1
|
Oguntoyinbo IO, Goyal R. The Role of Long Intergenic Noncoding RNA in Fetal Development. Int J Mol Sci 2024; 25:11453. [PMID: 39519006 PMCID: PMC11546696 DOI: 10.3390/ijms252111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The role of long intergenic noncoding RNAs (lincRNAs) in fetal development has emerged as a significant area of study, challenging the traditional protein-centric view of gene expression. While messenger RNAs (mRNAs) have long been recognized for their role in encoding proteins, recent advances have illuminated the critical functions of lincRNAs in various biological processes. Initially identified through high-throughput sequencing technologies, lincRNAs are transcribed from intergenic regions between protein-coding genes and exhibit unique regulatory functions. Unlike mRNAs, lincRNAs are involved in complex interactions with chromatin and chromatin-modifying complexes, influencing gene expression and chromatin structure. LincRNAs are pivotal in regulating tissue-specific development and embryogenesis. For example, they are crucial for proper cardiac, neural, and reproductive system development, with specific lincRNAs being associated with organogenesis and differentiation processes. Their roles in embryonic development include regulating transcription factors and modulating chromatin states, which are essential for maintaining developmental programs and cellular identity. Studies using RNA sequencing and genetic knockout models have highlighted the importance of lincRNAs in processes such as cell differentiation, tissue patterning, and organ development. Despite their functional significance, the comprehensive annotation and understanding of lincRNAs remain limited. Ongoing research aims to elucidate their mechanisms of action and potential applications in disease diagnostics and therapeutics. This review summarizes current knowledge on the functional roles of lincRNAs in fetal development, emphasizing their contributions to tissue-specific gene regulation and developmental processes.
Collapse
Affiliation(s)
- Ifetoluwani Oluwadunsin Oguntoyinbo
- School of Animal and Comparative Biomedical Sciences, College of Agriculture, Life & Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Ravi Goyal
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
2
|
Maeda M, Abe M, Aoshima K, Kobayashi A, Fukushi H, Kimura T. Identification of the Promoter Antisense Transcript Enhancing the Transcription of the Equine Herpesvirus-1 Immediate-Early Gene. Viruses 2024; 16:1195. [PMID: 39205169 PMCID: PMC11360796 DOI: 10.3390/v16081195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Equine herpesvirus-1 (EHV-1) causes respiratory diseases, abortion, and encephalomyelitis in horses. The EHV-1 immediate-early (IE) protein, essential for viral replication, is transactivated by the binding of a multiprotein complex including the open reading frame 12 (ORF12) and some host factors to the IE promoter region. Promoter-associated non-coding RNAs (pancRNAs), which are transcribed from bidirectional promoters, regulate the transcription of neighboring genes in mammals and pathogens. In this study, we identified a novel pancRNA transcribed from across the areas of the 5'-untranslated region and a promoter of EHV-1 IE and named it IE pancRNA. IE pancRNA and mRNA were simultaneously expressed in EHV-1-infected RN33B-A68B2M cells. This pancRNA was also transcribed in RK13 and E. Derm cells, which are highly susceptible to EHV-1 infection. Furthermore, IE pancRNA upregulated IE gene expression in the presence of ORF12, and stable expression of IE pancRNA increased the number of EHV-1-infected RN33B-A68B2M cells. These results suggest that IE pancRNAs facilitate EHV-1 proliferation by promoting IE gene expression.
Collapse
Affiliation(s)
- Mayuko Maeda
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (M.M.); (M.A.); (K.A.); (A.K.)
| | - Miou Abe
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (M.M.); (M.A.); (K.A.); (A.K.)
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (M.M.); (M.A.); (K.A.); (A.K.)
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (M.M.); (M.A.); (K.A.); (A.K.)
| | - Hideto Fukushi
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan;
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (M.M.); (M.A.); (K.A.); (A.K.)
| |
Collapse
|
3
|
Chen S, Zhang A, Li N, Wu H, Li Y, Liu S, Yan Q. Elevated high-mannose N-glycans hamper endometrial decidualization. iScience 2023; 26:108170. [PMID: 37915610 PMCID: PMC10616321 DOI: 10.1016/j.isci.2023.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Decidualization of endometrial stromal cells is a hallmark of endometrial receptivity for embryo implantation, and dysfunctional decidualization is associated with pregnancy failure. Protein glycosylation is an important posttranslational modification that affects the structure and function of glycoproteins. Our results showed that high-mannose epitopes were elevated in the decidual tissues of miscarriage patients compared with early pregnant women by Lectin microarray. Furthermore, the level of mannosyl-oligosaccharide α-1,2 mannosidase IA (MAN1A1), a key enzyme for high-mannose glycan biosynthesis, was decreased in the decidual tissues of miscarriage patients. Screening of lncRNAs showed that lncNEAT1 level was increased in the serum and decidua of miscarriage patients, and negatively correlated with MAN1A1 expression. The results also revealed that specific binding of lncNEAT1 with nucleophosmin (NPM1)-SP1 transcription complex inhibited MAN1A1 expression and hampered endometrial decidualization and embryo implantation potential. The study suggests the new insights into the function of high-mannose glycans/MAN1A1 modification during endometrial decidualization.
Collapse
Affiliation(s)
- Siyi Chen
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Aihui Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Na Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Hongpan Wu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Yaqi Li
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
An B, Ando A, Akuta H, Morishita F, Imamura T. Human-biased TMEM25 expression promotes expansion of neural progenitor cells to alter cortical structure in the developing brain. FEBS Lett 2023; 597:2611-2625. [PMID: 37846797 DOI: 10.1002/1873-3468.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Cortical expansion has occurred during human brain evolution. By comparing human and mouse RNA-seq datasets, we found that transmembrane protein 25 (TMEM25) was much more highly expressed in human neural progenitors (NPCs). Overexpression of either human TMEM25 or mouse Tmem25 similarly promoted mouse NPC proliferation in vitro. Mimicking human-type expression of TMEM25 in mouse ventricular cortical progenitors accelerated proliferation of basal radial glia (bRG) and increased the number of upper-layer neurons in vivo. By contrast, RNA-seq analysis, and pharmacological assays showed that knockdown of TMEM25 in cultured human NPCs compromised the effects of extracellular signals, leading to cell cycle inhibition via Akt repression. Thus, TMEM25 can receive extracellular signals to expand bRG in human cortical development.
Collapse
Affiliation(s)
- Boyang An
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Akari Ando
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hiroto Akuta
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Fumihiro Morishita
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| |
Collapse
|
5
|
Jin M, Zhao L, Yang H, Zhao J, Ma H, Chen Y, Zhang J, Luo Y, Zhang Y, Liu J. A long non-coding RNA essential for early embryonic development improves somatic cell nuclear transfer somatic cell nuclear transfer efficiency in goats. Reproduction 2023; 166:285-297. [PMID: 37490350 PMCID: PMC10502959 DOI: 10.1530/rep-23-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
In brief Early embryonic development in goats is a complex and an important process. This study identified a novel long non-coding RNA (lncRNA), lncRNA3720, that appears to affect early embryonic development in goats through histone variants. Abstract Although abundant lncRNAs have been found to be highly expressed in early embryos, the functions and mechanisms of most lncRNAs in regulating embryonic development remain unclear. This study was conducted to identify the key lncRNAs during embryonic genome activation (EGA) for promoting embryonic development after somatic cell nuclear transfer (SCNT) in goats. We screened and characterized lncRNAs from transcriptome data of in vitro-fertilized, two-cell (IVF-2c) and eight-cell embryos (IVF-8c) and eight-cell SCNT embryos (SCNT-8c). We obtained 12 differentially expressed lncRNAs that were highly expressed in IVF-8c embryos compared to IVF-2c and less expressed in SCNT-8c embryos. After target gene prediction, expression verification, and functional deletion experiments, we found that the expression level of lncRNA3720 affected the early embryonic development in goats. We cloned full-length lncRNA3720 and over-expressed it in goat fetal fibroblasts (GFFs). We identified histone variants by analyzing the transcriptome data from both GFFs and embryos. Gene annotation of the gene library and the literature search revealed that histone variants may have important roles in early embryo development, so we selected them as the potential target genes for lncRNA3720. Lastly, we compensated for the low expression of lncRNA3720 in SCNT embryos by microinjection and showed that the development rate and quality of SCNT embryos were significantly improved. We speculate that lncRNA3720 is a key promoter of embryonic development in goats by interacting with histone variants.
