1
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
2
|
Origin of Neuroblasts in the Avian Otic Placode and Their Distributions in the Acoustic and Vestibular Ganglia. BIOLOGY 2023; 12:biology12030453. [PMID: 36979145 PMCID: PMC10045822 DOI: 10.3390/biology12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. This intricate sensory organ originates from the otic placode, which generates the sensory elements of the membranous labyrinth, as well as all the ganglionic neuronal precursors. How auditory and vestibular neurons establish their fate identities remains to be determined. Their topological origin in the incipient otic placode could provide positional information before they migrate, to later segregate in specific portions of the acoustic and vestibular ganglia. To address this question, transplants of small portions of the avian otic placode were performed according to our previous fate map study, using the quail/chick chimeric graft model. All grafts taking small areas of the neurogenic placodal domain contributed neuroblasts to both acoustic and vestibular ganglia. A differential distribution of otic neurons in the anterior and posterior lobes of the vestibular ganglion, as well as in the proximal, intermediate, and distal portions of the acoustic ganglion, was found. Our results clearly show that, in birds, there does not seem to be a strict segregation of acoustic and vestibular neurons in the incipient otic placode.
Collapse
|
3
|
Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:129-157. [DOI: 10.1007/978-3-030-34436-8_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Hidalgo-Sánchez M. Cyp1B1 expression patterns in the developing chick inner ear. Dev Dyn 2019; 249:410-424. [PMID: 31400045 DOI: 10.1002/dvdy.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Retinoic acid (RA) plays an important role in organogenesis as a paracrine signal through transcriptional regulation of an increasing number of known downstream target genes, regulating cell proliferation, and differentiation. During the development of the inner ear, RA directly governs the morphogenesis and specification processes mainly by means of RA-synthesizing retinaldehyde dehydrogenase (RALDH) enzymes. Interestingly, CYP1B1, a cytochrome P450 enzyme, is able to mediate the oxidative metabolisms also leading to RA generation, its expression patterns being associated with many known sites of RA activity. RESULTS This study describes for the first time the presence of CYP1B1 in the developing chick inner ear as a RALDH-independent RA-signaling mechanism. In our in situ hybridization analysis, Cyp1B1 expression was first observed in a domain located in the ventromedial wall of the otic anlagen, being included within the rostralmost aspect of an Fgf10-positive pan-sensory domain. As development proceeds, all identified Fgf10-positive areas were Cyp1B1 stained, with all sensory patches being Cyp1B1 positive at stage HH34, except the macula neglecta. CONCLUSIONS Cyp1B1 expression suggested a possible contribution of CYP1B1 action in the specification of the lateral-to-medial and dorsal-to-ventral axes of the developing chick inner ear.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| | - Luis Ó Sánchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
5
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Origin of acoustic-vestibular ganglionic neuroblasts in chick embryos and their sensory connections. Brain Struct Funct 2019; 224:2757-2774. [PMID: 31396696 DOI: 10.1007/s00429-019-01934-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 01/03/2023]
Abstract
The inner ear is a complex three-dimensional sensory structure with auditory and vestibular functions. It originates from the otic placode, which generates the sensory elements of the membranous labyrinth and all the ganglionic neuronal precursors. Neuroblast specification is the first cell differentiation event. In the chick, it takes place over a long embryonic period from the early otic cup stage to at least stage HH25. The differentiating ganglionic neurons attain a precise innervation pattern with sensory patches, a process presumably governed by a network of dendritic guidance cues which vary with the local micro-environment. To study the otic neurogenesis and topographically-ordered innervation pattern in birds, a quail-chick chimaeric graft technique was used in accordance with a previously determined fate-map of the otic placode. Each type of graft containing the presumptive domain of topologically-arranged placodal sensory areas was shown to generate neuroblasts. The differentiated grafted neuroblasts established dendritic contacts with a variety of sensory patches. These results strongly suggest that, rather than reverse-pathfinding, the relevant role in otic dendritic process guidance is played by long-range diffusing molecules.
Collapse
Affiliation(s)
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, E30100, Murcia, Spain.,Instituto Murciano de Investigaciones Biosanitarias (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, E06071, Badajoz, Spain.
| |
Collapse
|
6
|
Mann ZF, Gálvez H, Pedreno D, Chen Z, Chrysostomou E, Żak M, Kang M, Canden E, Daudet N. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. eLife 2017; 6:e33323. [PMID: 29199954 PMCID: PMC5724992 DOI: 10.7554/elife.33323] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.
