1
|
Baardman ME, Zwier MV, Wisse LJ, Gittenberger-de Groot AC, Kerstjens-Frederikse WS, Hofstra RMW, Jurdzinski A, Hierck BP, Jongbloed MRM, Berger RMF, Plösch T, DeRuiter MC. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech 2016; 9:413-25. [PMID: 26822476 PMCID: PMC4852499 DOI: 10.1242/dmm.022053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the cardiovascular development of Lrp2 KO mice between embryonic day 10.5 (E10.5) and E15.5, applying morphometry and immunohistochemistry, using antibodies against Tfap2α (neural crest cells), Nkx2.5 (second heart field), WT1 (epicardium derived cells), tropomyosin (myocardium) and LRP2. The Lrp2 KO mice display a range of severe cardiovascular abnormalities, including aortic arch anomalies, common arterial trunk (persistent truncus arteriosus) with coronary artery anomalies, ventricular septal defects, overriding of the tricuspid valve and marked thinning of the ventricular myocardium. Both the neural crest cells and second heart field, which are essential for the lengthening and growth of the right ventricular outflow tract, are abnormally positioned in the Lrp2 KO. This explains the absence of the aorto-pulmonary septum, which leads to common arterial trunk and ventricular septal defects. Severe blebbing of the epicardial cells covering the ventricles is seen. Epithelial-mesenchymal transition does occur; however, there are fewer WT1-positive epicardium-derived cells in the ventricular wall as compared to normal, coinciding with the myocardial thinning and deep intertrabecular spaces. LRP2 plays a crucial role in cardiovascular development in mice. This corroborates findings of cardiac anomalies in humans with LRP2 mutations. Future studies should reveal the underlying signaling mechanisms in which LRP2 is involved during cardiogenesis. Summary: This paper sheds a new light on the role of the second heart field and neural crest cells in outflow tract formation in the mouse embryo. Depletion of the LPR2 results in a disturbed contribution pattern and subsequent common arterial trunk.
Collapse
Affiliation(s)
- Maria E Baardman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Mathijs V Zwier
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | | | - Wilhelmina S Kerstjens-Frederikse
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam, PO-Box 2040, Rotterdam 3000 CA, The Netherlands Neural Development and Gastroenterology Units, UCL Institute of Child Health, London WC1 NEH, UK
| | - Angelika Jurdzinski
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Beerend P Hierck
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology and Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, PO-Box 9600, Leiden 2300 RC, The Netherlands
| |
Collapse
|
2
|
Fleming TP, Watkins AJ, Sun C, Velazquez MA, Smyth NR, Eckert JJ. Do little embryos make big decisions? How maternal dietary protein restriction can permanently change an embryo’s potential, affecting adult health. Reprod Fertil Dev 2015; 27:684-92. [DOI: 10.1071/rd14455] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Periconceptional environment may influence embryo development, ultimately affecting adult health. Here, we review the rodent model of maternal low-protein diet specifically during the preimplantation period (Emb-LPD) with normal nutrition during subsequent gestation and postnatally. This model, studied mainly in the mouse, leads to cardiovascular, metabolic and behavioural disease in adult offspring, with females more susceptible. We evaluate the sequence of events from diet administration that may lead to adult disease. Emb-LPD changes maternal serum and/or uterine fluid metabolite composition, notably with reduced insulin and branched-chain amino acids. This is sensed by blastocysts through reduced mammalian target of rapamycin complex 1 signalling. Embryos respond by permanently changing the pattern of development of their extra-embryonic lineages, trophectoderm and primitive endoderm, to enhance maternal nutrient retrieval during subsequent gestation. These compensatory changes include stimulation in proliferation, endocytosis and cellular motility, and epigenetic mechanisms underlying them are being identified. Collectively, these responses act to protect fetal growth and likely contribute to offspring competitive fitness. However, the resulting growth adversely affects long-term health because perinatal weight positively correlates with adult disease risk. We argue that periconception environmental responses reflect developmental plasticity and ‘decisions’ made by embryos to optimise their own development, but with lasting consequences.
