Anterior Blastema of Schmidtea mediterranea. Biomolecules 2021; 11:biom11121782. [PMID: 34944426 PMCID: PMC8698962 DOI: 10.3390/biom11121782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
Regeneration, the restoration of body parts after injury, is quite widespread in the animal kingdom. Species from virtually all Phyla possess regenerative abilities. Human beings, however, are poor regenerators. Yet, the progress of knowledge and technology in the fields of bioengineering, stem cells, and regenerative biology have fostered major advancements in regenerative medical treatments, which aim to regenerate tissues and organs and restore function. Human induced pluripotent stem cells can differentiate into any cell type of the body; however, the structural and cellular complexity of the human tissues, together with the inability of our adult body to control pluripotency, require a better mechanistic understanding. Planarians, with their capacity to regenerate lost body parts thanks to the presence of adult pluripotent stem cells could help providing such an understanding. In this paper, we used a top-down approach to shortlist blastema transcription factors (TFs) active during anterior regeneration. We found 44 TFs—31 of which are novel in planarian—that are expressed in the regenerating blastema. We analyzed the function of half of them and found that they play a role in the regeneration of anterior structures, like the anterior organizer, the positional instruction muscle cells, the brain, the photoreceptor, the intestine. Our findings revealed a glimpse of the complexity of the transcriptional network governing anterior regeneration in planarians, confirming that this animal model is the perfect playground to study in vivo how pluripotency copes with adulthood.
Collapse
|
22
|
De novo assembly, transcriptome characterization and marker discovery in Indian major carp, Labeo rohita through pyrosequencing. Genetica 2021; 150:59-66. [PMID: 34825293 DOI: 10.1007/s10709-021-00141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Labeo rohita, one of the Indian major carps, is the most popular culture species in Indian subcontinent due to its consumer preference and delicacy. A selective breeding program for harvest body weight has resulted in an average genetic gain of 17% per generation. Transcriptome resource for this species is scanty. Here, we have characterized the liver and muscle transcriptomes of rohu using Roche 454 GS-FLX next generation sequencing platform. In total, 1.2 million reads were generated, de novo assembly and clustering resulted in 4171 transcripts. Out of these, 4171 had significant blast hit against NCBI nr database, and 2130 transcripts were successfully annotated. In total, 289 SSRs were identified with an identification rate of 5.8%, and dinucleotide repeat motifs were observed to be the most abundant SSRs. Further, 2231 putative SNPs were identified with high confidence. Validation of eight putative SNPs using Sanger sequencing resulted in 100% true SNPs. Significant allelic imbalance of M1, M4 and M5 loci between growth selected and control individual were observed. Furthermore, 13 transcription factors were identified in the present study belonging to six different transcription factor families. The present study demonstrated the utility of RNAseq to develop genomics resources in non-model fish species, and the marker resources developed would support the genetic improvement program of this species.
Collapse
|
23
|
Molina MD, Cebrià F. Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules 2021; 11:1532. [PMID: 34680165 PMCID: PMC8533874 DOI: 10.3390/biom11101532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023] Open
Abstract
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
24
|
Sachslehner A, Zieger E, Calcino A, Wanninger A. HES and Mox genes are expressed during early mesoderm formation in a mollusk with putative ancestral features. Sci Rep 2021; 11:18030. [PMID: 34504115 PMCID: PMC8429573 DOI: 10.1038/s41598-021-96711-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.
Collapse
Affiliation(s)
- Attila Sachslehner
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Elisabeth Zieger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andrew Calcino
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Andreas Wanninger
- Department of Evolutionary Biology, Unit for Integrative Zoology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Deryckere A, Styfhals R, Elagoz AM, Maes GE, Seuntjens E. Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. eLife 2021; 10:e69161. [PMID: 34425939 PMCID: PMC8384421 DOI: 10.7554/elife.69161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
Cephalopods have evolved nervous systems that parallel the complexity of mammalian brains in terms of neuronal numbers and richness in behavioral output. How the cephalopod brain develops has only been described at the morphological level, and it remains unclear where the progenitor cells are located and what molecular factors drive neurogenesis. Using histological techniques, we located dividing cells, neural progenitors and postmitotic neurons in Octopus vulgaris embryos. Our results indicate that an important pool of progenitors, expressing the conserved bHLH transcription factors achaete-scute or neurogenin, is located outside the central brain cords in the lateral lips adjacent to the eyes, suggesting that newly formed neurons migrate into the cords. Lineage-tracing experiments then showed that progenitors, depending on their location in the lateral lips, generate neurons for the different lobes, similar to the squid Doryteuthis pealeii. The finding that octopus newborn neurons migrate over long distances is reminiscent of vertebrate neurogenesis and suggests it might be a fundamental strategy for large brain development.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaplesItaly
