1
|
Mohamed T, Melfi V, Colciago A, Magnaghi V. Hearing loss and vestibular schwannoma: new insights into Schwann cells implication. Cell Death Dis 2023; 14:629. [PMID: 37741837 PMCID: PMC10517973 DOI: 10.1038/s41419-023-06141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Hearing loss (HL) is the most common and heterogeneous disorder of the sensory system, with a large morbidity in the worldwide population. Among cells of the acoustic nerve (VIII cranial nerve), in the cochlea are present the hair cells, the spiral ganglion neurons, the glia-like supporting cells, and the Schwann cells (SCs), which alterations have been considered cause of HL. Notably, a benign SC-derived tumor of the acoustic nerve, named vestibular schwannoma (VS), has been indicated as cause of HL. Importantly, SCs are the main glial cells ensheathing axons and forming myelin in the peripheral nerves. Following an injury, the SCs reprogram, expressing some stemness features. Despite the mechanisms and factors controlling their biological processes (i.e., proliferation, migration, differentiation, and myelination) have been largely unveiled, their role in VS and HL was poorly investigated. In this review, we enlighten some of the mechanisms at the base of SCs transformation, VS development, and progression, likely leading to HL, and we pose great attention on the environmental factors that, in principle, could contribute to HL onset or progression. Combining the biomolecular bench-side approach to the clinical bedside practice may be helpful for the diagnosis, prediction, and therapeutic approach in otology.
Collapse
Affiliation(s)
- Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
2
|
Veneri FA, Prada V, Mastrangelo R, Ferri C, Nobbio L, Passalacqua M, Milanesi M, Bianchi F, Del Carro U, Vallat JM, Duong P, Svaren J, Schenone A, Grandis M, D’Antonio M. A novel mouse model of CMT1B identifies hyperglycosylation as a new pathogenetic mechanism. Hum Mol Genet 2022; 31:4255-4274. [PMID: 35908287 PMCID: PMC9759335 DOI: 10.1093/hmg/ddac170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023] Open
Abstract
Mutations in the Myelin Protein Zero gene (MPZ), encoding P0, the major structural glycoprotein of peripheral nerve myelin, are the cause of Charcot-Marie-Tooth (CMT) type 1B neuropathy, and most P0 mutations appear to act through gain-of-function mechanisms. Here, we investigated how misglycosylation, a pathomechanism encompassing several genetic disorders, may affect P0 function. Using in vitro assays, we showed that gain of glycosylation is more damaging for P0 trafficking and functionality as compared with a loss of glycosylation. Hence, we generated, via CRISPR/Cas9, a mouse model carrying the MPZD61N mutation, predicted to generate a new N-glycosylation site in P0. In humans, MPZD61N causes a severe early-onset form of CMT1B, suggesting that hyperglycosylation may interfere with myelin formation, leading to pathology. We show here that MPZD61N/+ mice develop a tremor as early as P15 which worsens with age and correlates with a significant motor impairment, reduced muscular strength and substantial alterations in neurophysiology. The pathological analysis confirmed a dysmyelinating phenotype characterized by diffuse hypomyelination and focal hypermyelination. We find that the mutant P0D61N does not cause significant endoplasmic reticulum stress, a common pathomechanism in CMT1B, but is properly trafficked to myelin where it causes myelin uncompaction. Finally, we show that myelinating dorsal root ganglia cultures from MPZD61N mice replicate some of the abnormalities seen in vivo, suggesting that they may represent a valuable tool to investigate therapeutic approaches. Collectively, our data indicate that the MPZD61N/+ mouse represents an authentic model of severe CMT1B affirming gain-of-glycosylation in P0 as a novel pathomechanism of disease.
Collapse
Affiliation(s)
- Francesca A Veneri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Rosa Mastrangelo
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Cinzia Ferri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lucilla Nobbio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Maria Milanesi
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bianchi
- Movement Disorders Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Movement Disorders Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Jean-Michel Vallat
- Department and Laboratory of Neurology, National Reference Center for ‘Rare Peripheral Neuropathies’, University Hospital of Limoges (CHU Limoges), Dupuytren Hospital, 87000 Limoges, France
| | - Phu Duong
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - John Svaren
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, IRCCS AOU San Martino-IST, 16132 Genova, Italy
- Department of Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
3
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
4
|
Daneshvar N, Anderson JE. Preliminary Study of S100B and Sema3A Expression Patterns in Regenerating Muscle Implicates P75-Expressing Terminal Schwann Cells and Muscle Satellite Cells in Neuromuscular Junction Restoration. Front Cell Dev Biol 2022; 10:874756. [PMID: 35923848 PMCID: PMC9340223 DOI: 10.3389/fcell.2022.874756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Terminal Schwann cells (TSCs) help regulate the formation, maintenance, function, and repair of neuromuscular junctions (NMJs) and axon guidance after muscle injury. Premature activation of muscle satellite cells (SCs), induced by isosorbide dinitrate (ISDN) before injury, accelerates myogenic regeneration, disrupts NMJ remodeling and maturation, decreases Sema3A protein-induced neuro-repulsion, and is accompanied by time-dependent changes in S100B protein levels. Here, to study the effects of premature SC activation on TSCs and SCs, both expressing P75 nerve growth-factor receptor, in situ hybridization was used to identify transcripts of S100B and Sema3A, and the number, intensity, and diameter of expression sites were analyzed. The number of sites/fields expressing S100B and Sema3A increased with regeneration time (both p < 0.001). Expression-site intensity (S100B) and diameter (S100B and Sema3A) decreased during regeneration (p = 0.005; p < 0.05, p = 0.006, respectively). P75 protein colocalized with a subset of S100B and Sema3A expression sites. Principal component analyses of gene expression, protein levels, and histological variables (fiber diameter, vascular density) in control and ISDN-pretreated groups explained 83% and 64% of the dataset variance, respectively. A very strong loading coefficient for colocalization of P75 protein with S100B and Sema3A mRNAs (0.91) in control regenerating muscle dropped markedly during regeneration disrupted by premature SC activation (-0.10 in Factor 1 to 0.55 in Factor 3). These findings strongly implicate the triple-expression profile by TSCs and/or SCs as a strong correlate of the important synchrony of muscle and nerve regeneration after muscle tissue injury. The results have the potential to focus future research on the complex interplay of TSCs and SCs in neuromuscular tissue repair and help promote effective function after traumatic muscle injury.
Collapse
Affiliation(s)
| | - Judy E. Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Kister A, Kister I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front Chem 2022; 10:1041961. [PMID: 36896314 PMCID: PMC9989179 DOI: 10.3389/fchem.2022.1041961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/23/2022] [Indexed: 02/23/2023] Open
Abstract
Myelin is a modified cell membrane that forms a multilayer sheath around the axon. It retains the main characteristics of biological membranes, such as lipid bilayer, but differs from them in several important respects. In this review, we focus on aspects of myelin composition that are peculiar to this structure and differentiate it from the more conventional cell membranes, with special attention to its constituent lipid components and several of the most common and important myelin proteins: myelin basic protein, proteolipid protein, and myelin protein zero. We also discuss the many-fold functions of myelin, which include reliable electrical insulation of axons to ensure rapid propagation of nerve impulses, provision of trophic support along the axon and organization of the unmyelinated nodes of Ranvier, as well as the relationship between myelin biology and neurologic disease such as multiple sclerosis. We conclude with a brief history of discovery in the field and outline questions for future research.
