1
|
An Autocrine Negative Feedback Loop Inhibits Dictyostelium discoideum Proliferation through Pathways Including IP3/Ca 2. mBio 2021; 12:e0134721. [PMID: 34154396 PMCID: PMC8262924 DOI: 10.1128/mbio.01347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how eukaryotic cells can sense their number or spatial density and stop proliferating when the local density reaches a set value. We previously found that Dictyostelium discoideum accumulates extracellular polyphosphate to inhibit its proliferation, and this requires the G protein-coupled receptor GrlD and the small GTPase RasC. Here, we show that cells lacking the G protein component Gβ, the Ras guanine nucleotide exchange factor GefA, phosphatase and tensin homolog (PTEN), phospholipase C (PLC), inositol 1,4,5-trisphosphate (IP3) receptor-like protein A (IplA), polyphosphate kinase 1 (Ppk1), or the TOR complex 2 component PiaA have significantly reduced sensitivity to polyphosphate-induced proliferation inhibition. Polyphosphate upregulates IP3, and this requires GrlD, GefA, PTEN, PLC, and PiaA. Polyphosphate also upregulates cytosolic Ca2+, and this requires GrlD, Gβ, GefA, RasC, PLC, IplA, Ppk1, and PiaA. Together, these data suggest that polyphosphate uses signal transduction pathways including IP3/Ca2+ to inhibit the proliferation of D. discoideum. IMPORTANCE Many mammalian tissues such as the liver have the remarkable ability to regulate their size and have their cells stop proliferating when the tissue reaches the correct size. One possible mechanism involves the cells secreting a signal that they all sense, and a high level of the signal tells the cells that there are enough of them and to stop proliferating. Although regulating such mechanisms could be useful to regulate tissue size to control cancer or birth defects, little is known about such systems. Here, we use a microbial system to study such a mechanism, and we find that key elements of the mechanism have similarities to human proteins. This then suggests the possibility that we may eventually be able to regulate the proliferation of selected cell types in humans and animals.
Collapse
|
2
|
The Dictyostelium discoideum GPHR ortholog is an endoplasmic reticulum and Golgi protein with roles during development. EUKARYOTIC CELL 2014; 14:41-54. [PMID: 25380752 DOI: 10.1128/ec.00208-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dictyostelium discoideum GPHR (Golgi pH regulator)/Gpr89 is a developmentally regulated transmembrane protein present on the endoplasmic reticulum (ER) and the Golgi apparatus. Transcript levels are low during growth and vary during development, reaching high levels during the aggregation and late developmental stages. The Arabidopsis ortholog was described as a G protein-coupled receptor (GPCR) for abscisic acid present at the plasma membrane, whereas the mammalian ortholog is a Golgi apparatus-associated anion channel functioning as a Golgi apparatus pH regulator. To probe its role in D. discoideum, we generated a strain lacking GPHR. The mutant had different growth characteristics than the AX2 parent strain, exhibited changes during late development, and formed abnormally shaped small slugs and fruiting bodies. An analysis of development-specific markers revealed that their expression was disturbed. The distributions of the endoplasmic reticulum and the Golgi apparatus were unaltered at the immunofluorescence level. Likewise, their functions did not appear to be impaired, since membrane proteins were properly processed and glycosylated. Also, changes in the external pH were sensed by the ER, as indicated by a pH-sensitive ER probe, as in the wild type.
Collapse
|
3
|
Anjard C, Su Y, Loomis WF. The polyketide MPBD initiates the SDF-1 signaling cascade that coordinates terminal differentiation in Dictyostelium. EUKARYOTIC CELL 2011; 10:956-63. [PMID: 21602484 PMCID: PMC3147415 DOI: 10.1128/ec.05053-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/08/2011] [Indexed: 12/24/2022]
Abstract
Dictyostelium uses a wide array of chemical signals to coordinate differentiation as it switches from a unicellular to a multicellular organism. MPBD, the product of the polyketide synthase encoded by stlA, regulates stalk and spore differentiation by rapidly stimulating the release of the phosphopeptide SDF-1. By analyzing specific mutants affected in MPBD or SDF-1 production, we delineated a signal transduction cascade through the membrane receptor CrlA coupled to Gα1, leading to the inhibition of GskA so that the precursor of SDF-1 is released. It is then processed by the extracellular protease of TagB on prestalk cells. SDF-1 apparently acts through the adenylyl cyclase ACG to activate the cyclic AMP (cAMP)-dependent protein kinase A (PKA) and trigger the production of more SDF-1. This signaling cascade shows similarities to the SDF-2 signaling pathway, which acts later to induce rapid spore encapsulation.