| | - Ali Murat Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| | - Gregory E Maes
- Center for Human Genetics, Genomics Core, UZ-KU LeuvenLeuvenBelgium
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook UniversityTownsvilleAustralia
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU LeuvenLeuvenBelgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU LeuvenLeuvenBelgium
| |
Collapse
|
26
|
Kim M, Xi H, Park S, Yun Y, Park J. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes. Sci Rep 2021; 11:16578. [PMID: 34400697 PMCID: PMC8367991 DOI: 10.1038/s41598-021-95940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. We identified 262 GATA genes (389 GATA TFs) from seven Populus genomes using the pipeline of GATA-TFDB. Alternative splicing forms of Populus GATA genes exhibit dynamics of GATA gene structures including partial or full loss of GATA domain and additional domains. Subfamily III of Populus GATA genes display lack CCT and/or TIFY domains. 21 Populus GATA gene clusters (PCs) were defined in the phylogenetic tree of GATA domains, suggesting the possibility of subfunctionalization and neofunctionalization. Expression analysis of Populus GATA genes identified the five PCs displaying tissue-specific expression, providing the clues of their biological functions. Amino acid patterns of Populus GATA motifs display well conserved manner of Populus GATA genes. The five Populus GATA genes were predicted as membrane-bound GATA TFs. Biased chromosomal distributions of GATA genes of three Populus species. Our comparative analysis approaches of the Populus GATA genes will be a cornerstone to understand various plant TF characteristics including evolutionary insights.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Hong Xi
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Suhyeon Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Yunho Yun
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea
| | - Jongsun Park
- InfoBoss Inc., 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
- InfoBoss Research Center, 301 room, Haeun Bldg., 670, Seolleung-ro, Gangnam-gu, Seoul, 07766, Korea.
| |
Collapse
|
27
|
Liu H, Song Q, Zhen H, Deng H, Zhao B, Cao Z. miR-8b is involved in brain and eye regeneration of Dugesia japonica in head regeneration. Biol Open 2021; 10:269275. [PMID: 34184734 PMCID: PMC8272931 DOI: 10.1242/bio.058538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of evolutionarily conserved small non-coding RNAs that regulate gene expression at the translation level in cell growth, proliferation and differentiation. In addition, some types of miRNAs have been proven to be key modulators of both CNS development and plasticity, such as let-7, miR-9 and miR-124. In this research, we found miR-8b acts as an important regulator involved in brain and eyespot regeneration in Dugesia japonica. miR-8b was highly conserved among species and was abundantly expressed in central nervous system. Here, we detected the expression dynamics of miR-8b by qPCR during the head regeneration of D. japonica. Knockdown miR-8b by anti-MIRs method caused severe defects of eyes and CNS. Our study revealed the evolutionary conserved role of miR-8b in the planarian regeneration process, and further provided more research ideas and available information for planarian miRNAs. Summary: Most miRNAs in planarians are homologous to humans and other mammals, and may also play a similar regulatory role. Knockdown miR-8b planarian miR-8b induces brain and eyespot defects during head regeneration.
Collapse
Affiliation(s)
- Hongjin Liu
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Qian Song
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo 255049, China
| | - Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo 255049, China
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Zhonghong Cao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
28
|
Bohr TE, Shiroor DA, Adler CE. Planarian stem cells sense the identity of the missing pharynx to launch its targeted regeneration. eLife 2021; 10:e68830. [PMID: 34156924 PMCID: PMC8219383 DOI: 10.7554/elife.68830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/22/2021] [Indexed: 12/25/2022] Open
Abstract
In order to regenerate tissues successfully, stem cells must detect injuries and restore missing cell types through largely unknown mechanisms. Planarian flatworms have an extensive stem cell population responsible for regenerating any organ after amputation. Here, we compare planarian stem cell responses to different injuries by either amputation of a single organ, the pharynx, or removal of tissues from other organs by decapitation. We find that planarian stem cells adopt distinct behaviors depending on what tissue is missing to target progenitor and tissue production towards missing tissues. Loss of non-pharyngeal tissues only increases non-pharyngeal progenitors, while pharynx removal selectively triggers division and expansion of pharynx progenitors. By pharmacologically inhibiting either mitosis or activation of the MAP kinase ERK, we identify a narrow window of time during which stem cell division and ERK signaling produces pharynx progenitors necessary for regeneration. These results indicate that planarian stem cells can tailor their output to match the regenerative needs of the animal.