Collapse
Affiliation(s)
- Zoe F Mann
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Héctor Gálvez
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - David Pedreno
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Ziqi Chen
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Magdalena Żak
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Miso Kang
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Nicolas Daudet
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Corral-San-Miguel R, Rodríguez-Gallardo L, Marín F, Puelles L, Aroca P, Hidalgo-Sánchez M. Expression patterns of Irx genes in the developing chick inner ear. Brain Struct Funct 2016; 222:2071-2092. [PMID: 27783221 DOI: 10.1007/s00429-016-1326-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. The molecular patterning of the developing otic epithelium creates various positional identities, consequently leading to the stereotyped specification of each neurosensory and non-sensory element of the membranous labyrinth. The Iroquois (Iro/Irx) genes, clustered in two groups (A: Irx1, Irx2, and Irx4; and B: Irx3, Irx5, and Irx6), encode for transcriptional factors involved directly in numerous patterning processes of embryonic tissues in many phyla. This work presents a detailed study of the expression patterns of these six Irx genes during chick inner ear development, paying particular attention to the axial specification of the otic anlagen. The Irx genes seem to play different roles at different embryonic periods. At the otic vesicle stage (HH18), all the genes of each cluster are expressed identically. Both clusters A and B seem involved in the specification of the lateral and posterior portions of the otic anlagen. Cluster B seems to regulate a larger area than cluster A, including the presumptive territory of the endolymphatic apparatus. Both clusters seem also to be involved in neurogenic events. At stages HH24/25-HH27, combinations of IrxA and IrxB genes participate in the specification of most sensory patches and some non-sensory components of the otic epithelium. At stage HH34, the six Irx genes show divergent patterns of expression, leading to the final specification of the membranous labyrinth, as well as to cell differentiation.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Rubén Corral-San-Miguel
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Lucía Rodríguez-Gallardo
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain.
| |
Collapse
|
8
|
Olaya-Sánchez D, Sánchez-Guardado LÓ, Ohta S, Chapman SC, Schoenwolf GC, Puelles L, Hidalgo-Sánchez M. Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear. Brain Struct Funct 2016; 222:131-149. [PMID: 26995070 DOI: 10.1007/s00429-016-1205-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
The inner ear is a morphologically complex sensory structure with auditory and vestibular functions. The developing otic epithelium gives rise to neurosensory and non-sensory elements of the adult membranous labyrinth. Extrinsic and intrinsic signals manage the patterning and cell specification of the developing otic epithelium by establishing lineage-restricted compartments defined in turn by differential expression of regulatory genes. FGF3 and FGF16 are excellent candidates to govern these developmental events. Using the chick inner ear, we show that Fgf3 expression is present in the borders of all developing cristae. Strong Fgf16 expression was detected in a portion of the developing vertical and horizontal pouches, whereas the cristae show weaker or undetected Fgf16 expression at different developmental stages. Concerning the rest of the vestibular sensory elements, both the utricular and saccular maculae were Fgf3 positive. Interestingly, strong Fgf16 expression delimited these Fgf16-negative sensory patches. The Fgf3-negative macula neglecta and the Fgf3-positive macula lagena were included within weakly Fgf16-expressing areas. Therefore, different FGF-mediated mechanisms might regulate the specification of the anterior (utricular and saccular) and posterior (neglecta and lagena) maculae. In the developing cochlear duct, dynamic Fgf3 and Fgf16 expression suggests their cooperation in the early specification and later cell differentiation in the hearing system. The requirement of Fgf3 and Fgf16 genes in endolymphatic apparatus development and neurogenesis are discussed. Based on these observations, FGF3 and FGF16 seem to be key signaling pathways that control the inner ear plan by defining epithelial identities within the developing otic epithelium.
Collapse
Affiliation(s)
- Daniel Olaya-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, 340 Long Hall, Clemson, SC, 29634, USA
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain.