Collapse
|
3
|
Sun C, Velazquez MA, Marfy-Smith S, Sheth B, Cox A, Johnston DA, Smyth N, Fleming TP. Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 2014; 141:1140-50. [DOI: 10.1242/dev.103952] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mammalian extra-embryonic lineages perform the crucial role of nutrient provision during gestation to support embryonic and fetal growth. These lineages derive from outer trophectoderm (TE) and internal primitive endoderm (PE) in the blastocyst and subsequently give rise to chorio-allantoic and visceral yolk sac placentae, respectively. We have shown maternal low protein diet exclusively during mouse preimplantation development (Emb-LPD) is sufficient to cause a compensatory increase in fetal and perinatal growth that correlates positively with increased adult-onset cardiovascular, metabolic and behavioural disease. Here, to investigate early mechanisms of compensatory nutrient provision, we assessed the influence of maternal Emb-LPD on endocytosis within extra-embryonic lineages using quantitative imaging and expression of markers and proteins involved. Blastocysts collected from Emb-LPD mothers within standard culture medium displayed enhanced TE endocytosis compared with embryos from control mothers with respect to the number and collective volume per cell of vesicles with endocytosed ligand and fluid and lysosomes, plus protein expression of megalin (Lrp2) LDL-family receptor. Endocytosis was also stimulated using similar criteria in the outer PE-like lineage of embryoid bodies formed from embryonic stem cell lines generated from Emb-LPD blastocysts. Using an in vitro model replicating the depleted amino acid (AA) composition found within the Emb-LPD uterine luminal fluid, we show TE endocytosis response is activated through reduced branched-chain AAs (leucine, isoleucine, valine). Moreover, activation appears mediated through RhoA GTPase signalling. Our data indicate early embryos regulate and stabilise endocytosis as a mechanism to compensate for poor maternal nutrient provision.
Collapse
Affiliation(s)
- Congshan Sun
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Miguel A. Velazquez
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Stephanie Marfy-Smith
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Bhavwanti Sheth
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Andy Cox
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - David A. Johnston
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Neil Smyth
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Tom P. Fleming
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plösch T. The Role of Maternal-Fetal Cholesterol Transport in Early Fetal Life: Current Insights1. Biol Reprod 2013; 88:24. [DOI: 10.1095/biolreprod.112.102442] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Schulz LC, Roberts RM. Dynamic changes in leptin distribution in the progression from ovum to blastocyst of the pre-implantation mouse embryo. Reproduction 2011; 141:767-77. [PMID: 21444625 DOI: 10.1530/rep-10-0532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hormone leptin, which is primarily produced by adipose tissue, is a critical permissive factor for multiple reproductive events in the mouse, including implantation. In the CD1 strain, maternally derived leptin from the oocyte becomes differentially distributed among the blastomeres of pre-implantation embryos to create a polarized pattern, a feature consistent with a model of development in which blastomeres are biased toward a particular fate as early as the two-cell stage. In this study, we have confirmed that embryonic leptin is of maternal origin and re-examined leptin distribution in two distinct strains in which embryos were derived after either normal ovulation or superovulation. A polarized pattern of leptin distribution was found in the majority of both CD1 and CF1 embryos (79.1 and 76.9% respectively) collected following superovulation but was reduced, particularly in CF1 embryos (29.8%; P<0.0001), after natural ovulation. The difference in leptin asymmetries in the CF1 strain arose between ovulation and the first cleavage division and was not affected by removal of the zona pellucida. The presence or absence of leptin polarization was not linked to differences in the ability of embryos to normally develop to blastocyst. In the early blastocyst, leptin was confined subcortically to trophectoderm, but on blastocoel expansion, it was lost from the cells. Throughout development, leptin co-localized with LRP2, a multi-ligand transport protein, and its patterning resembled that noted for the maternal-effect proteins OOEP, NLRP5, and PADI6, suggesting that it is a component of the subcortical maternal complex with as yet unknown significance in pre-implantation development.