Collapse
Affiliation(s)
- Tisha E Bohr
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| | - Divya A Shiroor
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| | - Carolyn E Adler
- Department of Molecular Medicine, Cornell University College of Veterinary MedicineIthacaUnited States
| |
Collapse
|
29
|
Fujita S, Kuranaga E, Nakajima YI. Regeneration Potential of Jellyfish: Cellular Mechanisms and Molecular Insights. Genes (Basel) 2021; 12:758. [PMID: 34067753 PMCID: PMC8156412 DOI: 10.3390/genes12050758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/20/2023] Open
Abstract
Medusozoans, the Cnidarian subphylum, have multiple life stages including sessile polyps and free-swimming medusae or jellyfish, which are typically bell-shaped gelatinous zooplanktons that exhibit diverse morphologies. Despite having a relatively complex body structure with well-developed muscles and nervous systems, the adult medusa stage maintains a high regenerative ability that enables organ regeneration as well as whole body reconstitution from the part of the body. This remarkable regeneration potential of jellyfish has long been acknowledged in different species; however, recent studies have begun dissecting the exact processes underpinning regeneration events. In this article, we introduce the current understanding of regeneration mechanisms in medusae, particularly focusing on cellular behaviors during regeneration such as wound healing, blastema formation by stem/progenitor cells or cell fate plasticity, and the organism-level patterning that restores radial symmetry. We also discuss putative molecular mechanisms involved in regeneration processes and introduce a variety of novel model jellyfish species in the effort to understand common principles and diverse mechanisms underlying the regeneration of complex organs and the entire body.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
| | - Yu-ichiro Nakajima
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; (S.F.); (E.K.)
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Miyagi, Japan
| |
Collapse
|
30
|
Raz AA, Wurtzel O, Reddien PW. Planarian stem cells specify fate yet retain potency during the cell cycle. Cell Stem Cell 2021; 28:1307-1322.e5. [PMID: 33882291 DOI: 10.1016/j.stem.2021.03.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Planarian whole-body regeneration is enabled by stem cells called neoblasts. At least some neoblasts are individually pluripotent. Neoblasts are also heterogeneous, with subpopulations of specialized neoblasts having different specified fates. Fate specification in neoblasts is regulated by fate-specific transcription factor (FSTF) expression. Here, we find that FSTF expression is common in neoblast S/G2/M cell-cycle phases but less common in G1. We find that specialized neoblasts can divide to produce progeny with asymmetric cell fates, suggesting that they could retain pluripotency. Furthermore, no known neoblast class was present in all neoblast colonies, suggesting that pluripotency is not the exclusive property of any known class. We tested this possibility with single-cell transplantations, which indicate that at least some specialized neoblasts are likely clonogenic. On the basis of these findings, we propose a model for neoblast pluripotency in which neoblasts can undergo specialization during the cell cycle without loss of potency.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omri Wurtzel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
31
|
Fraguas S, Cárcel S, Vivancos C, Molina MD, Ginés J, Mazariegos J, Sekaran T, Bartscherer K, Romero R, Cebrià F. CREB-binding protein (CBP) gene family regulates planarian survival and stem cell differentiation. Dev Biol 2021; 476:53-67. [PMID: 33774010 DOI: 10.1016/j.ydbio.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
In developmental biology, the regulation of stem cell plasticity and differentiation remains an open question. CBP(CREB-binding protein)/p300 is a conserved gene family that functions as a transcriptional co-activator and plays important roles in a wide range of cellular processes, including cell death, the DNA damage response, and tumorigenesis. The acetyl transferase activity of CBPs is particularly important, as histone and non-histone acetylation results in changes in chromatin architecture and protein activity that affect gene expression. Many studies have described the conserved functions of CBP/p300 in stem cell proliferation and differentiation. The planarian Schmidtea mediterranea is an excellent model for the in vivo study of the molecular mechanisms underlying stem cell differentiation during regeneration. However, how this process is regulated genetically and epigenetically is not well-understood yet. We identified 5 distinct Smed-cbp genes in S. mediterranea that show different expression patterns. Functional analyses revealed that Smed-cbp-2 appears to be essential for stem cell maintenance. On the other hand, the silencing of Smed-cbp-3 resulted in the growth of blastemas that were apparently normal, but remained largely unpigmented and undifferentiated. Smed-cbp-3 silencing also affected the differentiation of several cell lineages including neural, epidermal, digestive, and excretory cell types. Finally, we analysed the predicted interactomes of CBP-2 and CBP-3 as an initial step to better understand their functions in planarian stem cell biology. Our results indicate that planarian cbp genes play key roles in stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Sheila Cárcel
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Coral Vivancos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Ma Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Jordi Ginés
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Judith Mazariegos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | | | | | - Rafael Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain.
| |
Collapse
|
32
|
Chen F, Zheng G, Qu M, Wang Y, Lyu MJA, Zhu XG. Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1836-1849. [PMID: 33258954 DOI: 10.1093/jxb/eraa566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.