Collapse
Affiliation(s)
- Alexander Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ilya Kister
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Allard DE, Wang Y, Li JJ, Conley B, Xu EW, Sailer D, Kimpston C, Notini R, Smith CJ, Koseoglu E, Starmer J, Zeng XL, Howard JF, Hoke A, Scherer SS, Su MA. Schwann cell-derived periostin promotes autoimmune peripheral polyneuropathy via macrophage recruitment. J Clin Invest 2018; 128:4727-4741. [PMID: 30222134 PMCID: PMC6159985 DOI: 10.1172/jci99308] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) and Guillain-Barre syndrome (GBS) are inflammatory neuropathies that affect humans and are characterized by peripheral nerve myelin destruction and macrophage-containing immune infiltrates. In contrast to the traditional view that the peripheral nerve is simply the target of autoimmunity, we report here that peripheral nerve Schwann cells exacerbate the autoimmune process through extracellular matrix (ECM) protein induction. In a spontaneous autoimmune peripheral polyneuropathy (SAPP) mouse model of inflammatory neuropathy and CIDP nerve biopsies, the ECM protein periostin (POSTN) was upregulated in affected sciatic nerves and was primarily expressed by Schwann cells. Postn deficiency delayed the onset and reduced the extent of neuropathy, as well as decreased the number of macrophages infiltrating the sciatic nerve. In an in vitro assay, POSTN promoted macrophage chemotaxis in an integrin-AM (ITGAM) and ITGAV-dependent manner. The PNS-infiltrating macrophages in SAPP-affected nerves were pathogenic, since depletion of macrophages protected against the development of neuropathy. Our findings show that Schwann cells promote macrophage infiltration by upregulating Postn and suggest that POSTN is a novel target for the treatment of macrophage-associated inflammatory neuropathies.
Collapse
Affiliation(s)
| | - Yan Wang
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Jian Joel Li
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bridget Conley
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Erin W. Xu
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
| | - David Sailer
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Caellaigh Kimpston
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - Rebecca Notini
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | | | - Emel Koseoglu
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
- Neurology Department, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Xiaopei L. Zeng
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
| | - James F. Howard
- Department of Neurology, UNC-CH, Chapel Hill, North Carolina, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maureen A. Su
- Department of Microbiology and Immunology and
- Department of Pediatrics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California, USA
- Department of Pediatrics, UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth disease (CMT) is the common terminology used to describe the hereditary neuropathies. This update reviews advances in the past year in our understanding of these diseases, including some important earlier references. RECENT FINDINGS In the past year, advances in next-generation sequencing continued to increase the number of genes associated with CMT. The connection between genotype and phenotype has become more complicated. New insights into the pathogenesis of the diseases are reviewed. Treatment and clinical trial updates coming from these new insights, as well as use of high-throughput screening to match potential treatments with targets, are moving the field forward. There is a discussion of potential next steps, including the use of patient-derived induced pluripotent stem cells, to enhance our understanding of individual genotypes and phenotypes. SUMMARY The use of high-throughput screens, and techniques such as RNAi and induced pluripotent stem cell continue to push forward other therapies for specific genetic forms of CMT and are potentially more generalizable to peripheral neuropathies. These developments, along with the development of improved outcome measures and longitudinal natural history data, advance CMT, making the future for finding treatments and/or cures closer than it has ever been.
Collapse
|
8
|
Schuh CM, Hercher D, Stainer M, Hopf R, Teuschl AH, Schmidhammer R, Redl H. Extracorporeal shockwave treatment: A novel tool to improve Schwann cell isolation and culture. Cytotherapy 2016; 18:760-70. [DOI: 10.1016/j.jcyt.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023]
|
9
|
Birchmeier C, Bennett DLH. Neuregulin/ErbB Signaling in Developmental Myelin Formation and Nerve Repair. Curr Top Dev Biol 2016; 116:45-64. [PMID: 26970613 DOI: 10.1016/bs.ctdb.2015.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is essential for rapid and accurate conduction of electrical impulses by axons in the central and peripheral nervous system (PNS). Myelin is formed in the early postnatal period, and developmental myelination in the PNS depends on axonal signals provided by Nrg1/ErbB receptors. In addition, Nrg1 is required for effective nerve repair and remyelination in adulthood. We discuss here similarities and differences in Nrg1/ErbB functions in developmental myelination and remyelination after nerve injury.
Collapse
Affiliation(s)
- Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - David L H Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
10
|
Love JM, Shah SB. Ribosomal trafficking is reduced in Schwann cells following induction of myelination. Front Cell Neurosci 2015; 9:306. [PMID: 26347606 PMCID: PMC4541260 DOI: 10.3389/fncel.2015.00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/27/2015] [Indexed: 01/11/2023] Open
Abstract
Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP) in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body), but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following initiation of myelination.
Collapse
Affiliation(s)
- James M Love
- Fischell Department of Bioengineering, University of Maryland College Park, MD, USA
| | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland College Park, MD, USA ; Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
11
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Neural-competent cells of adult human dermis belong to the Schwann lineage. Stem Cell Reports 2014; 3:774-88. [PMID: 25418723 PMCID: PMC4235233 DOI: 10.1016/j.stemcr.2014.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 01/06/2023] Open
Abstract
Resident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+) and perivascular (CD56−) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread. Human dermis-derived cultures show two types of SOX2+ cells: Schwann and perivascular p75NTR+CD56+ Schwann cells are responsible for neural progeny SOX2 expression levels regulate the neural competence of dermal precursors p75NTR+CD56+ neural precursor cells similarly arise from human cardiospheres
Collapse
|
13
|
Schmid D, Zeis T, Sobrio M, Schaeren-Wiemers N. MAL overexpression leads to disturbed expression of genes that influence cytoskeletal organization and differentiation of Schwann cells. ASN Neuro 2014; 6:1759091414548916. [PMID: 25290060 PMCID: PMC4187015 DOI: 10.1177/1759091414548916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing peripheral nervous system, a coordinated reciprocal signaling between Schwann cells and axons is crucial for accurate myelination. The myelin and lymphocyte protein MAL is a component of lipid rafts that is important for targeting proteins and lipids to distinct domains. MAL overexpression impedes peripheral myelinogenesis, which is evident by a delayed onset of myelination and reduced expression of the myelin protein zero (Mpz/P0) and the low-affinity neurotrophin receptor p75(NTR). This study shows that MAL overexpression leads to a significant reduction of Mpz and p75(NTR) expression in primary mouse Schwann cell cultures, which was already evident before differentiation, implicating an effect of MAL in early Schwann cell development. Their transcription was robustly reduced, despite normal expression of essential transcription factors and receptors. Further, the cAMP response element-binding protein (CREB) and phosphoinositide 3-kinase signaling pathways important for Schwann cell differentiation were correctly induced, highlighting that other so far unknown rate limiting factors do exist. We identified novel genes expressed by Schwann cells in a MAL-dependent manner in vivo and in vitro. A number of those, including S100a4, RhoU and Krt23, are implicated in cytoskeletal organization and plasma membrane dynamics. We showed that S100a4 is predominantly expressed by nonmyelinating Schwann cells, whereas RhoU was localized within myelin membranes, and Krt23 was detected in nonmyelinating as well as in myelinating Schwann cells. Their differential expression during early peripheral nerve development further underlines their possible role in influencing Schwann cell differentiation and myelination.
Collapse
Affiliation(s)
- Daniela Schmid
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Thomas Zeis
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Monia Sobrio
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | | |
Collapse
|
14
|
Schmid D, Zeis T, Schaeren-Wiemers N. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells. ASN Neuro 2014; 6:137-57. [PMID: 24641305 PMCID: PMC4834722 DOI: 10.1042/an20130031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/16/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022] Open
Abstract
In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.