Collapse
Affiliation(s)
| | - Yongxuan Su
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0368
| | - William F. Loomis
- Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0368
| |
Collapse
|
4
|
Characterization of the Roco protein family in Dictyostelium discoideum. EUKARYOTIC CELL 2010; 9:751-61. [PMID: 20348387 DOI: 10.1128/ec.00366-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Roco family consists of multidomain Ras-GTPases that include LRRK2, a protein mutated in familial Parkinson's disease. The genome of the cellular slime mold Dictyostelium discoideum encodes 11 Roco proteins. To study the functions of these proteins, we systematically knocked out the roco genes. Previously described functions for GbpC, Pats1, and QkgA (Roco1 to Roco3) were confirmed, while novel developmental defects were identified in roco4- and roco11-null cells. Cells lacking Roco11 form larger fruiting bodies than wild-type cells, while roco4-null cells show strong developmental defects during the transition from mound to fruiting body; prestalk cells produce reduced levels of cellulose, leading to unstable stalks that are unable to properly lift the spore head. Detailed phylogenetic analysis of four slime mold species reveals that QkgA and Roco11 evolved relatively late by duplication of an ancestor roco4 gene (later than approximately 300 million years ago), contrary to the situation with other roco genes, which were already present before the split of the common ancestor of D. discoideum and Polysphondylium pallidum (before approximately 600 million years ago). Together, our data show that the Dictyostelium Roco proteins serve a surprisingly diverse set of functions and highlight Roco4 as a key protein for proper stalk cell formation.
Collapse
|
5
|
Bakthavatsalam D, Choe JM, Hanson NE, Gomer RH. A Dictyostelium chalone uses G proteins to regulate proliferation. BMC Biol 2009; 7:44. [PMID: 19635129 PMCID: PMC2726123 DOI: 10.1186/1741-7007-7-44] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies have shown that organ size, and the proliferation of tumor metastases, may be regulated by negative feedback loops in which autocrine secreted factors called chalones inhibit proliferation. However, very little is known about chalones, and how cells sense them. We previously identified two secreted proteins, AprA and CfaD, which act as chalones in Dictyostelium. Cells lacking AprA or CfaD proliferate faster than wild-type cells, and adding recombinant AprA or CfaD to cells slows their proliferation. RESULTS We show here that cells lacking the G protein components Galpha8, Galpha9, and Gbeta proliferate faster than wild-type cells despite secreting normal or high levels of AprA and CfaD. Compared with wild-type cells, the proliferation of galpha8-, galpha9- and gbeta- cells are only weakly inhibited by recombinant AprA (rAprA). Like AprA and CfaD, Galpha8 and Gbeta inhibit cell proliferation but not cell growth (the rate of increase in mass and protein per nucleus), whereas Galpha9 inhibits both proliferation and growth. galpha8- cells show normal cell-surface binding of rAprA, whereas galpha9- and gbeta- cells have fewer cell-surface rAprA binding sites, suggesting that Galpha9 and Gbeta regulate the synthesis or processing of the AprA receptor. Like other ligands that activate G proteins, rAprA induces the binding of [3H]GTP to membranes, and GTPgammaS inhibits the binding of rAprA to membranes. Both AprA-induced [3H]GTP binding and the GTPgammaS inhibition of rAprA binding require Galpha8 and Gbeta but not Galpha9. Like aprA- cells, galpha8- cells have reduced spore viability. CONCLUSION This study shows that Galpha8 and Gbeta are part of the signal transduction pathway used by AprA to inhibit proliferation but not growth in Dictyostelium, whereas Galpha9 is part of a differealnt pathway that regulates both proliferation and growth, and that a chalone signal transduction pathway uses G proteins.