Collapse
Affiliation(s)
- Laura C Schulz
- Department of Obstetrics, Gynecology and Women's Health, N625A Health Sciences Center, 1 Hospital Drive, Columbia, Missouri 65212, USA.
| | | |
Collapse
|
6
|
Zohn IE, Sarkar AA. The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation. ACTA ACUST UNITED AC 2010; 88:593-600. [DOI: 10.1002/bdra.20705] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Dard N. [Compaction and lineage divergence during mouse preimplantation embryo development]. ACTA ACUST UNITED AC 2008; 36:1133-8. [PMID: 18922731 DOI: 10.1016/j.gyobfe.2008.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/15/2008] [Indexed: 11/17/2022]
Abstract
The preimplantation embryo development leads to the formation of a blastocyst made of two cell lineages: an outer layer of epithelial cells, the trophectoderm, that will give rise to some embryonic annexes, and a mass of undifferentiated cells, the inner cell mass, that will form the foetus and the remaining embryonic annexes. The trophectoderm encloses the inner cell mass and protects it from the external medium. Moreover, after hatching, the trophectoderm invades the uterine tissue, a crucial step for the implantation of the embryo. Therefore, the divergence between these two lineages is of crucial importance for the emergence of the foetus itself and for the postimplantation development to take place correctly. The setting up of cell polarity during compaction at the eight-cell stage allows asymmetric divisions to take place, thereby leading to lineage divergence. Phenotypic properties of these two cell populations are progressively reinforced through cell-cell interactions, outer cells undergoing epithelial differentiation while inner cells remain undifferentiated. Although cellular mechanisms controlling the divergence of the first two lineages are quite well known, important efforts have been carried out this last decade to identify the molecular machinery involved in this process and will be presented in this review.
Collapse
Affiliation(s)
- N Dard
- CNRS, UMR7622, Laboratoire Biologie du Développement, UPMC Université Paris-6, quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
8
|
Eckert JJ, Fleming TP. Tight junction biogenesis during early development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:717-28. [DOI: 10.1016/j.bbamem.2007.09.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 01/12/2023]
|
9
|
Gerbe F, Cox B, Rossant J, Chazaud C. Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst. Dev Biol 2008; 313:594-602. [DOI: 10.1016/j.ydbio.2007.10.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/09/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
10
|
Yang DH, Cai KQ, Roland IH, Smith ER, Xu XX. Disabled-2 is an epithelial surface positioning gene. J Biol Chem 2007; 282:13114-22. [PMID: 17339320 DOI: 10.1074/jbc.m611356200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of the primitive endoderm layer on the surface of the inner cell mass is one of the earliest epithelial morphogenesis in mammalian embryos. In mouse embryos deficient of Disabled-2 (Dab2), the primitive endoderm cells lose the ability to position on the surface, resulting in defective morphogenesis. Embryonic stem cells lacking Dab2 are also unable to position on the surface of cell aggregates and fail to form a primitive endoderm outer layer in the embryoid bodies. The cellular function of Dab2, a cargo-selective adaptor, in mediating endocytic trafficking of clathrin-coated vesicles is well established. We show here that Dab2 mediates directional trafficking and polarized distribution of cell surface proteins such as megalin and E-cadherin and propose that loss of polarity is the underlying mechanism for the loss of epithelial cell surface positioning in Dab2-deficient embryos and embryoid bodies. Thus, the findings indicate that Dab2 is a surface positioning gene and suggest a novel mechanism of epithelial cell surface targeting.
Collapse
Affiliation(s)
- Dong-Hua Yang
- Ovarian Cancer and Tumor Cell Biology Programs, Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
11
|
Fisher CE, Howie SEM. The role of megalin (LRP-2/Gp330) during development. Dev Biol 2006; 296:279-97. [PMID: 16828734 DOI: 10.1016/j.ydbio.2006.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/21/2006] [Accepted: 06/05/2006] [Indexed: 11/17/2022]
Abstract
Megalin (LRP-2/GP330), a member of the LDL receptor family, is an endocytic receptor expressed mainly in polarised epithelial cells. Identified as the pathogenic autoantigen of Heymann nephritis in rats, its functions have been studied in greatest detail in adult mammalian kidney, but there is increasing recognition of its involvement in embryonic development. The megalin homologue LRP-1 is essential for growth and development in Caenorhabditis elegans and megalin plays a role in CNS development in zebrafish. There is now also evidence for a homologue in Drosophila. However, most research concerns mammalian embryogenesis; it is widely accepted to be important during forebrain development and the developing renal proximal tubule. Megalin is also expressed in lung, eye, intestine, uterus, oviduct, and male reproductive tract. It is found in yolk sacs and the outer cells of pre-implantation mouse embryos, where interactions with cubilin result in nutrient endocytosis, and it may be important during implantation. Models for megalin interaction(s) with Sonic Hedgehog (Shh) have been proposed. The importance of Shh signalling during embryogenesis is well established; how and when megalin interacts with Shh is becoming a pertinent question in developmental biology.