Collapse
Key Words
- camp
- forskolin
- in vitro
- microarray
- schwann cell differentiation
- bmp, bone morphogenetic protein
- camp, cyclic adenosine monophosphate
- cns, central nervous system
- creb, camp-response-element-binding protein
- david, database for annotation, visualization and integrated discovery
- dgc, dystrophin–glycoprotein complex
- ecm, extracellular matrix
- fdr, false discovery rate
- go, gene ontology
- ipa, ingenuity pathway analysis
- mag, myelin-associated glycoprotein
- mapk, mitogen-activated protein kinase
- mbp, myelin basic protein
- mpz/p0, myelin protein zero
- nf-κb, nuclear factor κb
- olig1, oligodendrocyte transcription factor 1
- pca, principal component analysis
- pfa, paraformaldehyde
- pka, protein kinase a
- pns, peripheral nervous system
- qrt–pcr, quantitative rt–pcr
- s.d., standard deviation
Collapse
Affiliation(s)
- Daniela Schmid
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Thomas Zeis
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|
15
|
Kraemer BR, Yoon SO, Carter BD. The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 2014; 220:121-164. [PMID: 24668472 DOI: 10.1007/978-3-642-45106-5_6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The p75 neurotrophin receptor (p75(NTR)) regulates a wide range of cellular functions, including programmed cell death, axonal growth and degeneration, cell proliferation, myelination, and synaptic plasticity. The multiplicity of cellular functions governed by the receptor arises from the variety of ligands and co-receptors which associate with p75(NTR) and regulate its signaling. P75(NTR) promotes survival through interactions with Trk receptors, inhibits axonal regeneration via partnerships with Nogo receptor (Nogo-R) and Lingo-1, and promotes apoptosis through association with Sortilin. Signals downstream of these interactions are further modulated through regulated intramembrane proteolysis (RIP) of p75(NTR) and by interactions with numerous cytosolic partners. In this chapter, we discuss the intricate signaling mechanisms of p75(NTR), emphasizing how these signals are differentially regulated to mediate these diverse cellular functions.
Collapse
Affiliation(s)
- B R Kraemer
- Department of Biochemistry, Vanderbilt University School of Medicine, 625 Light Hall, Nashville, TN, 37232, USA
| | | | | |
Collapse
|
16
|
Glenn TD, Talbot WS. Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 2013; 23:1041-8. [PMID: 23896313 PMCID: PMC3830599 DOI: 10.1016/j.conb.2013.06.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/20/2013] [Accepted: 06/27/2013] [Indexed: 11/23/2022]
Abstract
In peripheral nerves, Schwann cells form myelin, which facilitates the rapid conduction of action potentials along axons in the vertebrate nervous system. Myelinating Schwann cells are derived from neural crest progenitors in a step-wise process that is regulated by extracellular signals and transcription factors. In addition to forming the myelin sheath, Schwann cells orchestrate much of the regenerative response that occurs after injury to peripheral nerves. In response to injury, myelinating Schwann cells dedifferentiate into repair cells that are essential for axonal regeneration, and then redifferentiate into myelinating Schwann cells to restore nerve function. Although this remarkable plasticity has long been recognized, many questions remain unanswered regarding the signaling pathways regulating both myelination and the Schwann cell response to injury.
Collapse
Affiliation(s)
- Thomas D. Glenn
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
17
|
Stettner M, Wolffram K, Mausberg AK, Wolf C, Heikaus S, Derksen A, Dehmel T, Kieseier BC. A reliable in vitro model for studying peripheral nerve myelination in mouse. J Neurosci Methods 2013; 214:69-79. [PMID: 23348045 DOI: 10.1016/j.jneumeth.2013.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/16/2022]
Abstract
The rat dorsal root ganglia (DRG) model is a long-standing in vitro model for analysis of myelination in the peripheral nervous system. For performing systematic, high throughput analysis with transgenic animals, a simplified BL6 mouse protocol is indispensable. Here we present a stable and reliable protocol for myelinating co-cultures producing a high myelin ratio using cells from C57BL/6 mice. As an easy accessible and operable method, Sudan staining proved to be efficient in myelin detection for fixed cultures. Green fatty acid stain turned out to be highly reliable for analysis of the dynamic biological processes of myelination in vital cultures. Once myelinated we were able to induce demyelination by the addition of forskolin into the model system. In addition, we provide an optimised rat DRG protocol with significantly improved myelin ratio and a comparison of the protocols presented. Our results strengthen the value of ex vivo myelination models in neurobiology.
Collapse
Affiliation(s)
- Mark Stettner
- Department of Neurology, Medical Faculty, Research Group for Clinical and Experimental Neuroimmunology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
19
|
Wang HB, Wang XP, Zhong SZ, Shen ZL. Novel method for culturing Schwann cells from adult mouse sciatic nerve in vitro. Mol Med Rep 2012; 7:449-53. [PMID: 23152081 DOI: 10.3892/mmr.2012.1177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/21/2012] [Indexed: 11/06/2022] Open
Abstract
Schwann cells (SCs) are important in the recovery of peripheral nerve injury and are valuable cells for the tissue engineering of artificial neurons. Clinical applications that require pure SCs in large quantities are limited since human and mouse SCs do not attach well to the wall of the culture dish and have low proliferative potential. To obtain high quantities of highly pure SCs, we developed a new method for culturing SCs from the mouse sciatic nerve in vitro. Approximately 1.5 cm of the bilateral sciatic nerve of a c57 adult mouse was surgically removed and pre-cultured in DMEM containing either 10% FBS or growth factors. One week later, the in vitro SC culture was observed using light microscopy following enzyme digestion. Cell numbers and cell attachment were examined. The purity of the SCs was determined using s100β and p75NTR staining. Sciatic nerves that had not been pre-cultured were used as the control group. When the excised tissue was pre-cultured in vitro, high yields of SCs were obtained. The SCs were more likely to adhere and the purity was approximately 98% at the p1 generation following simple purification steps, which was significantly higher than the purity obtained from the control group. The pre-culturing of the sciatic nerve prior to in vitro tissue culturing significantly increased the quantity and quality of the SCs.
Collapse
Affiliation(s)
- Hai-Bin Wang
- Department of Anatomy, Nanfang Medical University, Guangzhou 510515, P.R. China
| | | | | | | |
Collapse
|
20
|
Wu H, Liu Y, Zhou Y, Long L, Cheng X, Ji L, Weng H, Ding T, Yang J, Wei H, Li M, Huan W, Deng X, Wang Y. Changes in the BAG1 expression of Schwann cells after sciatic nerve crush. J Mol Neurosci 2012; 49:512-22. [PMID: 23108487 DOI: 10.1007/s12031-012-9910-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/18/2012] [Indexed: 12/14/2022]
Abstract
Bcl-2-associated athanogene-1 (BAG1), a co-chaperone for Hsp70/Hsc70, is a multifunctional protein, which has been shown to suppress apoptosis and enhance neuronal differentiation. However, the expression and roles of BAG1 in peripheral system lesions and repair are still unknown. In this study, we investigated the dynamic changes in BAG1 expression in an acute sciatic nerve crush model in adult rats. Western blot analysis revealed that BAG1 was expressed in normal sciatic nerves. BAG1 expression increased progressively after sciatic nerve crush, reached a peak 2 weeks post-injury, and then returned to the normal level 4 weeks post-injury. Spatially, we observed that BAG1 was mainly expressed in Schwann cells and that BAG1 expression increased in Schwann cells after injury. In vitro, we found that BAG1 expression increased during the cyclic adenosine monophosphate (cAMP)-induced Schwann cell differentiation process. BAG1-specific siRNA inhibited cAMP-induced Schwann cell differentiation. In conclusion, we speculated that BAG1 was upregulated in the sciatic nerve after crush, which was associated with Schwann cell differentiation.