Collapse
|
6
|
Bakthavatsalam D, Brazill D, Gomer RH, Eichinger L, Rivero F, Noegel AA. A G protein-coupled receptor with a lipid kinase domain is involved in cell-density sensing. Curr Biol 2007; 17:892-7. [PMID: 17481898 DOI: 10.1016/j.cub.2007.04.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 11/30/2022]
Abstract
One mechanism multicellular structures use for controlling cell number [1, 2] involves the secretion and sensing of a factor, such as leptin [3] or myostatin [4], in mammals. Dictyostelium cells secrete autocrine factors for sensing cell density prior to aggregation and multicellular development [5, 6] such as CMF (conditioned-medium factor), which enables starving cells to respond to cAMP pulses [7-9]. Its actions are mediated by two receptors. CMFR1 activates a G protein-independent signaling pathway regulating gene expression [10]. An unknown Galpha1-dependent receptor activates phospholipase C (PLC), which regulates the lifetime of Galpha2-GTP [11-13]. Here, we describe RpkA, an unusual seven-transmembrane receptor that is fused to a C-terminal PIP5 kinase domain and that localizes in membranes of a late endosomal compartment. Loss of RpkA resulted in formation of persistent loose aggregates and altered expression of cAMP-regulated genes. The developmental defect can be rescued by full-length RpkA and the transmembrane domain only. The PIP5 kinase domain is dispensable for the developmental role of RpkA. rpkA- cells secrete and bind CMF but are unable to induce downstream responses. Inactivation of Galpha1, a negative regulator of CMF signaling, rescued the developmental defect of the rpkA- cells, suggesting that RpkA actions are mediated by Galpha1.
Collapse
Affiliation(s)
- Deenadayalan Bakthavatsalam
- Center for Biochemistry, Institute for Biochemistry I, Medical Faculty and Center for Molecular Medicine Cologne, University of Cologne, D-50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Veltman DM, Bosgraaf L, Van Haastert PJM. Unusual Guanylyl Cyclases and cGMP Signaling in Dictyostelium discoideum. VITAMINS AND HORMONES 2004; 69:95-115. [PMID: 15196880 DOI: 10.1016/s0083-6729(04)69004-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
cGMP is used as a second messenger in many eukaryotes. cGMP signaling requires at least three components: Guanylyl cyclases synthesize cGMP from GTP. Specific cGMP-binding proteins propagate the signal, usually by phosphorylation of their target proteins. Finally, phosphodiesterases terminate the cGMP signal by hydrolyzing cGMP to 5'cGMP. Recently, all guanylyl cyclases and most of the cGMP target proteins and phosphodiesterases of the cellular slime mold Dictyostelium discoideum have been identified. Characterization of these enzymes show them to be structurally and evolutionarily distinct from their bacterial and metazoan counterparts. In this chapter we review the properties of the Dictyostelium guanylyl cyclases and discuss their role in the unusual cGMP pathway of Dictyostelium.
Collapse
Affiliation(s)
- Douwe M Veltman
- Department of Biochemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
8
|
|
9
|
Aubry L, Firtel R. Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol 1999; 15:469-517. [PMID: 10611970 DOI: 10.1146/annurev.cellbio.15.1.469] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In Dictyostelium amoebae, cell-type differentiation, spatial patterning, and morphogenesis are controlled by a combination of cell-autonomous mechanisms and intercellular signaling. A chemotactic aggregation of approximately 10(5) cells leads to the formation of a multicellular organism. Cell-type differentiation and cell sorting result in a small number of defined cell types organized along an anteroposterior axis. Finally, a mature fruiting body is created by the terminal differentiation of stalk and spore cells. Analysis of the regulatory program demonstrates a role for several molecules, including GSK-3, signal transducers and activators of transcription (STAT) factors, and cAMP-dependent protein kinase (PKA), that control spatial patterning in metazoans. Unexpectedly, two component systems containing histidine kinases and response regulators also play essential roles in controlling Dictyostelium development. This review focuses on the role of cAMP, which functions intracellularly to mediate the activity of PKA, an essential component in aggregation, cell-type specification, and terminal differentiation. Cytoplasmic cAMP levels are controlled through both the regulated activation of adenylyl cyclases and the degradation by a phosphodiesterase containing a two-component system response regulator. Extracellular cAMP regulates G-protein-dependent and -independent pathways to control aggregation as well as the activity of GSK-3 and the transcription factors GBF and STATa during multicellular development. The integration of these pathways with others regulated by the morphogen DIF-1 to control cell fate decisions are discussed.