Collapse
Affiliation(s)
- Carolyn E Fisher
- Centre for Inflammation Research, Queen's Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH 16 4JT, Scotland, UK.
| | | |
Collapse
|
12
|
Yang DH, Smith ER, Roland IH, Sheng Z, He J, Martin WD, Hamilton TC, Lambeth JD, Xu XX. Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev Biol 2002; 251:27-44. [PMID: 12413896 DOI: 10.1006/dbio.2002.0810] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The signal transduction adapter protein Disabled-2 (Dab2) is one of the two mammalian orthologs of the Drosophila Disabled. The brain-specific Disabled-1 (Dab1) functions in positional organization of brain cells during development. Dab2 is widely distributed and is highly expressed in many epithelial cell types. The dab2 gene was interrupted by in-frame insertion of beta-galactosidase (LacZ) in embryonic stem cells and transgenic mice were produced. Dab2 expression was first observed in the primitive endoderm at E4.5, immediately following implantation. The homozygous Dab2-deficient mutant is embryonic lethal (earlier than E6.5) due to defective cell positioning and structure formation of the visceral endoderm. In E5.5 dab2 (-/-) conceptus, visceral endoderm-like cells are present in the deformed primitive egg cylinder; however, the visceral endoderm cells are not organized, the cells of the epiblast have not expanded, and the proamniotic cavity fails to form. Disorganization of the visceral endodermal layer is evident, as cells with positive visceral endoderm markers are scattered throughout the dab2 (-/-) conceptus. Only degenerated remains were observed at E6.5 for dab2 (-/-) embryos, and by E7.5, the defective embryos were completely reabsorbed. In blastocyst in vitro culture, initially cells with characteristics of endoderm, trophectoderm, and inner cell mass were observed in the outgrowth of the hatched dab2 (-/-) blastocysts. However, the dab2 (-/-) endodermal cells are much more dispersed and disorganized than those from wild-type blastocysts, the inner cell mass fails to expand, and the outgrowth degenerates by day 7. Thus, Dab2 is required for visceral endodermal cell organization during early mouse development. The absence of an organized visceral endoderm in Dab2-deficient conceptus leads to the growth failure of the inner cell mass. We suggest that Dab2 functions in a signal pathway to regulate endodermal cell organization using endocytosis of ligands from the blastocoel cavity as a positioning cue.
Collapse
Affiliation(s)
- Dong-Hua Yang
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 2001; 280:F562-73. [PMID: 11249847 DOI: 10.1152/ajprenal.2001.280.4.f562] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The multiligand, endocytic receptors megalin and cubilin are colocalized in the renal proximal tubule. They are heavily expressed in the apical endocytic apparatus. Megalin is a 600-kDa transmembrane protein belonging to the low-density lipoprotein-receptor family. The cytoplasmic tail contains three NPXY motifs that mediate the clustering in coated pits and are possibly involved in signaling functions. Cubilin, also known as the intestinal intrinsic factor-cobalamin receptor, is a 460-kDa receptor with no transmembrane domain and no known signal for endocytosis. Because the two receptors bind each other with high affinity and colocalize in several tissues, it is highly conceivable that megalin mediates internalization of cubilin and its ligands. Both receptors are important for normal tubular reabsorption of proteins, including albumin. Among the proteins normally filtered in the glomeruli, cubilin has been shown to bind albumin, immunoglobulin light chains, and apolipoprotein A-I. The variety of filtered ligands identified for megalin include vitamin-binding proteins, hormones, enzymes, apolipoprotein H, albumin, and beta(2)- and alpha(1)-microglobulin. Loss of these proteins and vitamins in the urine of megalin-deficient mice illustrates the physiological importance of this receptor.