Collapse
Affiliation(s)
- Hao Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Salis C, Davio C, Usach V, Urtasun N, Goitia B, Martinez-Vivot R, Pasquini JM, Setton-Avruj CP. Iron and holotransferrin induce cAMP-dependent differentiation of Schwann cells. Neurochem Int 2012; 61:798-806. [PMID: 22776360 DOI: 10.1016/j.neuint.2012.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The differentiation of myelin-forming Schwann cells (SC) is completed with the appearance of myelin proteins MBP and P(0) and a concomitant downregulation of markers GFAP and p75NTR, which are expressed by immature and adult non-myelin-forming SC. We have previously demonstrated that holotransferrin (hTf) can prevent SC dedifferentiation in culture (Salis et al., 2002), while apotransferrin (aTf) cannot. As a consequence, we used pure cultured SC and submitted them to serum deprivation in order to promote dedifferentiation and evaluate the prodifferentiating ability of ferric ammonium citrate (FAC) through the expression of MBP, P(0), p75NTR and c-myc. The levels of cAMP, CREB and p-CREB were also measured. Results show that Fe(3+), either in its free form or as hTf, can prevent the dedifferentiation promoted by serum withdrawal. Both FAC and hTf were proven to promote differentiation, probably through the increase in cAMP levels and CREB phosphorylation, as well as levels of reactive oxygen species. This effect was inhibited by deferroxamine (Dfx, an iron chelator), H9 (a cAMP-PKA antagonist) and N-acetylcysteine (NAC, a powerful antioxidant).
Collapse
Affiliation(s)
- C Salis
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires C1113AAD, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu L, Yan Y, Ke K, Wu X, Gao Y, Shen A, Li J, Kang L, Zhang G, Wu Q, Yang H. Dynamic change of Numbl expression after sciatic nerve crush and its role in Schwann cell differentiation. J Neurosci Res 2012; 90:1557-65. [PMID: 22437994 DOI: 10.1002/jnr.23039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/15/2012] [Accepted: 01/20/2012] [Indexed: 02/01/2023]
Abstract
Numbl, as a conserved homolog of Drosophila Numb, has been implicated in early development of the nervous system, but its expression and roles in nervous system lesion and repair remained unknown. Here, we performed an acute sciatic nerve injury model in adult rats and studied the dynamic changes of Numbl expression in the sciatic nerve. Temporally, Numbl expression was sharply decreased after sciatic nerve crush and reached a valley at day 7. Spatially, Numbl was widely expressed in the normal sciatic nerve, including axons and Schwann cells, whereas, after injury, Numbl expression was decreased predominantly in Schwann cells. In vitro, we induced Schwann cell differentiation with cAMP and found that Numbl expression was decreased in the differentiated process. Depletion of Numbl could promote Schwann cell differentiation. In addition, we demonstrated that in vitro myelination was suppressed by overexpression of Numbl in Schwann cells. Collectively, we hypothesized peripheral nerve injury induced a downregulation of Numbl in the sciatic nerve, which was associated with Schwann cell differentiation.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Osteology, Affiliated Jiangyin Hospital, Nantong University, Wuxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jin F, Dong B, Georgiou J, Jiang Q, Zhang J, Bharioke A, Qiu F, Lommel S, Feltri ML, Wrabetz L, Roder JC, Eyer J, Chen X, Peterson AC, Siminovitch KA. N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 2011; 138:1329-37. [PMID: 21385763 DOI: 10.1242/dev.058677] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation.
Collapse
Affiliation(s)
- Fuzi Jin
- Department of Haematology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Q, Wang Y, Zhou Z, Lu X, Cao Y, Liu Y, Yan M, He F, Pan X, Qian X, Ji Y, Yang H. Expressions of forkhead class box O 3a on crushed rat sciatic nerves and differentiated primary Schwann cells. Cell Mol Neurobiol 2011; 31:509-18. [PMID: 21259047 DOI: 10.1007/s10571-010-9644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
Forkhead box-containing protein, class O 3 a (FOXO3a), an Akt downstream target, plays an important role in peripheral nervous system. FOXO3a shares the ability to be inhibited and translocated from the nucleus on phosphorylation by proteins such as Akt/PKB in the PI3K signaling pathway. To elucidate the expression and possible function of FOXO3a in lesion and repair, we performed an acute sciatic nerve crush model and studied differential expressions of FOXO3a. We observed that expressions of FOXO3a in Schwann cells (SCs) of the peripheral nervous system and cAMP-induced differentiation were dynamically regulated. Western blot analysis showed FOXO3a level significantly decreased post injury. Moreover, Immunofluorescence double labeling suggested the changes were striking especially in SCs. In vitro, Western blot analysis showed that the expression of FOXO3a was decreased in cAMP-induced differentiated primary SCs. The FOXO3a siRNA-transfected SCs treated by cAMP promote differentiation of SCs through the PI3K/Akt pathway. The results indicate that FOXO3a plays an important role during differentiation of SCs.
Collapse
Affiliation(s)
- Qiuhong Wang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Latasa MJ, Cosgaya JM. Regulation of retinoid receptors by retinoic acid and axonal contact in Schwann cells. PLoS One 2011; 6:e17023. [PMID: 21386894 PMCID: PMC3046125 DOI: 10.1371/journal.pone.0017023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/18/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS). As retinoic acid (RA) and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. METHODOLOGY/PRINCIPAL FINDINGS In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-γ depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-γ mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-β mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. CONCLUSIONS/SIGNIFICANCE All together, our results show that retinoid receptors are regulated in a complex manner in Schwann cells, suggesting that they could have a prominent role as regulators of Schwann cell physiology.
Collapse
Affiliation(s)
- Maria-Jesus Latasa
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Miguel Cosgaya
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Jesuraj NJ, Santosa KB, Newton P, Liu Z, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE, Johnson PJ. A systematic evaluation of Schwann cell injection into acellular cold-preserved nerve grafts. J Neurosci Methods 2011; 197:209-15. [PMID: 21354206 DOI: 10.1016/j.jneumeth.2011.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 01/06/2023]
Abstract
Peripheral nerve regeneration after injury depends on environmental cues and trophic support. Schwann cells (SCs) secrete trophic factors that promote neuronal survival and help guide axons during regeneration. The addition of SCs to acellular nerve grafts is a promising strategy for enhancing peripheral nerve regeneration; however, inconsistencies in seeding parameters have led to varying results. The current work sought to establish a systematic approach to seeding SCs in cold-preserved acellular nerve grafts. Studies were undertaken to (1) determine the needle gauge for optimal cell survival and minimal epineurial disruption during injection, (2) track the seeded SCs using a commercially available dye, and (3) evaluate the seeding efficiency of SCs in nerve grafts. It was determined that seeding with a 27-gauge needle resulted in the highest viability of SCs with the least damage to the epineurium. In addition, Qtracker(®) dye, a commercially available quantum dot nanocrystal, was used to label SCs prior to transplantation, which allowed visualization of the seeded SCs in nerve grafts. Finally, stereological methods were used to evaluate the seeding efficiency of SCs in nerve grafts immediately after injection and following a 1- or 3-day in vitro incubation in SC growth media. Using a systematic approach, the best needle gauge and a suitable dye for SC visualization in acellular nerve grafts were identified. Seeding efficiency in these grafts was also determined. The findings will lead to improvements ability to assess injection of cells (including SCs) for use with acellular nerve grafts to promote nerve regeneration.