Collapse
Affiliation(s)
- Miaomiao Jin
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Lu Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hanwen Yang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Ma
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yanzhi Chen
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jingcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yan Luo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Wang M, Zheng L, Ma S, Lin R, Li J, Yang S. Biogenesis and function of exosome lncRNAs and their role in female pathological pregnancy. Front Endocrinol (Lausanne) 2023; 14:1191721. [PMID: 37745705 PMCID: PMC10515720 DOI: 10.3389/fendo.2023.1191721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Preeclampsia, gestational diabetes mellitus, and recurrent spontaneous abortion are common maternal pregnancy complications that seriously endanger women's lives and health, and their occurrence is increasing year after year with a rejuvenation trend. In contrast to biomarkers found freely in tissues or body fluids, exosomes exist in a relatively independent environment and provide a higher level of stability. As backbone molecules, guidance molecules, and signaling molecules in the nucleus, lncRNAs can regulate gene expression. In the cytoplasm, lncRNAs can influence gene expression levels by modifying mRNA stability, acting as competitive endogenous RNAs to bind miRNAs, and so on. Exosomal lncRNAs can exist indefinitely and are important in intercellular communication and signal transduction. Changes in maternal serum exosome lncRNA expression can accurately and timely reflect the progression and regression of pregnancy-related diseases. The purpose of this paper is to provide a reference for clinical research on the pathogenesis, diagnosis, and treatment methods of pregnancy-related diseases by reviewing the role of exosome lncRNAs in female pathological pregnancy and related molecular mechanisms.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ruixin Lin
- Department of Hepato-Biliary-Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jiahui Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuli Yang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Tokunaga M, Imamura T. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans. Front Cell Dev Biol 2023; 11:1168072. [PMID: 37408531 PMCID: PMC10318543 DOI: 10.3389/fcell.2023.1168072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."
Collapse
|
8
|
Shono M, Kishimoto K, Hikabe O, Hayashi M, Semi K, Takashima Y, Sasaki E, Kato K, Hayashi K. Induction of primordial germ cell-like cells from common marmoset embryonic stem cells by inhibition of WNT and retinoic acid signaling. Sci Rep 2023; 13:3186. [PMID: 36823310 PMCID: PMC9950483 DOI: 10.1038/s41598-023-29850-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
Reconstitution of the germ cell lineage using pluripotent stem cells provides a unique platform to deepen our understanding of the mechanisms underlying germ cell development and to produce functional gametes for reproduction. This study aimed to establish a culture system that induces a robust number of primordial germ cell-like cells (PGCLCs) from common marmoset (Callithrix jacchus) embryonic stem cells. The robust induction was achieved by not only activation of the conserved PGC-inducing signals, WNT and BMP4, but also temporal inhibitions of WNT and retinoic acid signals, which prevent mesodermal and neural differentiation, respectively, during PGCLC differentiation. Many of the gene expression and differentiation properties of common marmoset PGCLCs were similar to those of human PGCLCs, making this culture system a reliable and useful primate model. Finally, we identified PDPN and KIT as surface marker proteins by which PGCLCs can be isolated from embryonic stem cells without genetic manipulation. This study will expand the opportunities for research on germ cell development and production of functional gametes to the common marmoset.
Collapse
Affiliation(s)
- Mayumi Shono
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Keiko Kishimoto
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Orie Hikabe
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masafumi Hayashi
- grid.136593.b0000 0004 0373 3971Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Katsunori Semi
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Yasuhiro Takashima
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Erika Sasaki
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Kiyoko Kato
- grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Yang X, Ji J, Cui H, Zhao Q, Ding C, Xu C. Functional evaluation of LTR-derived lncRNAs in porcine oocytes and zygotes with RNA-seq and small RNA-seq. Front Genet 2022; 13:1023041. [PMID: 36313467 PMCID: PMC9606649 DOI: 10.3389/fgene.2022.1023041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being recognized as modulators of early embryonic development in mammals. However, they are seldom investigated in pigs. Here, to annotate full-length RNA transcripts, we performed annotation using a newly developed computational pipeline—an RNA-seq and small RNA-seq combined strategy—using our previously obtained RNA-seq and small RNA-seq data from porcine oocytes and zygotes. As evidenced by the length comparison, the frequency of the core promoter, and the polyadenylation signal motifs, the transcripts appear to be full-length. Furthermore, our strategy allowed the identification of a large number of endogenous retrovirus-associated lncRNAs (ERV-lncRNAs) and found that some of them were highly expressed in porcine zygotes, as compared to oocytes. Through the knockdown strategy, two ERV-lncRNAs (TCONS_00035465 and TCONS_00031520) were identified as playing potential roles in the early embryo development of pigs, laying a foundation for future research.
Collapse
Affiliation(s)
- Xu Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingzhang Ji
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongdi Cui
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunming Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Chunming Ding, ; Chang Xu,
| | - Chang Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Chunming Ding, ; Chang Xu,
| |
Collapse
|
10
|
The Functional Role of Long Non-Coding RNA in Myogenesis and Skeletal Muscle Atrophy. Cells 2022; 11:cells11152291. [PMID: 35892588 PMCID: PMC9332450 DOI: 10.3390/cells11152291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle is a pivotal organ in humans that maintains locomotion and homeostasis. Muscle atrophy caused by sarcopenia and cachexia, which results in reduced muscle mass and impaired skeletal muscle function, is a serious health condition that decreases life longevity in humans. Recent studies have revealed the molecular mechanisms by which long non-coding RNAs (lncRNAs) regulate skeletal muscle mass and function through transcriptional regulation, fiber-type switching, and skeletal muscle cell proliferation. In addition, lncRNAs function as natural inhibitors of microRNAs and induce muscle hypertrophy or atrophy. Intriguingly, muscle atrophy modifies the expression of thousands of lncRNAs. Therefore, although their exact functions have not yet been fully elucidated, various novel lncRNAs associated with muscle atrophy have been identified. Here, we comprehensively review recent knowledge on the regulatory roles of lncRNAs in skeletal muscle atrophy. In addition, we discuss the issues and possibilities of targeting lncRNAs as a treatment for skeletal muscle atrophy and muscle wasting disorders in humans.
Collapse
|
11
|
Cai J, Chen H, Xie S, Hu Z, Bai Y. Research Progress of Totipotent Stem Cells. Stem Cells Dev 2022; 31:335-345. [PMID: 35502477 DOI: 10.1089/scd.2022.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Totipotent stem cells (TSCs), can develop into complete organisms, used in biological fields such as regenerative medicine, mammalian breeding, and conservation. However, cells from early-stage embryos cultured are hard to self-renew and maintain developmental totipotency, which becomes a key factor limiting the research of TSCs. Fortunately, a break-through in the study of induced pluripotent stem cells returning to their totipotent state has been made, resulting in the establishment of multiple TSCs and igniting a new wave of stem cell research. Furthermore, the blastocyst-like structures can be generated by the established TSCs, which lays a foundation for synthetic embryos in vitro. In this review, we summarize the totipotent stage of the early embryos, the establishment and cultivation of TSCs, and the developmental ability exploration of TSCs to promote further research of TSCs.
Collapse
Affiliation(s)
- Jianfeng Cai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China, 528000;
| | - Huifang Chen
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Shiting Xie
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Zhichao Hu
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Yinshan Bai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| |
Collapse
|
12
|
Alecki C, Vera M. Role of Nuclear Non-Canonical Nucleic Acid Structures in Organismal Development and Adaptation to Stress Conditions. Front Genet 2022; 13:823241. [PMID: 35281835 PMCID: PMC8906566 DOI: 10.3389/fgene.2022.823241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Over the last decades, numerous examples have involved nuclear non-coding RNAs (ncRNAs) in the regulation of gene expression. ncRNAs can interact with the genome by forming non-canonical nucleic acid structures such as R-loops or DNA:RNA triplexes. They bind chromatin and DNA modifiers and transcription factors and favor or prevent their targeting to specific DNA sequences and regulate gene expression of diverse genes. We review the function of these non-canonical nucleic acid structures in regulating gene expression of multicellular organisms during development and in response to different stress conditions and DNA damage using examples described in several organisms, from plants to humans. We also overview recent techniques developed to study where R-loops or DNA:RNA triplexes are formed in the genome and their interaction with proteins.