Collapse
Affiliation(s)
- Faming Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanjie Wang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Stelman CR, Smith BM, Chandra B, Roberts-Galbraith RH. CBP/p300 homologs CBP2 and CBP3 play distinct roles in planarian stem cell function. Dev Biol 2021; 473:130-143. [PMID: 33607113 DOI: 10.1016/j.ydbio.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Chromatin modifications function as critical regulators of gene expression and cellular identity, especially in the regulation and maintenance of the pluripotent state. However, many studies of chromatin modification in stem cells-and pluripotent stem cells in particular-are performed in mammalian stem cell culture, an in vitro condition mimicking a very transient state during mammalian development. Thus, new models for studying pluripotent stem cells in vivo could be helpful for understanding the roles of chromatin modification, for confirming prior in vitro studies, and for exploring evolution of the pluripotent state. The freshwater flatworm, Schmidtea mediterranea, is an excellent model for studying adult pluripotent stem cells, particularly in the context of robust, whole-body regeneration. To identify chromatin modifying and remodeling enzymes critical for planarian regeneration and stem cell maintenance, we took a candidate approach and screened planarian homologs of 25 genes known to regulate chromatin biology in other organisms. Through our study, we identified six genes with novel functions in planarian homeostasis, regeneration, and behavior. Of the list of genes characterized, we identified five planarian homologs of the mammalian CREB-Binding Protein (CBP) and p300 family of histone acetyltransferases, representing an expansion of this family in planarians. We find that two planarian CBP family members are required for planarian survival, with knockdown of Smed-CBP2 and Smed-CBP3 causing distinct defects in stem cell maintenance or function. Loss of CBP2 causes a quick, dramatic loss of stem cells, while knockdown of CBP3 affects stem cells more narrowly, influencing differentiation of several cell types that include neuronal subtypes and cells of the eye. Further, we find that Smed-CBP1 is required for planarian fissioning behavior. We propose that the division of labor among a diversified CBP family in planarians presents an opportunity to dissect specific functions of a broadly important histone acetyltransferase family.
Collapse
Affiliation(s)
- Clara R Stelman
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Britessia M Smith
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rachel H Roberts-Galbraith
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
34
|
Diaz Soria CL, Lee J, Chong T, Coghlan A, Tracey A, Young MD, Andrews T, Hall C, Ng BL, Rawlinson K, Doyle SR, Leonard S, Lu Z, Bennett HM, Rinaldi G, Newmark PA, Berriman M. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni. Nat Commun 2020; 11:6411. [PMID: 33339816 PMCID: PMC7749135 DOI: 10.1038/s41467-020-20092-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Over 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistomulum body. To fill these important knowledge gaps, we perform single-cell RNA sequencing on two-day old schistosomula of Schistosoma mansoni. We identify likely gene expression profiles for muscle, nervous system, tegument, oesophageal gland, parenchymal/primordial gut cells, and stem cells. In addition, we validate cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.
Collapse
Affiliation(s)
| | - Jayhun Lee
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy Chong
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Tallulah Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Christopher Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Bee Ling Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Kate Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Steven Leonard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hayley M Bennett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Phillip A Newmark
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
35
|
Zhen H, Deng H, Song Q, Zheng M, Yuan Z, Cao Z, Pang Q, Zhao B. The Wnt/Ca 2+ signaling pathway is essential for the regeneration of GABAergic neurons in planarian Dugesia japonica. FASEB J 2020; 34:16567-16580. [PMID: 33094857 DOI: 10.1096/fj.201903040rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 11/11/2022]
Abstract
The growth and differentiation of neurons are critical events in the establishment of proper neuron connectivity and function. Planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for neuronal differentiation in vivo. The Wnt/Ca2+ signaling pathway is crucial for cancer development, arousing inflammatory responses, and neurodegeneration. We analyzed the expression patterns and RNAi phenotypes for members of the Wnt/Ca2+ signaling pathway in the planarian, Dugesia japonica. The expression of DjWnt5a, DjPLC-β, DjCamKII, and DjCaln during regeneration was surprisingly similar and revealing in the regenerated brain. RNAi knockdown of DjWnt5a, DjPLC-β, DjCamKII, and DjCaln led to defects in regenerated brains including brain partial deletions, incompact phenotypes at the posterior of the new brain, and lateral branches, which could not regenerate. Furthermore, the expressions of GAD and the number of GABAergic neurons decreased. Together, these results suggest that the Wnt/Ca2+ signaling pathway is required for GABAergic neuron regeneration.
Collapse
Affiliation(s)
- Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Shandong, China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Shandong, China.,School of Life Sciences, Shandong University of Technology, Shandong, China
| | - Qian Song
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Shandong, China
| | - Mingyue Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zuoqing Yuan
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Shandong, China.,School of Life Sciences, Shandong University of Technology, Shandong, China
| | - Zhonghong Cao
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Shandong, China.,School of Life Sciences, Shandong University of Technology, Shandong, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Shandong, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Shandong, China
| |
Collapse
|
36
|
Kumar S, Tumu SC, Helm C, Hausen H. The development of early pioneer neurons in the annelid Malacoceros fuliginosus. BMC Evol Biol 2020; 20:117. [PMID: 32928118 PMCID: PMC7489019 DOI: 10.1186/s12862-020-01680-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nervous system development is an interplay of many processes: the formation of individual neurons, which depends on whole-body and local patterning processes, and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the first steps of nervous system development in the annelid Malacoceros fuliginosus. RESULTS We performed a dense expression profiling of a broad set of neural genes. We found that SoxB expression begins at 4 h postfertilization, and shortly later, the neuronal progenitors can be identified at the anterior and the posterior pole by the transient and dynamic expression of proneural genes. At 9 hpf, the first neuronal cells start differentiating, and we provide a detailed description of axonal outgrowth of the pioneer neurons that create the primary neuronal scaffold. Tracing back the clonal origin of the ventral nerve cord pioneer neuron revealed that it is a descendant of the blastomere 2d (2d221), which after 7 cleavages starts expressing Neurogenin, Acheate-Scute and NeuroD. CONCLUSIONS We propose that an anterior and posterior origin of the nervous system is ancestral in annelids. We suggest that closer examination of the first pioneer neurons will be valuable in better understanding of nervous system development in spirally cleaving animals, to determine the potential role of cell-intrinsic properties in neuronal specification and to resolve the evolution of nervous systems.