Collapse
Affiliation(s)
- Nithya J Jesuraj
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nagoshi N, Shibata S, Hamanoue M, Mabuchi Y, Matsuzaki Y, Toyama Y, Nakamura M, Okano H. Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia 2011; 59:771-84. [PMID: 21351159 DOI: 10.1002/glia.21150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 12/22/2010] [Indexed: 01/10/2023]
Abstract
After spinal cord injury (SCI), various cell types are recruited to the lesion site, including Schwann cells, which originate in the neural crest and normally myelinate axons in the peripheral nervous system. Here, we investigated the differentiation states, migration patterns, and roles of neural crest derivatives following SCI, using two transgenic mouse lines carrying neural crest-specific reporters, P0-Cre/Floxed-EGFP and Wnt1-Cre/Floxed-EGFP. In these mice, EGFP is expressed only in the neural crest cell lineage. Immunohistochemical analysis revealed that most of the EGFP(+) cells that infiltrated the lesion site after SCI were Schwann cells. Seven days after SCI, the P0-positive, mature Schwann cells residing at the nerve roots had dedifferentiated into P0(-)/p75(+) immature Schwann cells, which proliferated and began migrating into the lesion site. The dedifferentiation of the Schwann cells was corroborated by their expression of phosphorylated c-Jun, which promotes dedifferentiation and inhibits the expression of myelin-associated genes in the peripheral nerves. Thereafter, the number of EGFP(+)/p75(+) immature Schwann cells decreased and that of EGFP(+)/P0(+) mature cells increased gradually, indicating that the cells redifferentiated into mature Schwann cells within the lesion site. This study draws on the advantages offered by transgenic mouse lines bearing a genetic cell-lineage marker and extends previous work by describing the origins and behavior of the neural crest-derived cells that contribute to endogenous repair after SCI. This process, involving Schwann cell plasticity, is a novel repair mechanism for the lesioned mammalian spinal cord.
Collapse
Affiliation(s)
- Narihito Nagoshi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Arthur-Farraj P, Wanek K, Hantke J, Davis CM, Jayakar A, Parkinson DB, Mirsky R, Jessen KR. Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 2011; 59:720-33. [PMID: 21322058 DOI: 10.1002/glia.21144] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/20/2010] [Indexed: 12/13/2022]
Abstract
Genetically modified mice have been a major source of information about the molecular control of Schwann-cell myelin formation, and the role of β-neuregulin 1 (NRG1) in this process in vivo. In vitro, on the other hand, Schwann cells from rats have been used in most analyses of the signaling pathways involved in myelination. To correlate more effectively in vivo and in vitro data, we used purified cultures of mouse Schwann cells in addition to rat Schwann cells to examine two important myelin-related signals, cyclic adenosine monophosphate (cAMP), and NRG1 and to determine whether they interact to control myelin differentiation. We find that in mouse Schwann cells, neither cAMP nor NRG1, when used separately, induced markers of myelin differentiation. When combined, however, they induced strong protein expression of the myelin markers, Krox-20 and P(0) . Importantly, the level of cAMP signaling was crucial in switching NRG1 from a proliferative signal to a myelin differentiation signal. Also in cultured rat Schwann cells, NRG1 promoted cAMP-induced Krox-20 and P(0) expression. Finally, we found that cAMP/NRG1-induced Schwann-cell differentiation required the activity of the cAMP response element binding family of transcription factors in both mouse and rat cells. These observations reconcile observations in vivo and on neuron-Schwann-cell cultures with studies on purified Schwann cells. They demonstrate unambiguously the promyelin effects of NRG1 in purified cells, and they show that the cAMP pathway determines whether NRG1 drives proliferation or induces myelin differentiation.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lee HK, Shin YK, Jung J, Seo SY, Baek SY, Park HT. Proteasome inhibition suppresses Schwann cell dedifferentiation in vitro and in vivo. Glia 2010; 57:1825-34. [PMID: 19455715 DOI: 10.1002/glia.20894] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ubiquitin-proteasome system (UPS), lysosomes, and autophagy are essential protein degradation systems for the regulation of a variety of cellular physiological events including the cellular response to injury. It has recently been reported that the UPS and autophagy mediate the axonal degeneration caused by traumatic insults and the retrieval of nerve growth factors. In the peripheral nerves, axonal degeneration after injury is accompanied by myelin degradation, which is tightly related to the reactive changes of Schwann cells called dedifferentiation. In this study, we examined the role of the UPS, lysosomal proteases, and autophagy in the early phase of Wallerian degeneration of injured peripheral nerves. We found that nerve injury induced an increase in the ubiquitin conjugation and lysosomal-associated membrane protein-1 expression within 1 day without any biochemical evidence for autophagy activation. Using an ex vivo explant culture of the sciatic nerve, we observed that inhibiting proteasomes or lysosomal serine proteases prevented myelin degradation, whereas this was not observed when inhibiting autophagy. Interestingly, proteasome inhibition, but not leupeptin, prevented Schwann cells from inducing dedifferentiation markers such as p75 nerve growth factor receptor and glial fibrillary acidic protein in vitro and in vivo. In addition, proteasome inhibitors induced cell cycle arrest and cellular process formation in cultured Schwann cells. Taken together, these findings indicate that the UPS plays a role in the phenotype changes of Schwann cells in response to nerve injury.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology, Medical Science Research Institute, College of Medicine, Dong-A University, Seo-Gu, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
SSeCKS is a suppressor in Schwann cell differentiation and myelination. Neurochem Res 2009; 35:219-26. [PMID: 19757038 DOI: 10.1007/s11064-009-0045-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 08/08/2009] [Indexed: 12/14/2022]
Abstract
Src-suppressed protein kinase C substrate (SSeCKS) plays an important role in the differentiation process. In regeneration of sciatic nerve injury, expression of SSeCKS decreases, mainly in Schwann cells. However, the function of SSeCKS in Schwann cells differentiation remains unclear. We observed that SSeCKS was decreased in differentiated Schwann cells. In long-term SSeCKS-reduced Schwann cells, cell morphology changed and myelin gene expression induced by cAMP was accelerated. Myelination was also enhanced in SSeCKS-suppressed Schwann cells co-culture with dorsal root ganglion (DRG). In addition, we found suppression of SSeCKS expression promoted Akt serine 473 phosphorylation in cAMP-treated Schwann cells. In summary, our data indicated that SSeCKS was a negative regulator of myelinating glia differentiation.
Collapse
|
31
|
Jang SW, Svaren J. Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J Biol Chem 2009; 284:20111-20. [PMID: 19487693 PMCID: PMC2740437 DOI: 10.1074/jbc.m109.022426] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/18/2009] [Indexed: 12/18/2022] Open
Abstract
The Mpz (myelin protein zero) gene codes for the principal component of myelin in the peripheral nervous system, and mutations in this gene cause human peripheral myelinopathies. Expression of the Mpz gene is controlled by two major transactivators that coordinate Schwann cell development: Egr2/Krox20 and Sox10. Our in vivo ChIP-chip analysis in myelinating peripheral nerve identified major sites of Egr2 interaction within the first intron of the Mpz gene and approximately 5 kb upstream of the transcription start site. In addition, the sites of Egr2 binding display many of the hallmarks associated with enhancer elements. Interestingly, the upstream Egr2 binding sites lie proximal to the divergently transcribed succinate dehydrogenase C gene, but Sdhc expression was not affected by the massive induction of Mpz mediated by Egr2. Mpz induction was greatly enhanced in the presence of the Egr2 binding sites, and removal of them markedly diminished transgenic expression of a construct derived from the Mpz locus. Sox10 was also found to be associated with the upstream region, and its binding was required for Egr2-mediated activation in this distal regulatory region. Our findings highlight that peripheral nerve-specific expression of Mpz is primarily regulated by both upstream and intron-associated regulatory elements. Overall, these results provide a locus-wide analysis of the role and activity of Egr2 in regulation of the Mpz gene within its native chromosomal context.