Collapse
Affiliation(s)
- Célia Alecki
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Zhao Z, Chen L, Cao M, Chen T, Huang Y, Wang N, Zhang B, Li F, Chen K, Yuan C, Li C, Zhou X. Comparison of lncRNA Expression in the Uterus between Periods of Embryo Implantation and Labor in Mice. Animals (Basel) 2022; 12:ani12030399. [PMID: 35158722 PMCID: PMC8833358 DOI: 10.3390/ani12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Progesterone has been proven to play an important role in female mammals during pregnancy. In this study, the uteri of pregnant mice were collected to compare mRNA and lncRNA expression between periods of embryo implantation and labor. The results show that 19 known differentially expressed lncRNAs and 31 novel differentially lncRNAs were commonly expressed between the two stages, indicating that these lncRNAs’ function is related to progesterone. Abstract Uterine function during pregnancy is regulated mainly by progesterone (P4) and estrogen (E2). Serum P4 levels are known to fluctuate significantly over the course of pregnancy, especially during embryo implantation and labor. In this study, pregnant mice at E0.5, E4.5, E15.5, and E18.5 (n = 3/E) were used for an RNA-Seq-based analysis of mRNA and lncRNA expression. In this analysis, 1971 differentially expressed (DE) mRNAs, 493 known DE lncRNAs, and 1041 novel DE lncRNAs were found between E0.5 and E4.5 at the embryo implantation stage, while 1149 DE mRNAs, 192 known DE lncRNAs, and 218 novel DE lncRNAs were found between E15.5 and E18.5 at the labor stage. The expression level of lncRNA-MMP11 was significantly downregulated by P4 treatment on MSM cells, while lncRNA-ANKRD37 was significantly upregulated. Notably, 117 DE mRNAs, 19 known DE lncRNAs, and 31 novel DE lncRNAs were commonly expressed between the two stages, indicating that these mRNAs and lncRNAs may be directly or indirectly regulated by P4.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xu Zhou
- Correspondence: (C.L.); (X.Z.)
| |
Collapse
|
14
|
Li J, Zhu L, Huang J, Liu W, Han W, Huang G. Long-Term Storage Does Not Affect the Expression Profiles of mRNA and Long Non-Coding RNA in Vitrified-Warmed Human Embryos. Front Genet 2022; 12:751467. [PMID: 35178066 PMCID: PMC8844023 DOI: 10.3389/fgene.2021.751467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Although vitrification has been widely applied in assisted reproductive technology, it is unknown whether storage time has any impact on the mRNA and lncRNA expression profiles in human embryos. Eleven women (aged 23-35 years) who had undergone in vitro fertilization treatment were recruited for this study. The transcriptomes of 3 fresh eight-cell embryos and 8 surviving vitrified-warmed eight-cell embryos (4 embryos were cryostored for 3 years, and the others were cryostored for 8 years) were analyzed through single-cell RNA-Seq. No differentially expressed mRNAs or lncRNAs were identified between the 3-years group and 8-years group. A total of 128 mRNAs and 365 lncRNAs were differentially expressed in the 8 vitrified-warmed embryos compared with the fresh embryos. The vitrification-warming impact was moderate, and it was mainly related to the pathways of metabolism, stress response, apoptosis, cell cycle, cell adhesion, and signaling for TFG-β and Hippo. The analysis of target mRNAs suggested that lncRNAs might contribute to the regulation of mRNAs after vitrification-warming. Our findings indicated that long-term storage after vitrification does not affect the mRNA and lncRNA expression profiles in human embryos, however, the procedure of vitrification-warming would lead to minor alteration of transcriptome.
Collapse
Affiliation(s)
- Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jin Huang
- Information Department, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
15
|
Furuhata R, Imasaka M, Sugimoto M, Yoshinobu K, Araki M, Araki K. LincRNA-p21 exon 1 expression correlates with Cdkn1a expression in vivo. Genes Cells 2021; 27:14-24. [PMID: 34808017 DOI: 10.1111/gtc.12906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
LincRNA-p21 is a long intergenic non-coding RNA (LincRNA) gene reported to activate the transcription of the adjacent Cdkn1a (p21) gene in cis. The importance of the enhancer elements in the LincRNA-p21 gene region has also been reported; however, the involvement of the LincRNA-p21 transcripts in regulating Cdkn1a in vivo is still unclear. In this study, we used a LincRNA-p21-trapped mouse line (LincRNA-p21Gt ) in which βgeo was inserted into intron 1, and all enhancer elements were retained. In LincRNA-p21Gt/Gt mice, the transcription of LincRNA-p21 was repressed due to the βgeo sequence, and the expression of exon 1 of LincRNA-p21 was restored through its deletion or replacement by another sequence, and Cdkn1a expression was also upregulated. Furthermore, regardless of the full-length transcripts, the expression of Cdkn1a correlated with the transcription of the exon 1 of LincRNA-p21. This result indicates that the LincRNA-p21 transcripts are not functional, but the transcriptional activity around exon 1 is important for Cdkn1a expression.
Collapse
Affiliation(s)
- Riki Furuhata
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Mai Imasaka
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.,Genetics, Hyogo College of Medicine, Hyogo, Japan
| | - Michihiko Sugimoto
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.,Technology and Development Team for Mammalian Genome Dynamics, BioResource Research Center, RIKEN, Tsukuba-shi, Japan
| | - Kumiko Yoshinobu
- Division of Genomics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masatake Araki
- Division of Genomics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Li M, Liu Y, Xie S, Ma L, Zhao Z, Gong H, Sun Y, Huang T. Transcriptome analysis reveals that long noncoding RNAs contribute to developmental differences between medium-sized ovarian follicles of Meishan and Duroc sows. Sci Rep 2021; 11:22510. [PMID: 34795345 PMCID: PMC8602415 DOI: 10.1038/s41598-021-01817-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ovulation rate is an extremely important factor affecting litter size in sows. It differs greatly among pig breeds with different genetic backgrounds. Long non-coding RNAs (lncRNAs) can regulate follicle development, granulosa cell growth, and hormone secretion, which in turn can affect sow litter size. In this study, we identified 3554 lncRNAs and 25,491 mRNAs in M2 follicles of Meishan and Duroc sows. The lncRNA sequence and open reading frame lengths were shorter than mRNAs, and lncRNAs had fewer exons, were less abundant, and more conserved than protein-coding RNAs. Furthermore, 201 lncRNAs were differentially expressed (DE) between breeds, and quantitative trait loci analysis of DE lncRNAs were performed. A total of 127 DE lncRNAs were identified in 119 reproduction trait-related loci. In addition, the potential target genes of lncRNAs in cis or trans configurations were predicted. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that some potential target genes were involved in follicular development and hormone secretion-related biological processes or pathways, such as progesterone biosynthetic process, estrogen metabolic process, ovarian steroidogenesis, and PI3K-Akt signaling pathway. Furthermore, we also screened 19 differentially expressed lncRNAs in the PI3K-Akt signaling pathway as candidates. This study provides new insights into the roles of lncRNAs in follicular growth and development in pigs.
Collapse
Affiliation(s)
- Mengxun Li
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yi Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Su Xie
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Lipeng Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Zhichao Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
- Guangxi Yangxiang Animal Husbandry Co. Ltd., Guangxi, Guigang, 537100, China
| | - Hongbin Gong
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yishan Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
17
|
Wu X, Zhao H, Lai J, Zhang N, Shi J, Zhou R, Su Q, Zheng E, Xu Z, Huang S, Hong L, Gu T, Yang J, Yang H, Cai G, Wu Z, Li Z. Interleukin 17D Enhances the Developmental Competence of Cloned Pig Embryos by Inhibiting Apoptosis and Promoting Embryonic Genome Activation. Animals (Basel) 2021; 11:ani11113062. [PMID: 34827794 PMCID: PMC8614321 DOI: 10.3390/ani11113062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The cloning technique is important for animal husbandry and biomedicine because it can be used to clone superior breeding livestock and produce multipurpose genetically modified animals. However, the success rate of cloning currently is very low due to the low developmental efficiency of cloned embryos, which limits the application of cloning. The low developmental competence is related to the excessive cell death in cloned embryos. Interleukin 17D (IL17D) is required for the normal development of mouse embryos by inhibiting cell death. This study aimed to investigate whether IL17D can improve cloned pig embryo development by inhibiting cell death. Addition of IL17D protein to culture medium decreased the cell death level and improved the developmental ability of cloned pig embryos. IL17D treatment enhanced cloned pig embryo development by regulating cell death-associated gene pathways and promoting genome-wide gene expression, which is probably via up-regulating the expression of a gene called GADD45B. This study provided a new approach to improve the pig cloning efficiency by adding IL17D protein to the culture medium of cloned pig embryos. Abstract Cloned animals generated by the somatic cell nuclear transfer (SCNT) approach are valuable for the farm animal industry and biomedical science. Nevertheless, the extremely low developmental efficiency of cloned embryos hinders the application of SCNT. Low developmental competence is related to the higher apoptosis level in cloned embryos than in fertilization-derived counterparts. Interleukin 17D (IL17D) expression is up-regulated during early mouse embryo development and is required for normal development of mouse embryos by inhibiting apoptosis. This study aimed to investigate whether IL17D plays roles in regulating pig SCNT embryo development. Supplementation of IL17D to culture medium improved the developmental competence and decreased the cell apoptosis level in cloned porcine embryos. The transcriptome data indicated that IL17D activated apoptosis-associated pathways and promoted global gene expression at embryonic genome activation (EGA) stage in treated pig SCNT embryos. Treating pig SCNT embryos with IL17D up-regulated expression of GADD45B, which is functional in inhibiting apoptosis and promoting EGA. Overexpression of GADD45B enhanced the developmental efficiency of cloned pig embryos. These results suggested that IL17D treatment enhanced the developmental ability of cloned pig embryos by suppressing apoptosis and promoting EGA, which was related to the up-regulation of GADD45B expression. This study demonstrated the roles of IL17D in early development of porcine SCNT embryos and provided a new approach to improve the developmental efficiency of cloned porcine embryos.