Collapse
Affiliation(s)
- Suman Kumar
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Sharat Chandra Tumu
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Conrad Helm
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.,Present Address: Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| |
Collapse
|
37
|
Gambino G, Ippolito C, Modeo L, Salvetti A, Rossi L. 5-Fluorouracil-treated planarians, a versatile model system for studying stem cell heterogeneity and tissue aging. Biol Cell 2020; 112:335-348. [PMID: 32640042 DOI: 10.1111/boc.202000040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Planarians are a sound, well-established model system for molecular studies in the field of stem cells, cell differentiation, developmental biology and translational research. Treated stem cell-less planarians produced by X-ray treatment are commonly used to study stem cell transcriptional profile and their role in planarian biological processes. X-ray induces oxidative and DNA damage to differentiated cells, requires expensive radiation machines that are not available in most of the research centres and demand rigorous risk management and dedicated staff. RESULTS We tested the use of the well-known antimetabolite genotoxic drug 5-fluorouracil which mainly affects proliferating cells in way to demonstrate its use in replacing X-ray treatment. We succeeded in demonstrating ability of high doses of 5-fluorouracil to deplete Dugesia japonica stem cells and in identifying a 5-fluorouracil transiently resistant population of lineage committed stem cells. CONCLUSIONS AND SIGNIFICANCE Our results encourage the use of 5-fluorouracil-treated planarians as a model system for studying mechanisms of resistance to genotoxicants, planarian stem cell heterogeneity and molecular cascades of tissue aging.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Letizia Modeo
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, 56126, Italy
| | - Alessandra Salvetti
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Leonardo Rossi
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
38
|
Sur A, Renfro A, Bergmann PJ, Meyer NP. Investigating cellular and molecular mechanisms of neurogenesis in Capitella teleta sheds light on the ancestor of Annelida. BMC Evol Biol 2020; 20:84. [PMID: 32664907 PMCID: PMC7362552 DOI: 10.1186/s12862-020-01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diverse architectures of nervous systems (NSs) such as a plexus in cnidarians or a more centralized nervous system (CNS) in insects and vertebrates are present across Metazoa, but it is unclear what selection pressures drove evolution and diversification of NSs. One underlying aspect of this diversity lies in the cellular and molecular mechanisms driving neurogenesis, i.e. generation of neurons from neural precursor cells (NPCs). In cnidarians, vertebrates, and arthropods, homologs of SoxB and bHLH proneural genes control different steps of neurogenesis, suggesting that some neurogenic mechanisms may be conserved. However, data are lacking for spiralian taxa. RESULTS To that end, we characterized NPCs and their daughters at different stages of neurogenesis in the spiralian annelid Capitella teleta. We assessed cellular division patterns in the neuroectoderm using static and pulse-chase labeling with thymidine analogs (EdU and BrdU), which enabled identification of NPCs that underwent multiple rounds of division. Actively-dividing brain NPCs were found to be apically-localized, whereas actively-dividing NPCs for the ventral nerve cord (VNC) were found apically, basally, and closer to the ventral midline. We used lineage tracing to characterize the changing boundary of the trunk neuroectoderm. Finally, to start to generate a genetic hierarchy, we performed double-fluorescent in-situ hybridization (FISH) and single-FISH plus EdU labeling for neurogenic gene homologs. In the brain and VNC, Ct-soxB1 and Ct-neurogenin were expressed in a large proportion of apically-localized, EdU+ NPCs. In contrast, Ct-ash1 was expressed in a small subset of apically-localized, EdU+ NPCs and subsurface, EdU- cells, but not in Ct-neuroD+ or Ct-elav1+ cells, which also were subsurface. CONCLUSIONS Our data suggest a putative genetic hierarchy with Ct-soxB1 and Ct-neurogenin at the top, followed by Ct-ash1, then Ct-neuroD, and finally Ct-elav1. Comparison of our data with that from Platynereis dumerilii revealed expression of neurogenin homologs in proliferating NPCs in annelids, which appears different than the expression of vertebrate neurogenin homologs in cells that are exiting the cell cycle. Furthermore, differences between neurogenesis in the head versus trunk of C. teleta suggest that these two tissues may be independent developmental modules, possibly with differing evolutionary trajectories.