| |
Collapse
|
9
|
Expression and Misexpression of the miR-183 Family in the Developing Hearing Organ of the Chicken. PLoS One 2015; 10:e0132796. [PMID: 26176784 PMCID: PMC4503353 DOI: 10.1371/journal.pone.0132796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022] Open
Abstract
The miR-183 family consists of 3 related microRNAs (miR-183, miR-96, miR-182) that are required to complete maturation of primary sensory cells in the mammalian inner ear. Because the level of these microRNAs is not uniform across hair cell subtypes in the murine cochlea, the question arises as to whether hair cell phenotypes are influenced by microRNA expression levels. To address this, we used the chicken embryo to study expression and misexpression of this gene family. By in situ hybridization, expression of all 3 microRNAs is robust in immature hair cells of both auditory and vestibular organs and is present in the statoacoustic ganglion. The auditory organ, called the basilar papilla, shows a weak radial gradient (highest on the neural side) in prosensory cells near the base on embryonic day 7. About nine days later, the basilar papilla also displays a longitudinal gradient (highest in apical hair cells) for the 3 microRNAs. Tol2-mediated gene delivery was used to ask whether cell phenotypes are malleable when the prosensory epithelium was forced to overexpress the miR-183 family. The expression plasmid included EGFP as a reporter located upstream of an intron carrying the microRNA genes. The vectors were electroporated into the otic cup/vesicle, resulting in strong co-expression of EGFP and the miR-183 family that persisted for at least 2 weeks. This manipulation did not generate ectopic hair cells in non-sensory territories of the cochlear duct, although within the basilar papilla, hair cells were over-represented relative to supporting cells. There was no evidence for a change in hair cell phenotypes, such as short-to-tall, or basal-to-apical hair cell features. Therefore, while increasing expression of the miR-183 family was sufficient to influence cell lineage decisions, it did not redirect the differentiation of hair cells towards alternative radial or longitudinal phenotypes.
Collapse
|
10
|
Knabe W, Washausen S. Early development of the nervous system of the eutherian <i>Tupaia belangeri</i>. Primate Biol 2015. [DOI: 10.5194/pb-2-25-2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract. The longstanding debate on the taxonomic status of Tupaia belangeri (Tupaiidae, Scandentia, Mammalia) has persisted in times of molecular biology and genetics. But way beyond that Tupaia belangeri has turned out to be a valuable and widely accepted animal model for studies in neurobiology, stress research, and virology, among other topics. It is thus a privilege to have the opportunity to provide an overview on selected aspects of neural development and neuroanatomy in Tupaia belangeri on the occasion of this special issue dedicated to Hans-Jürg Kuhn. Firstly, emphasis will be given to the optic system. We report rather "unconventional" findings on the morphogenesis of photoreceptor cells, and on the presence of capillary-contacting neurons in the tree shrew retina. Thereafter, network formation among directionally selective retinal neurons and optic chiasm development are discussed. We then address the main and accessory olfactory systems, the terminal nerve, the pituitary gland, and the cerebellum of Tupaia belangeri. Finally, we demonstrate how innovative 3-D reconstruction techniques helped to decipher and interpret so-far-undescribed, strictly spatiotemporally regulated waves of apoptosis and proliferation which pass through the early developing forebrain and eyes, midbrain and hindbrain, and through the panplacodal primordium which gives rise to all ectodermal placodes. Based on examples, this paper additionally wants to show how findings gained from the reported projects have influenced current neuroembryological and, at least partly, medical research.
Collapse
|
11
|
Whitfield TT. Development of the inner ear. Curr Opin Genet Dev 2015; 32:112-8. [DOI: 10.1016/j.gde.2015.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 02/04/2023]
|
12
|
Brown AS, Rakowiecki SM, Li JYH, Epstein DJ. The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup. Dev Biol 2015; 399:177-187. [PMID: 25592224 DOI: 10.1016/j.ydbio.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Wnt1 and Wnt3a secreted from the dorsal neural tube were previously shown to regulate a gene expression program in the dorsal otic vesicle that is necessary for vestibular morphogenesis (Riccomagno et al., 2005. Genes Dev. 19, 1612-1623). Unexpectedly, Wnt1(-/-); Wnt3a(-/-) embryos also displayed a pronounced defect in the outgrowth of the ventrally derived cochlear duct. To determine how Wnt signaling in the dorsal otocyst contributes to cochlear development we performed a series of genetic fate mapping experiments using two independent Wnt responsive driver strains (TopCreER and Gbx2(CreER)) that when crossed to inducible responder lines (Rosa(lacZ) or Rosa(zsGreen)) permanently labeled dorsomedial otic progenitors and their derivatives. Tamoxifen time course experiments revealed that most vestibular structures showed some degree of labeling when recombination was induced between E7.75 and E12.5, consistent with continuous Wnt signaling activity in this tissue. Remarkably, a population of Wnt responsive cells in the dorsal otocyst was also found to contribute to the sensory epithelium of the cochlear duct, including auditory hair and support cells. Similar results were observed with both TopCreER and Gbx2(CreER) strains. The ventral displacement of Wnt responsive cells followed a spatiotemporal sequence that initiated in the anterior otic cup at, or immediately prior to, the 17-somite stage (E9) and then spread progressively to the posterior pole of the otic vesicle by the 25-somite stage (E9.5). These lineage-tracing experiments identify the earliest known origin of auditory sensory progenitors within a population of Wnt responsive cells in the dorsomedial otic cup.
Collapse
Affiliation(s)
- Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - James Y H Li
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|