Collapse
Affiliation(s)
- Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junkun Lai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ning Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Qiaoyun Su
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu 527499, China; (J.S.); (R.Z.); (Q.S.)
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (X.W.); (H.Z.); (J.L.); (N.Z.); (E.Z.); (Z.X.); (S.H.); (L.H.); (T.G.); (J.Y.); (H.Y.); (G.C.)
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.W.); (Z.L.)
| |
Collapse
|
18
|
Kameda T, Nakashima H, Takizawa T, Miura F, Ito T, Nakashima K, Imamura T. Neuronal activation modulates enhancer activity of genes for excitatory synaptogenesis through de novo DNA methylation. J Reprod Dev 2021; 67:369-379. [PMID: 34615840 PMCID: PMC8668374 DOI: 10.1262/jrd.2021-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Post-mitotic neurons do exhibit DNA methylation changes, contrary to the longstanding belief that the epigenetic pattern in terminally differentiated cells is essentially unchanged. While
the mechanism and physiological significance of DNA demethylation in neurons have been extensively elucidated, the occurrence of de novo DNA methylation and its impacts have
been much less investigated. In the present study, we showed that neuronal activation induces de novo DNA methylation at enhancer regions, which can repress target genes in
primary cultured hippocampal neurons. The functional significance of this de novo DNA methylation was underpinned by the demonstration that inhibition of DNA
methyltransferase (DNMT) activity decreased neuronal activity-induced excitatory synaptogenesis. Overexpression of WW and C2 domain-containing 1 (Wwc1), a representative
target gene of de novo DNA methylation, could phenocopy this DNMT inhibition-induced decrease in synaptogenesis. We found that both DNMT1 and DNMT3a were required for
neuronal activity-induced de novo DNA methylation of the Wwc1 enhancer. Taken together, we concluded that neuronal activity-induced de novo
DNA methylation that affects gene expression has an impact on neuronal physiology that is comparable to that of DNA demethylation. Since the different requirements of DNMTs for germ cell and
embryonic development are known, our findings also have considerable implications for future studies on epigenomics in the field of reproductive biology.
Collapse
Affiliation(s)
- Tomonori Kameda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma 371-8511, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
19
|
The evolutionary acquisition and mode of functions of promoter-associated non-coding RNAs (pancRNAs) for mammalian development. Essays Biochem 2021; 65:697-708. [PMID: 34328174 DOI: 10.1042/ebc20200143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.
Collapse
|
20
|
Gil N, Ulitsky I. Inefficient splicing curbs noncoding RNA transcription. Nat Struct Mol Biol 2021; 28:327-328. [PMID: 33767453 DOI: 10.1038/s41594-021-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noa Gil
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Deng M, Wan Y, Chen B, Dai X, Liu Z, Yang Y, Cai Y, Zhang Y, Wang F. Long non-coding RNA lnc_3712 impedes nuclear reprogramming via repressing Kdm5b. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:54-66. [PMID: 33738138 PMCID: PMC7940708 DOI: 10.1016/j.omtn.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) are involved in shaping chromosome conformation and regulation of preimplantation development. However, the role of lncRNA during somatic cell nuclear transfer (SCNT) reprogramming remains largely unknown. In the present study, we identified 114 upregulated lncRNAs in the 8-cell SCNT embryos as candidate key molecules involved in nuclear reprogramming in goat. We found that H3K4me3 was an epigenetic barrier in goat nuclear reprogramming that and injection of Kdm5b mRNA greatly improved SCNT embryos development through removal of H3K4me3. We further reported that knockdown of lnc_3712 increased the expression of Kdm5b, which led to H3K4me3 demethylation. Of note, the development of goat SCNT embryos was improved when lnc_3712 was knocked down, whereas the blastocyst rate showed no difference in lnc_3712 and Kdm5b double knockdown SCNT embryos compared with the negative control SCNT embryos. Specifically, in lnc_3712 knockdown SCNT embryos, partial of the transcriptional activity and the expression of critical embryonic genes (Wee1, Ctsb, and Ybx1) were similar with that of in vitro fertilization embryos. Therefore, our results elucidate the critical role of lnc_3712 in regulating the development of goat SCNT embryos via repressing Kdm5b, which advances our current understanding of the role of lncRNAs during nuclear reprogramming.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Pourrajab F, Hekmatimoghaddam S. Transposable elements, contributors in the evolution of organisms (from an arms race to a source of raw materials). Heliyon 2021; 7:e06029. [PMID: 33532648 PMCID: PMC7829209 DOI: 10.1016/j.heliyon.2021.e06029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
There is a concept proposing that the primitive lineages of prokaryotes, eukaryotes, and viruses emerged from the primordial pool of primitive genetic elements. In this genetic pool, transposable elements (TEs) became a source of raw material for primitive genomes, tools of genetic innovation, and ancestors of modern genes (e.g. ncRNAs, tRNAs, and rRNAs). TEs contributed directly to the genome evolution of three forms of life on the earth. TEs now appear as tools that were used to giving rise to sexual dimorphism and sex determination, lineage-specific expression of genes and tissue differentiation and finally genome stability and lifespan determination.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Reconstitution of the oocyte transcriptional network with transcription factors. Nature 2020; 589:264-269. [PMID: 33328630 DOI: 10.1038/s41586-020-3027-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
During female germline development, oocytes become a highly specialized cell type and form a maternal cytoplasmic store of crucial factors. Oocyte growth is triggered at the transition from primordial to primary follicle and is accompanied by dynamic changes in gene expression1, but the gene regulatory network that controls oocyte growth remains unknown. Here we identify a set of transcription factors that are sufficient to trigger oocyte growth. By investigation of the changes in gene expression and functional screening using an in vitro mouse oocyte development system, we identified eight transcription factors, each of which was essential for the transition from primordial to primary follicle. Notably, enforced expression of these transcription factors swiftly converted pluripotent stem cells into oocyte-like cells that were competent for fertilization and subsequent cleavage. These transcription-factor-induced oocyte-like cells were formed without specification of primordial germ cells, epigenetic reprogramming or meiosis, and demonstrate that oocyte growth and lineage-specific de novo DNA methylation are separable from the preceding epigenetic reprogramming in primordial germ cells. This study identifies a core set of transcription factors for orchestrating oocyte growth, and provides an alternative source of ooplasm, which is a unique material for reproductive biology and medicine.
Collapse
|
24
|
Long Non-Coding RNA and mRNA Profiling in Early-Stage Bovine Embryos Treated with Glutathione. Antioxidants (Basel) 2020; 9:antiox9050402. [PMID: 32397280 PMCID: PMC7278749 DOI: 10.3390/antiox9050402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/13/2023] Open
Abstract
We measured differential expression profiles of genes and long non-coding RNA (lncRNA) using RNA sequencing in bovine embryos with or without glutathione (GSH) treatment. Bovine embryos fertilized in vitro were treated with GSH to blastocyst. Embryos at the 8-16-cell and morula stages were collected, with embryos without GSH treatment as the control. RNA was isolated, amplified, and sequenced. Differentially expressed genes (DEGs) and lncRNAs (DElncRNAs) were identified and bioinformatic analyses carried out. Transcript levels were confirmed using quantitative RT-PCR. A total of 4100 DEGs were identified, of which 3952 were in GSH-treated morulae and 884 in untreated morulae. More gene ontology (GO) terms were associated with GSH treatment than with control conditions. KEGG analysis showed that glutathione metabolism, citrate cycle, and metabolic pathways involving glycine, serine, and threonine were observed only in GSH-treated embryos. Among 4273 DElncRNAs identified, 59 were potentially important in GSH-treated embryo development, including 14 involved in glutathione metabolism. The 59 DElncRNAs co-expressed with protein-coding mRNAs involved similar GO terms and pathways as the DEGs. This appears to be the first comprehensive profiling of DEGs and DElncRNAs in bovine embryos fertilized in vitro with or without GSH, and the first systematic screen of potential lncRNAs in bovine embryos.