Collapse
Affiliation(s)
- A. Sur
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - A. Renfro
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - P. J. Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | - N. P. Meyer
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01610 USA
| |
Collapse
|
39
|
Scimone ML, Atabay KD, Fincher CT, Bonneau AR, Li DJ, Reddien PW. Muscle and neuronal guidepost-like cells facilitate planarian visual system regeneration. Science 2020; 368:368/6498/eaba3203. [PMID: 32586989 PMCID: PMC8128157 DOI: 10.1126/science.aba3203] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Neuronal circuits damaged or lost after injury can be regenerated in some adult organisms, but the mechanisms enabling this process are largely unknown. We used the planarian Schmidtea mediterranea to study visual system regeneration after injury. We identify a rare population of muscle cells tightly associated with photoreceptor axons at stereotyped positions in both uninjured and regenerating animals. Together with a neuronal population, these cells promote de novo assembly of the visual system in diverse injury and eye transplantation contexts. These muscle guidepost-like cells are specified independently of eyes, and their position is defined by an extrinsic array of positional information cues. These findings provide a mechanism, involving adult formation of guidepost-like cells typically observed in embryos, for axon pattern restoration in regeneration.
Collapse
Affiliation(s)
- M Lucila Scimone
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kutay D Atabay
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher T Fincher
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ashley R Bonneau
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dayan J Li
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Planarian EGF repeat-containing genes megf6 and hemicentin are required to restrict the stem cell compartment. PLoS Genet 2020; 16:e1008613. [PMID: 32078629 PMCID: PMC7059952 DOI: 10.1371/journal.pgen.1008613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/06/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is important for maintaining the boundaries between tissues. This role is particularly critical in the stem cell niche, as pre-neoplastic or cancerous stem cells must pass these boundaries in order to invade into the surrounding tissue. Here, we examine the role of the ECM as a regulator of the stem cell compartment in the planarian Schmidtea mediterranea, a highly regenerative, long-lived organism with a large population of adult stem cells. We identify two EGF repeat-containing genes, megf6 and hemicentin, with identical knockdown phenotypes. We find that megf6 and hemicentin are needed to maintain the structure of the basal lamina, and in the absence of either gene, pluripotent stem cells migrate ectopically outside of their compartment and hyper-proliferate, causing lesions in the body wall muscle. These muscle lesions and ectopic stem cells are also associated with ectopic gut branches, which protrude from the normal gut towards the dorsal side of the animal. Interestingly, both megf6 and hemicentin knockdown worms are capable of regenerating tissue free of both muscle lesions and ectopic cells, indicating that these genes are dispensable for regeneration. These results provide insight into the role of planarian ECM in restricting the stem cell compartment, and suggest that signals within the compartment may act to suppress stem cell hyperproliferation. The freshwater planarian maintains a large population of adult stem cells throughout its long lifespan. Although these stem cells are constantly dividing, the rate of division is tightly controlled to such a degree that planarians almost never develop neoplastic growths. In addition, the stem cells are located in a specific spatial compartment within the animal, although no known physical boundary keeps them in place. What mechanisms do planarians use to control the number, rate of division, and location of their stem cells? Here, we find that two EGF repeat-containing genes, megf6 and hemicentin, are required to keep stem cells within their compartment. Although these two genes are expressed in different cell populations, we find that both are required to maintain the epithelial basal lamina. In the absence of either gene, stem cells can escape their compartment and migrate towards the skin of the animal, where they divide at an accelerated rate and cause lesions in the muscle. These results show that the extracellular matrix plays a role in limiting the boundaries of the stem cell compartment.
Collapse
|
41
|
Karge A, Bonar NA, Wood S, Petersen CP. tec-1 kinase negatively regulates regenerative neurogenesis in planarians. eLife 2020; 9:47293. [PMID: 31958270 PMCID: PMC6970515 DOI: 10.7554/elife.47293] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023] Open
Abstract
Negative regulators of adult neurogenesis are of particular interest as targets to enhance neuronal repair, but few have yet been identified. Planarians can regenerate their entire CNS using pluripotent adult stem cells, and this process is robustly regulated to ensure that new neurons are produced in proper abundance. Using a high-throughput pipeline to quantify brain chemosensory neurons, we identify the conserved tyrosine kinase tec-1 as a negative regulator of planarian neuronal regeneration. tec-1RNAi increased the abundance of several CNS and PNS neuron subtypes regenerated or maintained through homeostasis, without affecting body patterning or non-neural cells. Experiments using TUNEL, BrdU, progenitor labeling, and stem cell elimination during regeneration indicate tec-1 limits the survival of newly differentiated neurons. In vertebrates, the Tec kinase family has been studied extensively for roles in immune function, and our results identify a novel role for tec-1 as negative regulator of planarian adult neurogenesis.