Collapse
Affiliation(s)
- E I Christensen
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | |
Collapse
|
14
|
Louvet-Vallée S, Dard N, Santa-Maria A, Aghion J, Maro B. A major posttranslational modification of ezrin takes place during epithelial differentiation in the early mouse embryo. Dev Biol 2001; 231:190-200. [PMID: 11180962 DOI: 10.1006/dbio.2000.0147] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The preimplantation development of the mouse embryo leads to the formation of two populations of cells: the trophectoderm, which is a perfect epithelium, and the inner cell mass. The divergence between these two lineages is the result of asymmetric divisions, which can occur after blastomere polarization at compaction. The apical pole of microvilli is the only asymmetric feature maintained during mitosis and polarity is reestablished only in daughter cells that inherit all or a sufficient part of this pole. To analyze the role of ezrin in the formation and stabilization of the pole of microvilli, we isolated and cultured inner cell masses (ICM). These undifferentiated cells can differentiate very quickly into epithelial cells. After isolation of the ICMs, ezrin relocalizes at the cell cortex before the formation of microvilli. This redistribution occurs in the absence of protein synthesis. The formation of microvilli at the apical surface of the outer cells of ICM correlates with a major posttranslational modification of ezrin. We show here that this posttranslational modification is not controlled by a serine/threonine kinase but an O-glycosylation may partially contribute to it. These data suggest that ezrin has at least two roles during development. First, ezrin may be involved in the formation of microvilli because it localizes at the cell cortex before microvilli appear in ICMs. Second, ezrin may stabilize the pole of microvilli because it is modified posttranslationally when microvilli form.
Collapse
Affiliation(s)
- S Louvet-Vallée
- Laboratoire de Biologie Cellulaire du Développement, UMR 7622, CNRS-Université Pierre et Marie Curie, 9 quai Saint-Bernard, Paris Cedex 05, 75252, France
| | | | | | | | | |
Collapse
|
15
|
Christensen EI, Birn H, Verroust P, Moestrup SK. Membrane receptors for endocytosis in the renal proximal tubule. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 180:237-84. [PMID: 9496636 DOI: 10.1016/s0074-7696(08)61772-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The renal proximal tubule exhibits a very extensive apical endocytic apparatus consisting of an elaborate network of coated pits and small coated and noncoated endosomes. In addition, the cells contain a large number of late endosomes/prelysosomes, lysosomes, and so-called dense apical tubules involved in receptor recycling from the endosomes to the apical plasma membrane. This endocytic apparatus is involved in the reabsorption of molecules filtered in the glomeruli. The process is very effective as demonstrated by the fact that although several grams of protein are filtered daily in the human glomeruli, human urine is virtually devoid of proteins under physiological conditions. Several key receptors appear to be involved in this function, which serves not only to conserve protein as such for the organism but also to reabsorb vital substances such as different vitamins in complex with their binding proteins. Recent research has established megalin, a 600-kDa protein belonging to the LDL receptor family, as probably the most important receptor in this process in the proximal tubule mediating endocytosis of a large variety of ligands and therefore classifying it as a scavenger receptor. More specific receptors like the folate receptor, IGF-II/Man-6-P receptor, and gp280/IFR, identical to the intrinsic factor receptor, are also functioning in the apical endocytic pathway of renal proximal tubules. A better understanding of these receptors will give us new insight into these very important processes for the organism.
Collapse
|
16
|
Christensen EI, Birn H, Verroust P, Moestrup SK. Megalin-mediated endocytosis in renal proximal tubule. Ren Fail 1998; 20:191-9. [PMID: 9574443 DOI: 10.3109/08860229809045102] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Megalin, a 600 kDa membrane protein belonging to the IDL receptor family is highly expressed in the endocytic pathway of renal proximal tubules. In addition, this receptor is found in several other epithelia facing transcellular fluids but is also expressed in the parathyroid glands. Recent studies have established this protein as probably the most important receptor for endocytosis of macromolecules filtered in the renal glomeruli. The ligands reported to bind to megalin consist of a variety of different substances including albumin, vitamin-carrier complexes, proteinases and proteinase-inhibitor complexes, lipoprotein particles, receptor associated protein (RAP), different drugs and calcium.