Collapse
|
25
|
Wang X, Qu J, Li J, He H, Liu Z, Huan Y. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Front Genet 2020; 11:205. [PMID: 32256519 PMCID: PMC7093498 DOI: 10.3389/fgene.2020.00205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has broad applications but is limited by low cloning efficiency. In this review, we mainly focus on SCNT-mediated epigenetic reprogramming in livestock and also describe mice data for reference. This review presents the factors contributing to low cloning efficiency, demonstrates that incomplete epigenetic reprogramming leads to the low developmental potential of cloned embryos, and further describes the regulation of epigenetic reprogramming by long non-coding RNAs, which is a new research perspective in the field of SCNT-mediated epigenetic reprogramming. In conclusion, this review provides new insights into the epigenetic regulatory mechanism during SCNT-mediated nuclear reprogramming, which could have great implications for improving cloning efficiency.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
26
|
Chellini L, Frezza V, Paronetto MP. Dissecting the transcriptional regulatory networks of promoter-associated noncoding RNAs in development and cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:51. [PMID: 32183847 PMCID: PMC7079525 DOI: 10.1186/s13046-020-01552-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
In-depth analysis of global RNA sequencing has enabled a comprehensive overview of cellular transcriptomes and revealed the pervasive transcription of divergent RNAs from promoter regions across eukaryotic genomes. These studies disclosed that genomes encode a vast repertoire of RNAs beyond the well-known protein-coding messenger RNAs. Furthermore, they have provided novel insights into the regulation of eukaryotic epigenomes, and transcriptomes, including the identification of novel classes of noncoding transcripts, such as the promoter-associated noncoding RNAs (pancRNAs). PancRNAs are defined as transcripts transcribed within few hundred bases from the transcription start sites (TSSs) of protein-coding or non-coding genes. Unlike the long trans-acting ncRNAs that regulate expression of target genes located in different chromosomal domains and displaying their function both in the nucleus and in the cytoplasm, the pancRNAs operate as cis-acting elements in the transcriptional regulation of neighboring genes. PancRNAs are very recently emerging as key players in the epigenetic regulation of gene expression programs in development and diseases. Herein, we review the complex epigenetic network driven by pancRNAs in eukaryotic cells, their impact on physiological and pathological states, which render them promising targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Valentina Frezza
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Santa Lucia Foundation, 00143, Rome, Italy. .,Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 6, 00135, Rome, Italy.
| |
Collapse
|
27
|
Han X, Sekino Y, Babasaki T, Goto K, Inoue S, Hayashi T, Teishima J, Sakamoto N, Sentani K, Oue N, Yasui W, Matsubara A. Microtubule-associated protein tau (MAPT) is a promising independent prognostic marker and tumor suppressive protein in clear cell renal cell carcinoma. Urol Oncol 2020; 38:605.e9-605.e17. [PMID: 32139291 DOI: 10.1016/j.urolonc.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Microtubule-associated protein tau (MAPT) overexpression has been linked to poor prognosis in several cancers. MAPT-AS1 is a long noncoding RNA existing at the antisense strand of the MAPT promoter region. The clinical significance of MAPT and MAPT-AS-1 in clear cell renal cell carcinoma (ccRCC) is unknown. This study aimed to assess the expression and function of MAPT and MAPT-AS1 in ccRCC. METHODS The expression of MAPT was determined using immunohistochemistry in ccRCC. The effects of MAPT knockdown on cell growth and invasion were evaluated and the interaction between MAPT and microtubule-associated protein tau antisense (MAPT-AS1) were analyzed. The expression of MAPT-AS1 was determined using quantitative reverse transcription polymerase chain reaction in ccRCC tissues. We investigated the effect of MAPT-AS1 knockdown on cell growth and invasion. We analyzed the regulation of MAPT and MAPT-AS1. RESULTS Immunohistochemistry in 135 ccRCC cases showed that 61% of the cases were positive for MAPT. Kaplan-Meier analysis showed that the low expression of MAPT was associated with poor overall survival after nephrectomy. Knockdown of MAPT enhanced cell growth and invasion. quantitative reverse transcription polymerase chain reaction revealed a positive correlation between MAPT and MAPT-AS1. The expression of MAPT-AS1 was higher in ccRCC tissue than in nonneoplastic kidney tissue. Kaplan-Meier analysis showed that the low expression of MAPT-AS1 was associated with poor overall survival after nephrectomy by in silico analysis. MAPT-AS1 knockdown promoted cell growth and invasion activity. P53 knockout suppressed the expression of MAPT and MAPT-AS1. CONCLUSION These results suggest that MAPT and MAPT-AS1 may be promising predictive biomarkers for survival and play a tumor-suppressive role in ccRCC.
Collapse
Affiliation(s)
- Xiangrui Han
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takashi Babasaki
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
28
|
Liu H, Jiang T, Wang S, Chen X, Jin X, Wang Q, Li X, Yin J, Shao T, Li Y, Xu J, Wu Q. A Novel Approach to Identify Enhancer lincRNAs by Integrating Genome, Epigenome, and Regulatome. Front Bioeng Biotechnol 2020; 7:427. [PMID: 31956652 PMCID: PMC6951418 DOI: 10.3389/fbioe.2019.00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/02/2019] [Indexed: 11/14/2022] Open
Abstract
LincRNAs enriched with high H3K4me1 and low H3K4me3 signals often have the enhancer-like features which are named as enhancer-associated lincRNAs (elincRNAs). ElincRNAs are considered to be indispensable for target gene transcription, which play important roles in development, signaling events, and even diseases. In this study, we developed a regularized regression model to identify elincRNAs by integrating the genomic, epigenomic, and regulatory data. Application of the proposed method to mouse ESCs reveals that besides the basic well-known epigenetic features H3K4me1 and H3K4me3, more specific epigenetic features, such as high DNA methylation, high H3K122ac, and H3K36me3 were contributed to mark elincRNAs with the best accuracy and precision. Finally, 3729 elincRNAs were identified in mouse ESCs. Furthermore, the elincRNAs and canonical lincRNAs exhibit distinct genomic features, and elincRNAs have the higher CGI enrichment and lower sequence conservation. Through the analysis of transcription regulation, we found that elincRNAs were significantly regulated by NANOG, POU5F1, SOX2 and ESRRB, and were involved in the core transcriptional regulatory circuitry controlling ES cell state Function enrichment analysis further discovered that elincRNAs tended to regulate specific embryonic development biological processes. These results indicated that these two types of lincRNAs had both specific epigenetic and transcriptional regulation mechanism and display distinct functional characters. In conclusion, we presented a credible computational model to prioritize novel elincRNAs, and depicted the atlas of elincRNAs in mouse ESCs, which would help dissect the function roles of lncRNAs during the mammalian development and diseases.
Collapse
Affiliation(s)
- Hui Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiang Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaoyan Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinhui Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaqi Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongsheng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Informatics and Engineering, Hainan Medical University, Haikou, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
29
|
Leng L, Sun J, Huang J, Gong F, Yang L, Zhang S, Yuan X, Fang F, Xu X, Luo Y, Bolund L, Peters BA, Lu G, Jiang T, Xu F, Lin G. Single-Cell Transcriptome Analysis of Uniparental Embryos Reveals Parent-of-Origin Effects on Human Preimplantation Development. Cell Stem Cell 2019; 25:697-712.e6. [DOI: 10.1016/j.stem.2019.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 06/27/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
|
30
|
Ling YH, Zheng Q, Li YS, Sui MH, Wu H, Zhang YH, Chu MX, Ma YH, Fang FG, Xu LN. Identification of lncRNAs by RNA Sequencing Analysis During in Vivo Pre-Implantation Developmental Transformation in the Goat. Front Genet 2019; 10:1040. [PMID: 31708972 PMCID: PMC6823246 DOI: 10.3389/fgene.2019.01040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/30/2019] [Indexed: 11/15/2022] Open
Abstract
Pre-implantation development is a dynamic, complex and precisely regulated process that is critical for mammalian development. There is currently no description of the role of the long noncoding RNAs (lncRNAs) during the pre-implantation stages in the goat. The in vivo transcriptomes of oocytes (n = 3) and pre-implantation stages (n=19) at seven developmental stages in the goat were analyzed by RNA sequencing (RNA-Seq). The major zygotic gene activation (ZGA) event was found to occur between the 8- and 16-cell stages in the pre-implantation stages. We identified 5,160 differentially expressed lncRNAs (DELs) in developmental stage comparisons and functional analyses of the major and minor ZGAs. Fourteen lncRNA modules were found corresponding to specific pre-implantation developmental stages by weighted gene co-expression network analysis (WGCNA). A comprehensive analysis of the lncRNAs at each developmental transition of high correlation modules was done. We also identified lncRNA-mRNA networks and hub-lncRNAs for the high correlation modules at each stage. The extensive association of lncRNA target genes with other embryonic genes suggests an important regulatory role for lncRNAs in embryonic development. These data will facilitate further exploration of the role of lncRNAs in the developmental transformation in the pre-implantation stage.
Collapse
Affiliation(s)
- Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yun-Sheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Meng-Hua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Hao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yun-Hai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Ming-Xing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue-Hui Ma
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fu-Gui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Li-Na Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
31
|
Schultz RM, Stein P, Svoboda P. The oocyte-to-embryo transition in mouse: past, present, and future. Biol Reprod 2019; 99:160-174. [PMID: 29462259 DOI: 10.1093/biolre/ioy013] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/03/2018] [Indexed: 02/06/2023] Open
Abstract
The oocyte-to-embryo transition (OET) arguably initiates with formation of a primordial follicle and culminates with reprogramming of gene expression during the course of zygotic genome activation. This transition results in converting a highly differentiated cell, i.e. oocyte, to undifferentiated cells, i.e. initial blastomeres of a preimplantation embryo. A plethora of changes occur during the OET and include, but are not limited to, changes in transcription, chromatin structure, and protein synthesis; accumulation of macromolecules and organelles that will comprise the oocyte's maternal contribution to the early embryo; sequential acquisition of meiotic and developmental competence to name but a few. This review will focus on transcriptional and post-transcriptional changes that occur during OET in mouse because such changes are likely the major driving force for OET. We often take a historical and personal perspective, and highlight how advances in experimental methods often catalyzed conceptual advances in understanding the molecular bases for OET. We also point out questions that remain open and therefore represent topics of interest for future investigation.