Collapse
Affiliation(s)
- Alexander Karge
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Scott Wood
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States
| |
Collapse
|
42
|
Smed-myb-1 Specifies Early Temporal Identity during Planarian Epidermal Differentiation. Cell Rep 2020; 25:38-46.e3. [PMID: 30282036 DOI: 10.1016/j.celrep.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/28/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
The planarian epidermis provides an excellent model to explore adult stem cell (ASC) lineage development due to well-characterized and distinct spatiotemporal phases during lineage progression. Using flow cytometry-isolated cells enriched in epidermal progenitors, we performed transcriptional profiling and RNAi screening to uncover regulators of epidermal differentiation. We identified a MYB-type transcription factor (Smed-myb-1) required for the specification of the first temporal phase of post-mitotic maturation. Knockdown of myb-1 abolished the early progenitor phase of differentiation without ceasing production of subsequent epidermal progenitor states or homeostatic turnover and regeneration of the epidermis. Further examination revealed accelerated maturation of ASC descendants, with premature entry into subsequent progeny phases and, ultimately, the epidermis. These results demonstrate that a spatiotemporal shift in lineage progression occurs in the absence of the early progenitor state after myb-1 RNAi, and identify myb-1 as a critical regulator of the early temporal window in stepwise specification during planarian epidermal differentiation.
Collapse
|
43
|
Tewari AG, Stern SR, Oderberg IM, Reddien PW. Cellular and Molecular Responses Unique to Major Injury Are Dispensable for Planarian Regeneration. Cell Rep 2019; 25:2577-2590.e3. [PMID: 30485821 PMCID: PMC6475882 DOI: 10.1016/j.celrep.2018.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
The fundamental requirements for regeneration are poorly understood. Planarians can robustly regenerate all tissues after injury, involving stem cells, positional information, and a set of cellular and molecular responses collectively called the "missing tissue" or "regenerative" response. follistatin, which encodes an extracellular Activin inhibitor, is required for the missing tissue response after head amputation and for subsequent regeneration. We found that follistatin is required for the missing tissue response regardless of the wound context, but causes regeneration failure only after head amputation. This head regeneration failure involves follistatin-mediated regulation of Wnt signaling at wounds and is not a consequence of a diminished missing tissue response. All tested contexts of regeneration, including head regeneration, could occur with a defective missing tissue response, but at a slower pace. Our findings suggest that major cellular and molecular programs induced specifically by large injuries function to accelerate regeneration but are dispensable for regeneration itself.
Collapse
Affiliation(s)
- Aneesha G Tewari
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah R Stern
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac M Oderberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
44
|
Ding Y, Wang R, Wang X, Cong P, Liu Y, Li Z, Xu J, Xue C. Preparation and effects on neuronal nutrition of plasmenylethonoamine and plasmanylcholine from the mussel Mytilus edulis. Biosci Biotechnol Biochem 2019; 84:380-392. [PMID: 31608790 DOI: 10.1080/09168451.2019.1674632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plasmenylethonoamine (pPE) and plasmanylcholine (aPC) are important phospholipid subclasses. Herein we explored optimum conditions for enzymatic purification and preparation of pPE and aPC from the mussel Mytilus edulis and bovine brain. Among them, pPE in Mytilus edulis PE was mainly p18:0-20:5 and p18:0-22:6, and its purity was 92.7%; aPC in PC was primarily a16:0-22:6 and a16:0-20:5, and aPC accounted for 90.2% of PC. We thereafter evaluated neurotrophic effects of Mytilus edulis pPE, aPC, and bovine brain pPE in a NGF-induced PC12 cell model. Morphologically, pPE and aPC could both promote differentiation, manifested in a significant increase in neurite length and number, due to increased expression of synaptophysin and growth protein GAP-43 in a dose-independent and structure-selective manner. Importantly, the effect on neuronal nutrition of pPE was better than aPC, and marine pPE was better than terrestrial pPE, which might be ascribed to vinyl-ether bond and differences in fatty acid composition.Abbreviations: AA: arachidonic acid; DHA: docosahexaenoic acid; EIC: extracted ion chromatogram; EPA: eicosapentanoic acid; GAP: growth-associated protein; HPLC: high-performance liquid chromatography; LC-MS/MS: liquid chromatography-tandem mass spectrometry; LPC: lyso-PC; LPE: lyso-PE; MS: mass spectrometry; NGF: nerve growth factor; PC: phosphatidylcholine; aPC: plasmanylcholine; PE: phosphatidylethanolamine; pPE: plasmenylethonoamine; PG: phosphoglycerols; PLs: phospholipids; PS: phosphoserines; TIC: total ion chromatogram.
Collapse
Affiliation(s)
- Yi Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Rui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
45
|
Wnt and TGFβ coordinate growth and patterning to regulate size-dependent behaviour. Nature 2019; 572:655-659. [PMID: 31413361 PMCID: PMC6872711 DOI: 10.1038/s41586-019-1478-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
|
46
|
The Cellular and Molecular Basis for Planarian Regeneration. Cell 2019; 175:327-345. [PMID: 30290140 DOI: 10.1016/j.cell.2018.09.021] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023]
Abstract
Regeneration is one of the great mysteries of biology. Planarians are flatworms capable of dramatic feats of regeneration, which have been studied for over 2 centuries. Recent findings identify key cellular and molecular principles underlying these feats. A stem cell population (neoblasts) generates new cells and is comprised of pluripotent stem cells (cNeoblasts) and fate-specified cells (specialized neoblasts). Positional information is constitutively active and harbored primarily in muscle, where it acts to guide stem cell-mediated tissue turnover and regeneration. I describe here a model in which positional information and stem cells combine to enable regeneration.