Collapse
Affiliation(s)
- Sung-Wook Jang
- From the Graduate Program in Cellular and Molecular Biology
| | - John Svaren
- From the Graduate Program in Cellular and Molecular Biology
- the Department of Comparative Biosciences, and
- the Waisman Center, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
32
|
Woodhoo A, Alonso MBD, Droggiti A, Turmaine M, D'Antonio M, Parkinson DB, Wilton DK, Al-Shawi R, Simons P, Shen J, Guillemot F, Radtke F, Meijer D, Feltri ML, Wrabetz L, Mirsky R, Jessen KR. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 2009; 12:839-47. [PMID: 19525946 PMCID: PMC2782951 DOI: 10.1038/nn.2323] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/30/2009] [Indexed: 11/09/2022]
Abstract
Notch signaling is central to vertebrate development, and analysis of Notch has provided important insights into pathogenetic mechanisms in the CNS and many other tissues. However, surprisingly little is known about the role of Notch in the development and pathology of Schwann cells and peripheral nerves. Using transgenic mice and cell cultures, we found that Notch has complex and extensive regulatory functions in Schwann cells. Notch promoted the generation of Schwann cells from Schwann cell precursors and regulated the size of the Schwann cell pool by controlling proliferation. Notch inhibited myelination, establishing that myelination is subject to negative transcriptional regulation that opposes forward drives such as Krox20. Notably, in the adult, Notch dysregulation resulted in demyelination; this finding identifies a signaling pathway that induces myelin breakdown in vivo. These findings are relevant for understanding the molecular mechanisms that control Schwann cell plasticity and underlie nerve pathology, including demyelinating neuropathies and tumorigenesis.
Collapse
Affiliation(s)
- Ashwin Woodhoo
- Department of Cell and Developmental Biology, University College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Interleukin-6 induces proinflammatory signaling in Schwann cells: A high-throughput analysis. Biochem Biophys Res Commun 2009; 382:410-4. [DOI: 10.1016/j.bbrc.2009.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/08/2009] [Indexed: 11/15/2022]
|
34
|
Jessen KR, Mirsky R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 2009; 56:1552-1565. [PMID: 18803323 DOI: 10.1002/glia.20761] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dedifferentiation of myelinating Schwann cells is a key feature of nerve injury and demyelinating neuropathies. We review recent evidence that this dedifferentiation depends on activation of specific intracellular signaling molecules that drive the dedifferentiation program. In particular, we discuss the idea that Schwann cells contain negative transcriptional regulators of myelination that functionally complement positive regulators such as Krox-20, and that myelination is therefore determined by a balance between two opposing transcriptional programs. Negative transcriptional regulators should be expressed prior to myelination, downregulated as myelination starts but reactivated as Schwann cells dedifferentiate following injury. The clearest evidence for a factor that works in this way relates to c-Jun, while other factors may include Notch, Sox-2, Pax-3, Id2, Krox-24, and Egr-3. The role of cell-cell signals such as neuregulin-1 and cytoplasmic signaling pathways such as the extracellular-related kinase (ERK)1/2 pathway in promoting dedifferentiation of myelinating cells is also discussed. We also review evidence that neurotrophin 3 (NT3), purinergic signaling, and nitric oxide synthase are involved in suppressing myelination. The realization that myelination is subject to negative as well as positive controls contributes significantly to the understanding of Schwann cell plasticity. Negative regulators are likely to have a major role during injury, because they promote the transformation of damaged nerves to an environment that fosters neuronal survival and axonal regrowth. In neuropathies, however, activation of these pathways is likely to be harmful because they may be key contributors to demyelination, a situation which would open new routes for clinical intervention.
Collapse
Affiliation(s)
- Kristján R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
35
|
Ndubaku U, de Bellard ME. Glial cells: old cells with new twists. Acta Histochem 2007; 110:182-95. [PMID: 18068219 PMCID: PMC2365468 DOI: 10.1016/j.acthis.2007.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 12/11/2022]
Abstract
Based on their characteristics and function--migration, neural protection, proliferation, axonal guidance and trophic effects--glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed--as true stem cells in the nervous system--and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells.
Collapse
Affiliation(s)
- Ugo Ndubaku
- Biology Department, California State University Northridge, MC 8303, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | | |
Collapse
|
36
|
Päiväläinen S, Nissinen M, Honkanen H, Lahti O, Kangas SM, Peltonen J, Peltonen S, Heape AM. Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Mol Cell Neurosci 2007; 37:568-78. [PMID: 18206387 DOI: 10.1016/j.mcn.2007.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 11/26/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022] Open
Abstract
The established protocols for in vitro studies of peripheral nerve myelination with rat embryonic dorsal root ganglia (DRG) and postnatal Schwann cell cocultures do not work with mouse cells. Consequently, the full potential of this model, which would allow to perform cell type-specific, mixed genotype cocultures without cross-breeding the animals, cannot be exploited. We determined the conditions required to promote full myelination in cocultures of pre-purified mouse embryonic DRG and neonatal Schwann cells, and present a method which consistently yields 50-200 mature myelin sheaths/culture. Causes for the failure of the existing protocols to yield satisfactory results with mouse cells fell into three categories: the lack of adherent support provided by the substratum, growth factor and hormone deficiencies, and the high serum content of the media. For optimal results, mouse cocultures require a 3-dimensional substratum, a myelination-promoting culture medium containing pituitary extract, N2 supplement and forskolin, and a low serum concentration.
Collapse
Affiliation(s)
- Satu Päiväläinen
- Department of Anatomy and Cell Biology, University of Oulu, Aapistie 7A, 90014 Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Verderio C, Bianco F, Blanchard MP, Bergami M, Canossa M, Scarfone E, Matteoli M. Cross talk between vestibular neurons and Schwann cells mediates BDNF release and neuronal regeneration. ACTA ACUST UNITED AC 2007; 35:187-201. [PMID: 17957483 DOI: 10.1007/s11068-007-9011-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/08/2007] [Accepted: 05/15/2007] [Indexed: 02/03/2023]
Abstract
It is now well-established that an active cross-talk occurs between neurons and glial cells, in the adult as well as in the developing and regenerating nervous systems. These functional interactions not only actively modulate synaptic transmission, but also support neuronal growth and differentiation. We have investigated the possible existence of a reciprocal interaction between inner ear vestibular neurons and Schwann cells maintained in primary cultures. We show that ATP released by the extending vestibular axons elevates intracellular calcium levels within Schwann cells. Purinergic activation of the Schwann P2X(7) receptor induces the release of neurotrophin BDNF, which occurs via a regulated, tetanus-toxin sensitive, vesicular pathway. BDNF, in turn, is required by the vestibular neuron to support its own survival and growth. Given the massive release of ATP during tissue damage, cross-talk between vestibular neurons and Schwann cells could play a primary role during regeneration.