Collapse
Affiliation(s)
- Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Anatomy, Physiology, Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
32
|
Kumar H, Srikanth K, Park W, Lee SH, Choi BH, Kim H, Kim YM, Cho ES, Kim JH, Lee JH, Jung JY, Go GW, Lee KT, Kim JM, Lee J, Lim D, Park JE. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019; 703:71-82. [PMID: 30954676 DOI: 10.1016/j.gene.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Long non coding RNAs (lncRNA) have been previously found to be involved in important cellular activities like epigenetics, implantation, cell growth etc. in pigs. However, comprehensive analysis of lncRNA in back fat tissues at different developmental stages in pigs is still lacking. In this study we conducted transcriptome analysis in the back fat tissue of a F1 crossbred Korean Native Pig (KNP) × Yorkshire Pig to identify lncRNA. We investigated their role in 16 pigs at two different growth stages; stage 1 (10 weeks, n = 8) and stage 2 (26 weeks, n = 8). After quality assessment of sequencing reads, we got a total of 1,641,165 assembled transcripts out of eight paired end read from each stage. Among them, 6808 lncRNA transcripts were identified by filtering on the basis of multiple parameters like read length ≥ 200 nucleotides, exon numbers ≥2, FPKM ≥0.5, coding potential score < 0 etc. PFAM and RFAM were used to filter out all possible protein coding genes and housekeeping RNAs respectively. A total of 103 lncRNAs and 1057 mRNAs were found to be differentially expressed (DE) between the two stages (|log2FC| > 2, q < 0.05). We also identified 306 genes located around 100 kb upstream and 234 genes downstream around these DE lncRNA transcripts. The expression of top eleven DE lncRNAs (COL4A6, LY7S, MYH2, OXCT1, SMPDL3A, TMEM182, TTC36, RFOOOO4, RFOOO15, RFOOO45, CADM2) had been validating by qRT-PCR. Pathway and GO terms analysis showed that, positive regulation of biosynthetic process, Wnt signaling pathway, cellular protein modification process, and positive regulation of nitrogen compound were differentially enriched. Our results suggested that, KEGG pathways such as protein digestion and absorption, Arrhythmogenic right ventricular cardiomyopathy (ARVC) to be significantly enriched in both DE lncRNAs as well as DE mRNAs and involved in back fat tissues development. It also suggests that, identified lncRNAs are involved in regulation of important adipose tissues development pathways.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Woncheol Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Hoon Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hana Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yong-Min Kim
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jin Hyoung Kim
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jang Hee Lee
- Department of Companion Animal, Seoul Hoseo Occupational Training College, Seoul 07583, Republic of Korea
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jungjae Lee
- Jung P& C Institute, Inc., 1504 U-Tower, Yongin-si, Gyeonggi-do 16950, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
33
|
Jubin T, Kadam A, Begum R. Poly(ADP-ribose) polymerase-1 (PARP-1) regulates developmental morphogenesis and chemotaxis in Dictyostelium discoideum. Biol Cell 2019; 111:187-197. [PMID: 30866055 DOI: 10.1111/boc.201800056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION Poly(ADP-ribose) polymerase-1 (PARP-1) has been attributed to varied roles in DNA repair, cell cycle, cell death, etc. Our previous reports demonstrate the role of PARP-1 during Dictyostelium discoideum development by its constitutive downregulation as well as by PARP-1 ortholog, ADP ribosyl transferase 1 A (ADPRT1A) overexpression. The current study analyses and strengthens the function of ADPRT1A in multicellular morphogenesis of D. discoideum. ADPRT1A was knocked out, and its effect was studied on cAMP signalling, chemotaxis and development of D. discoideum. RESULTS We report that ADPRT1A is essential in multicellular development of D. discoideum, particularly at the aggregation stage. Genetic alterations of ADPRT1A and chemical inhibition of its activity affects the intracellular and extracellular cAMP levels during aggregation along with chemotaxis. Exogenous cAMP pulses could rescue this defect in the ADPRT1A knockout (ADPRT1A KO). Expression analysis of genes involved in cAMP signalling reveals altered transcript levels of four essential genes (PDSA, REGA, ACAA and CARA). Moreover, ADPRT1A KO affects prespore- and prestalk-specific gene expression and prestalk tendency is favoured in the ADPRT1A KO. CONCLUSION ADPRT1A plays a definite role in regulating developmental morphogenesis via cAMP signalling. SIGNIFICANCE This study helps in understanding the role of PARP-1 in multicellular development and differentiation in higher complex organisms.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| |
Collapse
|
34
|
Hitachi K, Nakatani M, Takasaki A, Ouchi Y, Uezumi A, Ageta H, Inagaki H, Kurahashi H, Tsuchida K. Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation. EMBO Rep 2019; 20:embr.201847468. [PMID: 30622218 DOI: 10.15252/embr.201847468] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Promoter-associated long non-coding RNAs (lncRNAs) regulate the expression of adjacent genes; however, precise roles of these lncRNAs in skeletal muscle remain largely unknown. Here, we characterize a promoter-associated lncRNA, Myoparr, in myogenic differentiation and muscle disorders. Myoparr is expressed from the promoter region of the mouse and human myogenin gene, one of the key myogenic transcription factors. We show that Myoparr is essential both for the specification of myoblasts by activating neighboring myogenin expression and for myoblast cell cycle withdrawal by activating myogenic microRNA expression. Mechanistically, Myoparr interacts with Ddx17, a transcriptional coactivator of MyoD, and regulates the association between Ddx17 and the histone acetyltransferase PCAF Myoparr also promotes skeletal muscle atrophy caused by denervation, and knockdown of Myoparr rescues muscle wasting in mice. Our findings demonstrate that Myoparr is a novel key regulator of muscle development and suggest that Myoparr is a potential therapeutic target for neurogenic atrophy in humans.
Collapse
Affiliation(s)
- Keisuke Hitachi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Masashi Nakatani
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Akihiko Takasaki
- Department of Medical Technology, School of Health Sciences, Gifu University of Medical Science, Seki, Japan
| | - Yuya Ouchi
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Japan
| | - Akiyoshi Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Hiroshi Ageta
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| | - Hidehito Inagaki
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Japan
| | - Hiroki Kurahashi
- Genome and Transcriptome Analysis Center, Fujita Health University, Toyoake, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Japan
| |
Collapse
|
35
|
Asymmetric Expression of LincGET Biases Cell Fate in Two-Cell Mouse Embryos. Cell 2018; 175:1887-1901.e18. [DOI: 10.1016/j.cell.2018.11.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022]
|
36
|
Feng M, Dang N, Bai Y, Wei H, Meng L, Wang K, Zhao Z, Chen Y, Gao F, Chen Z, Li L, Zhang S. Differential expression profiles of long non‑coding RNAs during the mouse pronuclear stage under normal gravity and simulated microgravity. Mol Med Rep 2018; 19:155-164. [PMID: 30483791 PMCID: PMC6297735 DOI: 10.3892/mmr.2018.9675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023] Open
Abstract
Pronuclear migration, which is the initial stage of embryonic development and the marker of zygote formation, is a crucial process during mammalian preimplantation embryonic development. Recent studies have revealed that long non-coding RNAs (lncRNAs) serve an important role in early embryonic development. However, the functional regulation of lncRNAs in this process has yet to be elucidated, largely due to the difficulty of assessing gene expression alterations during the very short time in which pronuclear migration occurs. It has previously been reported that migration of the pronucleus of a zygote can be obstructed by simulated microgravity. To investigate pronuclear migration in mice, a rotary cell culture system was employed, which generates simulated microgravity, in order to interfere with murine pronuclear migration. Subsequently, lncRNA sequencing was performed to investigate the mechanism underlying this process. In the present study, a comprehensive analysis of lncRNA profile during the mouse pronuclear stage was conducted, in which 3,307 lncRNAs were identified based on single-cell RNA sequencing data. Furthermore, 52 lncRNAs were identified that were significantly differentially expressed. Subsequently, 10 lncRNAs were selected for validation by reverse transcription-quantitative polymerase chain reaction, in which the same relative expression pattern was observed. The results revealed that 12 lncRNAs (lnc006745, lnc007956, lnc013100, lnc013782, lnc017097, lnc019869, lnc025838, lnc027046, lnc005454, lnc007956, lnc019410 and lnc019607), with tubulin β 4B class IVb or actinin α 4 as target genes, may be associated with the expression of microtubule and microfilament proteins. Binding association was confirmed using a dual-luciferase reporter assay. Finally, Gene Ontology analysis revealed that the target genes of the differentially expressed lncRNAs participated in cellular processes associated with protein transport, binding, catalytic activity, membrane-bounded organelle, protein complex and the cortical cytoskeleton. These findings suggested that these lncRNAs may be associated with migration of the mouse pronucleus.