Collapse
|
47
|
Prospectively Isolated Tetraspanin + Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regeneration. Cell 2019; 173:1593-1608.e20. [PMID: 29906446 DOI: 10.1016/j.cell.2018.05.006] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022]
Abstract
Proliferating cells known as neoblasts include pluripotent stem cells (PSCs) that sustain tissue homeostasis and regeneration of lost body parts in planarians. However, the lack of markers to prospectively identify and isolate these adult PSCs has significantly hampered their characterization. We used single-cell RNA sequencing (scRNA-seq) and single-cell transplantation to address this long-standing issue. Large-scale scRNA-seq of sorted neoblasts unveiled a novel subtype of neoblast (Nb2) characterized by high levels of PIWI-1 mRNA and protein and marked by a conserved cell-surface protein-coding gene, tetraspanin 1 (tspan-1). tspan-1-positive cells survived sub-lethal irradiation, underwent clonal expansion to repopulate whole animals, and when purified with an anti-TSPAN-1 antibody, rescued the viability of lethally irradiated animals after single-cell transplantation. The first prospective isolation of an adult PSC bridges a conceptual dichotomy between functionally and molecularly defined neoblasts, shedding light on mechanisms governing in vivo pluripotency and a source of regeneration in animals. VIDEO ABSTRACT.
Collapse
|
48
|
Alessandra S, Rossi L. Planarian Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:39-54. [PMID: 31016594 DOI: 10.1007/978-3-030-11096-3_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Planarian (Platyhelminthes, Triclads) are free-living flatworms endowed with extraordinary regenerative capabilities, i.e., the ability to rebuild any missing body parts also from small fragments. Planarian regenerative capabilities fascinated scientific community since early 1800, including high-standing scientists such as J.T. Morgan and C. M. Child. Today, it is known that planarian regeneration is due to the presence of a wide population of stem cells, the so-called neoblasts. However, the understanding of the nature of cells orchestrating planarian regeneration was a long journey, and several questions still remain unanswered. In this chapter, beginning from the definition of the classical concept of neoblast, we review progressive discoveries that have brought to the modern view of these cells as a highly heterogeneous population of stem cells including pluripotent stem cells and undifferentiated populations of committed progenies.
Collapse
Affiliation(s)
- Salvetti Alessandra
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
49
|
Schmidt D, Reuter H, Hüttner K, Ruhe L, Rabert F, Seebeck F, Irimia M, Solana J, Bartscherer K. The Integrator complex regulates differential snRNA processing and fate of adult stem cells in the highly regenerative planarian Schmidtea mediterranea. PLoS Genet 2018; 14:e1007828. [PMID: 30557303 PMCID: PMC6312358 DOI: 10.1371/journal.pgen.1007828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/31/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
In multicellular organisms, cell type diversity and fate depend on specific sets of transcript isoforms generated by post-transcriptional RNA processing. Here, we used Schmidtea mediterranea, a flatworm with extraordinary regenerative abilities and a large pool of adult stem cells, as an in vivo model to study the role of Uridyl-rich small nuclear RNAs (UsnRNAs), which participate in multiple RNA processing reactions including splicing, in stem cell regulation. We characterized the planarian UsnRNA repertoire, identified stem cell-enriched variants and obtained strong evidence for an increased rate of UsnRNA 3'-processing in stem cells compared to their differentiated counterparts. Consistently, components of the Integrator complex showed stem cell-enriched expression and their depletion by RNAi disrupted UsnRNA processing resulting in global changes of splicing patterns and reduced processing of histone mRNAs. Interestingly, loss of Integrator complex function disrupted both stem cell maintenance and regeneration of tissues. Our data show that the function of the Integrator complex in UsnRNA 3'-processing is conserved in planarians and essential for maintaining their stem cell pool. We propose that cell type-specific modulation of UsnRNA composition and maturation contributes to in vivo cell fate choices, such as stem cell self-renewal in planarians.
Collapse
Affiliation(s)
- David Schmidt
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
- * E-mail: (DS); (KB)
| | - Hanna Reuter
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Katja Hüttner
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Larissa Ruhe
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Franziska Rabert
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Florian Seebeck
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Solana
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Medical Faculty, University of Münster, Münster, Germany
- Hubrecht Institute for Developmental Biology and Stem Cell Research, CT Utrecht, The Netherlands
- * E-mail: (DS); (KB)
| |
Collapse
|
50
|
Characterizing the role of SWI/SNF-related chromatin remodeling complexes in planarian regeneration and stem cell function. Stem Cell Res 2018; 32:91-103. [DOI: 10.1016/j.scr.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
|