Collapse
Affiliation(s)
- Claudia Verderio
- Department of Medical Pharmacology, CNR Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sachs BD, Baillie GS, McCall JR, Passino MA, Schachtrup C, Wallace DA, Dunlop AJ, MacKenzie KF, Klussmann E, Lynch MJ, Sikorski SL, Nuriel T, Tsigelny I, Zhang J, Houslay MD, Chao MV, Akassoglou K. p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. ACTA ACUST UNITED AC 2007; 177:1119-32. [PMID: 17576803 PMCID: PMC2064370 DOI: 10.1083/jcb.200701040] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clearance of fibrin through proteolytic degradation is a critical step of matrix remodeling that contributes to tissue repair in a variety of pathological conditions, such as stroke, atherosclerosis, and pulmonary disease. However, the molecular mechanisms that regulate fibrin deposition are not known. Here, we report that the p75 neurotrophin receptor (p75NTR), a TNF receptor superfamily member up-regulated after tissue injury, blocks fibrinolysis by down-regulating the serine protease, tissue plasminogen activator (tPA), and up-regulating plasminogen activator inhibitor-1 (PAI-1). We have discovered a new mechanism in which phosphodiesterase PDE4A4/5 interacts with p75NTR to enhance cAMP degradation. The p75NTR-dependent down-regulation of cAMP results in a decrease in extracellular proteolytic activity. This mechanism is supported in vivo in p75NTR-deficient mice, which show increased proteolysis after sciatic nerve injury and lung fibrosis. Our results reveal a novel pathogenic mechanism by which p75NTR regulates degradation of cAMP and perpetuates scar formation after injury.
Collapse
Affiliation(s)
- Benjamin D Sachs
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
David S, Hila S, Fosbrink M, Rus H, Koski CL. JNK1 activation mediates C5b-9-induced P0 mRNA instability and P0 gene expression in Schwann cells. J Peripher Nerv Syst 2006; 11:77-87. [PMID: 16519786 DOI: 10.1111/j.1085-9489.2006.00067.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein zero (P0) glycoprotein is an important component of compact peripheral nerve myelin produced by the glial cells of the mammalian peripheral nervous system. P0 mRNA expression is reduced following exposure of Schwann cells to sublytic C5b-9, the terminal activation complex of the complement cascade. Sublytic complement treatment decreased P0 mRNA by 81% within 6 h and required C5b-9 assembly. C5b-9 induced a threefold increase in both JNK1 activity and c-jun mRNA within 20 and 30 min, respectively, compared with cells treated with either human serum depleted of complement component C7 (C7dHS) or medium alone. Sublytic C5b-9 stimulation, in the presence of the transcription inhibitor Actinomycin D, decreased P0 mRNA expression by 52%, indicating that mRNA was selectively destabilized. This effect was prevented by pretreatment with L-JNK inhibitor 1 (L-JNKI1). To study a potential inhibition of P0 gene transcription, we transfected Schwann cells with a P0 promoter-firefly luciferase construct. Sublytic C5b-9 stimulation of the transfected cells decreased luciferase activity by 82% at 6 h, and this effect was prevented by pretreatment with L-JNKI1 inhibitor. Our results indicate that the ability of C5b-9 in vitro to affect P0 gene expression is mediated via JNK1 activation that leads to enhanced mRNA decay and transcriptional repression of P0.
Collapse
Affiliation(s)
- Stefan David
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
40
|
SHY MICHAELE, KAMHOLZ JOHN, LOVELACE ROBERTE. Introduction to the Third International Symposium on Charcot-Marie-Tooth Disorders. Ann N Y Acad Sci 2006; 883:xiii-xviii. [DOI: 10.1111/j.1749-6632.1999.tb08559.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
ROSENBAUM THORSTEN, KIM HAESUNA, BOISSY YINGL, LING BO, RATNER NANCY. Neurofibromin, the Neurofibromatosis Type 1 Ras-GAP, Is Required for Appropriate P0Expression and Myelination. Ann N Y Acad Sci 2006; 883:203-214. [DOI: 10.1111/j.1749-6632.1999.tb08583.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
MENICHELLA DANIELAMARIA, XU WENBO, JIANG HUIYUAN, SOHI JASLOVELEEN, VALLAT JEANMICHAEL, BARON PIERLUIGI, KAMHOLZ JOHN, SHY MICHAEL. The Absence of Myelin P0Protein Produces a Novel Molecular Phenotype in Schwann Cell. Ann N Y Acad Sci 2006; 883:281-293. [DOI: 10.1111/j.1749-6632.1999.tb08590.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
|
44
|
Abstract
Charcot-Marie-Tooth disease type 1B (CMT1B) is caused by mutations in the major PNS myelin protein myelin protein zero (MPZ). MPZ is a member of the immunoglobulin supergene family and functions as an adhesion molecule helping to mediate compaction of PNS myelin. Mutations in MPZ appear to either disrupt myelination during development, leading to severe early onset neuropathies, or to disrupt axo-glial interactions leading to late onset neuropathies in adulthood. Identifying molecular pathways involved in early and late onset CMT1B will be crucial to understand how MPZ mutations cause CMT1B so that rational therapies for both early and late onset neuropathies can be developed.
Collapse
Affiliation(s)
- Michael E Shy
- Wayne State University, Department of Neurology, 421 Ea Canfield, Elliman Bldg 3206, Detroit, MI 48201, USA.
| |
Collapse
|
45
|
LeBlanc SE, Jang SW, Ward RM, Wrabetz L, Svaren J. Direct regulation of myelin protein zero expression by the Egr2 transactivator. J Biol Chem 2005; 281:5453-60. [PMID: 16373334 DOI: 10.1074/jbc.m512159200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During myelination of the peripheral nervous system, the myelin protein zero (Mpz) gene is induced to produce the most abundant protein component (P(0)) of mature myelin. Although the basal embryonic expression of Mpz in Schwann cells has been attributed to regulation by Sox10, the molecular mechanism for the profound up-regulation of this gene during myelination has not been established. In this study, we have identified a highly conserved element within the first intron of the Mpz gene, which contains binding sites for the early growth response 2 (Egr2/Krox20) transcription factor, a critical regulator of peripheral nerve myelination. Egr2 can transactivate the intron element, and the induction is blocked by two known repressors of Egr2 activity. Using chromatin immunoprecipitation assays, we find that Egr2 binds in vivo to the intron element, but not to the Mpz promoter. Known inducers of Mpz expression such as forskolin and insulin-like growth factor-1 also activate the element in an Egr2-dependent manner. In addition, we found that Egr2 can act synergistically with Sox10 to activate this intron element, suggesting a model in which cooperative interactions between Egr2 and Sox10 mediate a large increase in Mpz expression to the high levels found in myelinating Schwann cells.