Collapse
Affiliation(s)
- Meiying Feng
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Nannan Dang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yinshan Bai
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Hengxi Wei
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Li Meng
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Kai Wang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Zhao
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yun Chen
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Fenglei Gao
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Zhilin Chen
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Li Li
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shouquan Zhang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
37
|
Jubin T, Kadam A, Saran S, Begum R. Crucial role of poly (ADP‐ribose) polymerase (PARP‐1) in cellular proliferation of
Dictyostelium discoideum. J Cell Physiol 2018; 234:7539-7547. [DOI: 10.1002/jcp.27514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science The Maharaja Sayajirao University of Baroda Vadodara India
| |
Collapse
|
38
|
Wu F, Liu Y, Wu Q, Li D, Zhang L, Wu X, Wang R, Zhang D, Gao S, Li W. Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos. BMC Genomics 2018; 19:631. [PMID: 30139326 PMCID: PMC6107955 DOI: 10.1186/s12864-018-5021-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/15/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of epigenetic regulator, are thought to play important roles in embryonic development in mice, and several developmental defects are associated with epigenetic modification disorders. The most dramatic epigenetic reprogramming event occurs during somatic cell nuclear transfer (SCNT) when the expression profile of a differentiated cell is abolished, and a newly embryo-specific expression profile is established. However, the molecular mechanism underlying somatic reprogramming remains unclear, and the dynamics and functions of lncRNAs in this process have not yet been illustrated, resulting in inefficient reprogramming. RESULTS In this study, 63 single-cell RNA-seq libraries were first generated and sequenced. A total of 7009 mouse polyadenylation lncRNAs (including 5204 novel lncRNAs) were obtained, and a comprehensive analysis of in vivo and SCNT mouse pre-implantation embryo lncRNAs was further performed based on our single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs were expressed in a developmental stage-specific manner during mouse early-stage embryonic development, whereas a more temporal and spatially specific expression pattern was identified in mouse SCNT embryos with changes in the state of chromatin during somatic cell reprogramming, leading to incomplete zygotic genome activation, oocyte to embryo transition and 2-cell to 4-cell transition. No obvious differences between other stages and mouse NTC or NTM embryos at the same stage were observed. Gene oncology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and weighted gene co-expression network analysis (WGCNA) of lncRNAs and their association with known protein-coding genes suggested that several lncRNAs and their associated with known protein-coding genes might be involved in mouse embryonic development and cell reprogramming. CONCLUSIONS This is a novel report on the expression landscapes of lncRNAs of mouse NT embryos by scRNA-seq analysis. This study will provide insight into the molecular mechanism underlying the involvement of lncRNAs in mouse pre-implantation embryonic development and epigenetic reprogramming in mammalian species after SCNT-based cloning.
Collapse
Affiliation(s)
- Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Qingqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Dengkun Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Di Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| |
Collapse
|
39
|
Wang D, Li J, Cai F, Xu Z, Li L, Zhu H, Liu W, Xu Q, Cao J, Sun J, Tang J. Overexpression of MAPT-AS1 is associated with better patient survival in breast cancer. Biochem Cell Biol 2018; 97:158-164. [PMID: 30074401 DOI: 10.1139/bcb-2018-0039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most frequent malignant disease in women worldwide. It is a heterogeneous and complex genetic disease with different molecular characteristics. MAPT-AS1, a long non-coding RNA (lncRNA) existing at the anti-sense strand of the MAPT (microtubule associated protein tau) promoter region, was believed to regulate MAPT, which was associated with disease state in Parkinson's disease. But the role of MAPT-AS1 in breast cancer has never been reported. In our study we found that MAPT-AS1 is overexpressed in breast cancer but not in triple negative breast cancer (TNBC), and that high expression of MAPT-AS1 was correlated with better patient survival. In addition, the level of MAPT-AS1 was correlated with the expression of MAPT, and MAPT was associated with survival time in breast cancer. Our study suggests that MAPT-AS1 may play a role and be a potential survival predictive biomarker in breast cancer.
Collapse
Affiliation(s)
- Dongfeng Wang
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jian Li
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Fengling Cai
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Zhi Xu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Li Li
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Huanfeng Zhu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Wei Liu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Qingyu Xu
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jian Cao
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jingfeng Sun
- a Jiangsu Provincial Cancer Hospital, Affiliated to Nanjing Medical University, No. 42 of Baiziting, Nanjing, 210009, China.,b Institute of Jiangsu Provincial Cancer Prevention, No. 42 of Baiziting, Nanjing, 210009, China
| | - Jinhai Tang
- c Department of Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 of Gangzhou Road, Nanjing 210029, China
| |
Collapse
|
40
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
41
|
Karlic R, Ganesh S, Franke V, Svobodova E, Urbanova J, Suzuki Y, Aoki F, Vlahovicek K, Svoboda P. Long non-coding RNA exchange during the oocyte-to-embryo transition in mice. DNA Res 2018; 24:129-141. [PMID: 28087610 PMCID: PMC5397607 DOI: 10.1093/dnares/dsw058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023] Open
Abstract
The oocyte-to-embryo transition (OET) transforms a differentiated gamete into pluripotent blastomeres. The accompanying maternal-zygotic RNA exchange involves remodeling of the long non-coding RNA (lncRNA) pool. Here, we used next generation sequencing and de novo transcript assembly to define the core population of 1,600 lncRNAs expressed during the OET (lncRNAs). Relative to mRNAs, OET lncRNAs were less expressed and had shorter transcripts, mainly due to fewer exons and shorter 5′ terminal exons. Approximately half of OET lncRNA promoters originated in retrotransposons suggesting their recent emergence. Except for a small group of ubiquitous lncRNAs, maternal and zygotic lncRNAs formed two distinct populations. The bulk of maternal lncRNAs was degraded before the zygotic genome activation. Interestingly, maternal lncRNAs seemed to undergo cytoplasmic polyadenylation observed for dormant mRNAs. We also identified lncRNAs giving rise to trans-acting short interfering RNAs, which represent a novel lncRNA category. Altogether, we defined the core OET lncRNA transcriptome and characterized its remodeling during early development. Our results are consistent with the notion that rapidly evolving lncRNAs constitute signatures of cells-of-origin while a minority plays an active role in control of gene expression across OET. Our data presented here provide an excellent source for further OET lncRNA studies.
Collapse
Affiliation(s)
- Rosa Karlic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Sravya Ganesh
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vedran Franke
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Eliska Svobodova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Urbanova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
42
|
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 2018; 19:436-450. [DOI: 10.1038/s41580-018-0008-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Gao X, Ye J, Yang C, Luo L, Liu Y, Ding J, Zhang Y, Ling Y, Huang W, Zhang X, Zhang K, Li X, Zhou J, Fang F, Cao Z. RNA-seq analysis of lncRNA-controlled developmental gene expression during puberty in goat & rat. BMC Genet 2018; 19:19. [PMID: 29609543 PMCID: PMC5879571 DOI: 10.1186/s12863-018-0608-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Background Puberty is a pivotal stage in female animal development, and marks the onset of reproductive capability. However, little is known about the function of lncRNAs (long noncoding RNAs) in puberty. Therefore, RNA-seq analysis were performed between goats and rats to clarify the roles of lncRNAs and mRNAs in the onset of puberty. Results In the present study, the length of lncRNAs, the length of the open reading frame and the exon count were compared between the two species. Furthermore, functional annotation analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis of lncRNAs target genes and differentially expressed mRNA demonstrated the significantly enriched terms, such as AMPK signaling pathway, oxytocin signaling pathway, insulin secretion as well as pheromone receptor activity, and some other signaling pathways which were involved in the regulation of female puberty. Moreover, our results of siRNA interference in vitro showed the candidate lncRNA XLOC_446331 may play a crucial role in regulating female puberty. Conclusion In conclusion, the RNA-seq analysis between goat and rat provide novel candidate regulators for genetic and molecular studies on female puberty. Electronic supplementary material The online version of this article (10.1186/s12863-018-0608-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Chen Yang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Lei Luo
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiaorong Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Kaifa Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiumei Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jie Zhou
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Zubing Cao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China. .,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
44
|
Hamazaki N, Nakashima K, Hayashi K, Imamura T. Detection of Bidirectional Promoter-Derived lncRNAs from Small-Scale Samples Using Pre-Amplification-Free Directional RNA-seq Method. Methods Mol Biol 2018; 1605:83-103. [PMID: 28456959 DOI: 10.1007/978-1-4939-6988-3_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Development of high-throughput sequencing technologies has uncovered the immensity of the long noncoding RNA (lncRNA) world. Divergently transcribed lncRNAs from bidirectional gene promoters, called promoter-associated noncoding RNAs (pancRNAs), account for ~20% of the total number of lncRNAs, and this major fraction is involved in many biological processes, such as development and cancer formation. Recently, we have found that the pancRNAs activate their partner genes, as represented by the fact that pancIl17d, a pancRNA that is transcribed from the antisense strand of the promoter region of Interleukin 17d (Il17d) at the onset of zygotic gene activation (ZGA), is essential for mouse preimplantation development through Il17d upregulation. The discovery of the expression of a specific set of pancRNAs during ZGA was achieved by using a method that generates directional RNA-seq libraries from small-scale samples. Although there are several methods available for small-scale samples, most of them require a pre-amplification procedure that frequently generates some amplification biases toward a subset of transcripts. We provide here a highly sensitive and reproducible method based on the preparation of directional RNA-seq libraries from as little as 100 mouse oocytes or embryos without pre-amplification for the quantification of lncRNAs as well as mRNAs.