Collapse
|
17
|
|
18
|
Pampfer S, Vanderheyden I, McCracken JE, Vesela J, De Hertogh R. Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-alpha in vitro. Development 1997; 124:4827-36. [PMID: 9428419 DOI: 10.1242/dev.124.23.4827] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The morphogenetic function of the transient phase of cell death that occurs during blastocyst maturation is not known but it is thought that its regulation results from a delicate balance between survival and lethal signals in the uterine milieu. In this paper, we show that blastocysts from diabetic rats have a higher incidence of dead cells than control embryos. Differential lineage staining indicated that increased nuclear fragmentation occurred mainly in the inner cell mass. In addition, terminal transferase-mediated dUTP nick end labeling (TUNEL) demonstrated an increase in the incidence of non-fragmented DNA-damaged nuclei in these blastocysts. Analysis of the expression of clusterin, a gene associated with apoptosis, by quantitative reverse transcription-polymerase chain reaction detected an increase in the steady-state level of its transcripts in blastocysts from diabetic rats. In situ hybridization revealed that about half the cells identified as expressing clusterin mRNA exhibited signs of nuclear fragmentation. In vitro experiments demonstrated that high D-glucose increased nuclear fragmentation, TUNEL labeling and clusterin transcription. Tumor necrosis factor-alpha (TNF-alpha), a cytokine whose synthesis is up-regulated in the diabetic uterus, did not induce nuclear fragmentation nor clusterin expression but increased the incidence of TUNEL-positive nuclei. The data suggest that excessive cell death in the blastocyst, most probably resulting from the overstimulation of a basal suicidal program by such inducers as glucose and TNF-alpha, may be a contributing factor of the early embryopathy associated with maternal diabetes.
Collapse
Affiliation(s)
- S Pampfer
- Physiology of Reproduction Research Unit (OBST 5330) University of Louvain Medical School, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Stefansson S, Chappell DA, Argraves KM, Strickland DK, Argraves WS. Glycoprotein 330/low density lipoprotein receptor-related protein-2 mediates endocytosis of low density lipoproteins via interaction with apolipoprotein B100. J Biol Chem 1995; 270:19417-21. [PMID: 7642623 DOI: 10.1074/jbc.270.33.19417] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ability of glycoprotein 330/low density lipoprotein receptor-related protein-2 (LRP-2) to function as a lipoprotein receptor was investigated using cultured mouse F9 teratocarcinoma cells. Treatment with retinoic acid and dibutyryl cyclic AMP, which induces F9 cells to differentiate into endoderm-like cells, produced a 50-fold increase in the expression of LRP-2. Levels of the other members of the low density lipoprotein (LDL) receptor (LDLR) family, including LDLR, the very low density lipoprotein receptor, and LRP-1, were reduced. When LDL catabolism was examined in these cells, it was found that the treated cells endocytosed and degraded at 10-fold higher levels than untreated cells. The increased LDL uptake coincided with increased LRP-2 activity of the treated cells, as measured by uptake of both 125I-labeled monoclonal LRP-2 antibody and the LRP-2 ligand prourokinase. The ability of LDL to bind to LRP-2 was demonstrated by solid-phase binding assays. This binding was inhibitable by LRP-2 antibodies, receptor-associated protein (the antagonist of ligand binding for all members of the LDLR family), or antibodies to apoB100, the major apolipoprotein component of LDL. In cell assays, LRP-2 antibodies blocked the elevated 125I-LDL internalization and degradation observed in the retinoic acid/dibutyryl cyclic AMP-treated F9 cells. A low level of LDL endocytosis existed that was likely mediated by LDLR since it could not be inhibited by LRP-2 antibodies, but was inhibited by excess LDL, receptor-associated protein, or apoB100 antibody. The results indicate that LRP-2 can function to mediate cellular endocytosis of LDL, leading to its degradation. LRP-2 represents the second member of the LDLR family identified as functioning in the catabolism of LDL.
Collapse
Affiliation(s)
- S Stefansson
- Biochemistry Department, J.H. Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | |
Collapse
|