Collapse
Affiliation(s)
- Scott E LeBlanc
- Molecular and Cellular Pharmacology Program, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
46
|
Zaratin PF, Quattrini A, Previtali SC, Comi G, Hervieu G, Scheideler MA. Schwann cell overexpression of the GPR7 receptor in inflammatory and painful neuropathies. Mol Cell Neurosci 2005; 28:55-63. [PMID: 15607941 DOI: 10.1016/j.mcn.2004.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 07/24/2004] [Accepted: 08/20/2004] [Indexed: 10/26/2022] Open
Abstract
The human 7-transmembrane receptor GPR7 has sequence similarity to opioid and somatostatin receptors, and can be activated by the recently discovered neuropeptides NPB and NPW. This receptor is highly expressed in the nervous system, with suggested roles in neuroendocrine events and pain signaling. In this study, we investigated whether the GPR7 receptor is expressed in the peripheral nervous system under normal and pathological conditions. A low level of GPR7 receptor was observed in myelin-forming Schwann cells in both normal human and rat nerve, and in primary rat Schwann cell cultures. Peripheral nerve samples taken from patients exhibiting inflammatory/immune-mediated neuropathies showed a dramatic increase of GPR7 receptor expression restricted to myelin-forming Schwann cells. Complementary animal models of immune-inflammatory and ligation-induced nerve injury and neuropathic pain similarly exhibited an increased myelin-associated expression of GPR7 receptor. These results suggest a relationship between the pathogenesis of inflammatory/immune-mediated neuropathies, GPR7 receptor expression, and pain transmission.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Biopsy
- Cells, Cultured
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Humans
- Ligation
- Male
- Middle Aged
- Myelin Sheath/metabolism
- Neuralgia/metabolism
- Neuralgia/physiopathology
- Neuritis/metabolism
- Neuritis/physiopathology
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/genetics
- Schwann Cells/metabolism
- Sural Nerve/metabolism
- Sural Nerve/physiopathology
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Paola F Zaratin
- Department of Neurobiology Research, GlaxoSmithKline Pharmaceuticals, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Zampieri N, Xu CF, Neubert TA, Chao MV. Cleavage of p75 Neurotrophin Receptor by α-Secretase and γ-Secretase Requires Specific Receptor Domains. J Biol Chem 2005; 280:14563-71. [PMID: 15701642 DOI: 10.1074/jbc.m412957200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor superfamily of receptors, undergoes multiple proteolytic cleavage events. These events are initiated by an alpha-secretase-mediated release of the extracellular domain followed by a gamma-secretase-mediated intramembrane cleavage. However, the specific determinants of p75(NTR) cleavage events are unknown. Many other substrates of gamma-secretase cleavage have been identified, including Notch, amyloid precursor protein, and ErbB4, indicating there is broad substrate recognition by gamma-secretase. Using a series of deletion mutations and chimeric receptors of p75(NTR) and the related Fas receptor, we have identified domains that are essential for p75(NTR) proteolysis. The initial alpha-secretase cleavage was extracellular to the transmembrane domain. Unfortunately, deletion mutants were not capable of defining the requirements of ectodomain shedding. Although this cleavage is promiscuous with respect to amino acid sequence, its position with respect to the transmembrane domain is invariant. The generation of chimeric receptors exchanging different domains of noncleavable Fas receptor with p75(NTR), however, revealed that a discrete domain above the membrane is sufficient for efficient cleavage of p75(NTR). Mass spectrometric analysis confirmed the cleavage can occur with a truncated p75(NTR) displaying only 15 extracellular amino acids in the stalk region.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids/chemistry
- Amyloid Precursor Protein Secretases
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Aspartic Acid Endopeptidases
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- Culture Media, Conditioned/pharmacology
- Endopeptidases/metabolism
- ErbB Receptors/metabolism
- Ganglia, Spinal/metabolism
- Gene Deletion
- Humans
- Mass Spectrometry
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Mutation
- PC12 Cells
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Receptor, ErbB-4
- Receptor, Nerve Growth Factor
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Notch
- Schwann Cells/metabolism
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Niccolò Zampieri
- Molecular Neurobiology Program, Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
48
|
Galoyan AA, Sarkissian JS, Sulkhanyan RM, Chavushyan VA, Avetisyan ZA, Avakyan ZE, Gevorgyan AJ, Abrahamyan DO, Grigorian YK. PRP-1 Protective Effect against Central and Peripheral Neurodegeneration following n. ischiadicus Transection. Neurochem Res 2005; 30:487-505. [PMID: 16076020 DOI: 10.1007/s11064-005-2685-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We investigated the action of the new hypothalamic proline-rich peptide (PRP-1), normally produced by neurosecretory cells of hypothalamic nuclei (NPV and NSO), 3 and 4 weeks following rat sciatic nerve transection. The impulse activity flow of interneurons (IN) and motoneurons (MN) on stimulation of mixed (n. ischiadicus), flexor (n. gastrocnemius--G) and extensor (n. peroneus communis--P) nerves of both injured and symmetric intact sides of spinal cord (SC) was recorded in rats with daily administration of PRP-1 (for a period of 3 weeks) and without it (control). On the injured side of SC in control, there were no responses of IN and MN on ipsilateral G and P stimulation, while responses were elicited on contralateral nerve stimulation. The neuron responses on the intact side of SC were revealed in a reverse ratio. Thus, there were no effects upon stimulation of the injured nerve distal stump in the control because of the absence of fusion between transected nerve stumps. This was also testified by the atrophy of the distal stump and the absence of motor activity of the affected limb. In PRP-1-treated animals, the responses of SC IN and MN in postaxotomy 3 weeks on the injured side of SC at ipsilateral nerve stimulation and on the intact side at contralateral nerve stimulation were recorded because of the obvious fusion of the severed nerve stumps. The histochemical data confirmed the electrophysiological findings. Complete coalescence of transected fibers together with restoration of the motor activity of the affected limb provided evidence for reinnervation on the injured side. Thus, it may be concluded that PRP-1 promotes nerve regeneration and may be used clinically to improve the outcome of peripheral nerve primary repair.
Collapse
Affiliation(s)
- Armen A Galoyan
- Buniatian Institute of Biochemistry NAS RA, 5/1 Sevag str, 375014, Yerevan, Republic of Armenia.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
There has been considerable recent progress in understanding mechanisms by which gene mutations cause degeneration of motoneurons and peripheral nerves. Novel therapies inspired by these insights have begun to yield promising results in mouse models of these genetic diseases. Among these have been the use of small molecules or proteins to suppress gain-of-function mutations (eg, ascorbic acid for Charcot-Marie-Tooth disease type 1A) or to restore enzyme activities that are deficient because of loss-of-function mutations (eg, treatment of Fabry's disease with recombinant alpha-galactosidase or with low-molecular-weight alpha-galactosidase chaperones and treatment of spinal muscular atrophy with phenylbutyrate). Some of these therapies are already being tested in humans. Equally exciting is the prospect that small molecules and proteins will be identified that exert potent therapeutic effects in a broad spectrum of inherited and acquired motoneuron and peripheral nerve disorders.
Collapse
Affiliation(s)
- David Pleasure
- Children's Hospital of Philadelphia, 34th and Civic Center Blvd, Philadelphia, PA 19104 USA.
| |
Collapse
|
50
|
Abstract
Neuropilins and group A plexins are components of receptor complexes for class 3 semaphorins, gradients of which help to guide migration of neural progenitor cells and axonal growth cones during development. We demonstrated previously that neuropilins and class 3 semaphorins are induced in sciatic nerve by crush or transection. We now report that in cultured rat Schwann cells, expression of mRNA encoding neuropilin-2 (NRP2) and plexin-A3 (PlexA3), proteins involved in semaphorin-3F (Sema3F) signal transduction, is diminished markedly by forskolin, an adenylate cyclase activator that, like axonal contact, induces Schwann cell synthesis of myelin lipids and proteins. Interestingly, Schwann cell expression of mRNA encoding NRP1, which participates in Sema3A signaling, is not downregulated by forskolin. Antibodies that recognize ectodomains of NRP2 but not control antibodies prevented cultured Schwann cells from aligning in parallel and forming columns. These results are consistent with the view that in nerves undergoing Wallerian degeneration, Schwann cell NRP2 facilitates assembly of Schwann cells into the tubular aggregates (bands of Büngner) that guide regenerating axons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cells, Cultured
- Colforsin/pharmacology
- Dose-Response Relationship, Drug
- Fibroblasts/drug effects
- Fibroblasts/physiology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Neuropilin-2/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptor, Nerve Growth Factor
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Schwann Cells/drug effects
- Schwann Cells/metabolism
- Sciatic Nerve/cytology
- Semaphorin-3A/genetics
- Semaphorin-3A/metabolism
- Time Factors
Collapse
Affiliation(s)
- J Ara
- Neurology Research, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|