Collapse
Affiliation(s)
- Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan.
| |
Collapse
|
45
|
Manipulation of Promoter-Associated Noncoding RNAs in Mouse Early Embryos for Controlling Sequence-Specific Epigenetic Status. Methods Mol Biol 2018. [PMID: 28349434 DOI: 10.1007/978-1-4939-6716-2_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In mammals, transcription in the zygote begins after fertilization. This transcriptional wave is called zygotic gene activation (ZGA). During ZGA, epigenetic modifications, such as DNA methylation and histone modifications, are dynamically and drastically reconstructed in a sequence-specific manner. However, how such orchestrated gene upregulation is regulated remains unknown. Recently, using microinjection techniques, we have revealed that a class of long noncoding RNAs, named promoter-associated noncoding RNAs (pancRNAs), mediates specific gene upregulation through promoter DNA demethylation during ZGA. Here, we describe the experimental methods available to control the expression levels of pancRNAs and to evaluate epigenetic status after pancRNA manipulation.
Collapse
|
46
|
Long and small noncoding RNAs during oocyte-to-embryo transition in mammals. Biochem Soc Trans 2017; 45:1117-1124. [PMID: 28939692 DOI: 10.1042/bst20170033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023]
Abstract
Oocyte-to-embryo transition is a process during which an oocyte ovulates, is fertilized, and becomes a developing embryo. It involves the first major genome reprogramming event in life of an organism where gene expression, which gave rise to a differentiated oocyte, is remodeled in order to establish totipotency in blastomeres of an early embryo. This remodeling involves replacement of maternal RNAs with zygotic RNAs through maternal RNA degradation and zygotic genome activation. This review is focused on expression and function of long noncoding RNAs (lncRNAs) and small RNAs during oocyte-to-embryo transition in mammals. LncRNAs are an assorted rapidly evolving collection of RNAs, which have no apparent protein-coding capacity. Their biogenesis is similar to mRNAs including transcriptional control and post-transcriptional processing. Diverse molecular and biological roles were assigned to lncRNAs although most of them probably did not acquire a detectable biological role. Since some lncRNAs serve as precursors for small noncoding regulatory RNAs in RNA silencing pathways, both types of noncoding RNA are reviewed together.
Collapse
|
47
|
Chicken CCDC152 shares an NFYB-regulated bidirectional promoter with a growth hormone receptor antisense transcript and inhibits cells proliferation and migration. Oncotarget 2017; 8:84039-84053. [PMID: 29137403 PMCID: PMC5663575 DOI: 10.18632/oncotarget.21091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The chicken coiled-coil domain-containing protein 152 (CCDC152) recently has been identified as a novel one implicated in cell cycle regulation, cellular proliferation and migration by us. Here we demonstrate that CCDC152 is oriented in a head-to-head configuration with the antisense transcript of growth hormone receptor (GHR) gene. Through serial luciferase reporter assays, we firstly identified a minimal 102 bp intergenic region as a core bidirectional promoter to drive basal transcription in divergent orientations. And site mutation and transient transfected assays showed that nuclear transcription factor Y subunit beta (NFYB) could bind to the CCAAT box and directly transactivate this bidirectional promoter. SiRNA-mediated NFYB depletion could significantly down-regulate the expression of both GHR-AS-I6 and CCDC152. Additionally, the expression of GHR-AS-I6 was significantly up-regulated after CCDC152 overexpression. Overexpression of CCDC152 remarkably reduced cell proliferation and migration through JAK2/STAT signaling pathway. Thus, the GHR-AS-I6-CCDC152 bidirectional transcription unit, as a novel direct target of NFYB, is possibly essential for the accelerated proliferation and motility of different cells.
Collapse
|
48
|
Wang Q, Wang N, Cai R, Zhao F, Xiong Y, Li X, Wang A, Lin P, Jin Y. Genome-wide analysis and functional prediction of long non-coding RNAs in mouse uterus during the implantation window. Oncotarget 2017; 8:84360-84372. [PMID: 29137430 PMCID: PMC5663602 DOI: 10.18632/oncotarget.21031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022] Open
Abstract
Establishment of the receptive uterus is a crucial step for embryo implantation. In this study, the expression profiles and characterization of long non-coding RNAs (lncRNAs) in pregnant mouse uteri on day 4, day 5 at implantation sites and inter-implantation sites were conducted using RNA-seq. A total of 7,764 putative lncRNA transcripts were identified, including 6,179 known lncRNA transcripts and 1,585 novel lncRNA transcripts. Bioinformatics analysis of the cis and trans lncRNA targets showed that the differentially expressed lncRNAs were mainly involved in tissue remodelling, immune response and metabolism-related processes, indicating that lncRNAs could be involved in the regulation of embryo implantation. We also discovered that differentially expressed lncRNAs might regulate multiple signalling pathways that play an important role in the regulation of embryo implantation. In addition, nine known lncRNAs and four novel lncRNAs were randomly selected and validated by qRT-PCR. The expression of Tug1, Neat1, Gas5, Malat1, H19 and Rmst were significantly regulated in the mouse uterus during the implantation window. Our results are the first to systematically identify lncRNAs in the mouse uterus and provide a catalogue of lncRNAs for further understanding their functions in pregnant mouse uteri during the implantation window.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongjie Xiong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Yan P, Luo S, Lu JY, Shen X. Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Curr Opin Genet Dev 2017; 46:170-178. [PMID: 28843809 DOI: 10.1016/j.gde.2017.07.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Pervasive transcription in mammalian genomes produces thousands of long noncoding RNA (lncRNA) transcripts. Although they have been implicated in diverse biological processes, the functional relevance of most lncRNAs remains unknown. Recent studies reveal the prevalence of lncRNA-mediated cis regulation on nearby transcription. In this review, we summarize cis- and trans-acting lncRNAs involved in stem cell pluripotency and reprogramming, highlighting the role of regulatory lncRNAs in providing an additional layer of complexity to the regulation of genes that govern cell fate during development.
Collapse
Affiliation(s)
- Pixi Yan
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sai Luo
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - J Yuyang Lu
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, Zuo B. Identification of MyoD-Responsive Transcripts Reveals a Novel Long Non-coding RNA (lncRNA-AK143003) that Negatively Regulates Myoblast Differentiation. Sci Rep 2017; 7:2828. [PMID: 28588232 PMCID: PMC5460278 DOI: 10.1038/s41598-017-03071-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 02/04/2023] Open
Abstract
Myogenic differentiation factor (MyoD) is a master transcription factor in muscle development and differentiation. Although several long non-coding RNAs (lncRNAs) linked to MyoD have been found to influence muscle development, the functions of many lncRNAs have not been explored. Here we utilized lncRNA and mRNA microarray analysis to identify potential lncRNAs regulated by MyoD in muscle cells. A total of 997 differentially expressed lncRNAs (335 up-regulated and 662 down-regulated) and 1,817 differentially expressed mRNAs (148 up-regulated and 1,669 down-regulated) were identified after MyoD knockdown in C2C12 cells. Functional predictions suggested that most lncRNAs are involved in the biological pathways related to muscle differentiation and cell cycle with co-expressed genes. To gain further insight into the MyoD-mediated lncRNA expression in muscle differentiation, tissue expression profiles and MyoD overexpression were performed, and we found one of the candidate lncRNAs-AK143003 was significantly regulated by MyoD. Further analyses showed its noncoding ability and cytoplasmic localisation. Silencing of AK143003 stimulated the accumulation of myogenic marker genes, whereas AK143003 overexpression led to their decreased synthesis. This study identified a multitude of MyoD-mediated lncRNAs for further investigation and identified a novel lncRNA, lnc-AK143003, which plays a role in controlling muscle differentiation.
Collapse
Affiliation(s)
- Yiwen Guo
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Jingnan Wang
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Mingfei Zhu
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Rui Zeng
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Zaiyan Xu
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Guoliang Li
- 0000 0004 1790 4137grid.35155.37National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Bo Zuo
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China ,grid.35155.370000 0004 1790 4137The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 China
| |
Collapse
|