Collapse
Affiliation(s)
- L Aubry
- CEA-Grenoble DBMS/BBSI, France
| | | |
Collapse
|
10
|
Srinivasan J, Gundersen RE, Hadwiger JA. Activated Galpha subunits can inhibit multiple signal transduction pathways during Dictyostelium development. Dev Biol 1999; 215:443-52. [PMID: 10545250 DOI: 10.1006/dbio.1999.9474] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations impairing the GTPase activity of G protein Galpha subunits can result in activated Galpha subunits that affect signal transduction and cellular responses and, in some cases, promote tumor formation. An analogous mutation in the Dictyostelium Galpha4 subunit gene (Q200L substitution) was constructed and found to inhibit Galpha4-mediated responses to folic acid, including the accumulation of cyclic nucleotides and chemotactic cell movement. The Galpha4-Q200L subunit also severely inhibited responses to cAMP, including cyclic nucleotide accumulation, cAMP chemotaxis, and cellular aggregation. An analogous mutation in the Galpha2 subunit (Q208L substitution), previously reported to inhibit cAMP responses (K. Okaichi et al., 1992, Mol. Biol. Cell 3, 735-747), was also found to partially inhibit folic acid chemotaxis. Chemotactic responses to folic acid and cAMP and developmental aggregation were also inhibited by a mutant Galpha5 subunit with the analogous alteration (Q199L substitution). All aggregation-defective Galpha mutants were capable of multicellular development after a temporary incubation at 4 degrees C and this development was found to be dependent on wild-type Galpha4 function. This study indicates that mutant Galpha subunits can inhibit signal transduction pathways mediated by other Galpha subunits.
Collapse
Affiliation(s)
- J Srinivasan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078-3020, USA
| | | | | |
Collapse
|
11
|
Chen TL, Wolf WA, Chisholm RL. Cell-type-specific rescue of myosin function during Dictyostelium development defines two distinct cell movements required for culmination. Development 1998; 125:3895-903. [PMID: 9729497 DOI: 10.1242/dev.125.19.3895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutant Dictyostelium cells lacking any of the component polypeptides of myosin II exhibit developmental defects. To define myosin's role in establishing Dictyostelium's developmental pattern, we have rescued myosin function in a myosin regulatory light chain null mutant (mlcR-) using cell-type-specific promoters. While mlcR- cells fail to progress beyond the mound stage, expression of RLC from the prestalk promoter, ecmA, produces culminants with normal stalks but with defects in spore cell localization. When GFP-marked prestalk and prespore cells expressing ecmA-RLC are mixed with wild-type cells, the mislocalization of prestalk cells, but not prespore cells, is rescued. Time-lapse video recording of ecmA-RLC cells showed that the posterior prespore zone failed to undergo a contraction important for the upward movement of prespore cells. Prespore cells marked with green fluorescent protein (GFP) failed to move toward the tip with the spiral motion typical of wild type. In contrast, expression of RLC in prespore cells using the psA promoter produced balloon-like structures reminiscent of sorocarps but lacking stalks. GFP-labeled prespore cells showed a spiral movement toward the top of the structures. Expression of RLC from the psA promoter restores the normal localization of psA-GFP cells, but not ecmA-GFP cells. These results define two distinct, myosin-dependent movements that are required for establishing a Dictyostelium fruiting body: stalk extension and active movement of the prespore zone that ensures proper placement of the spores atop the stalk. The approach used in these studies provides a direct means of testing the role of cell motility in distinct cell types during a morphogenetic program.
Collapse
Affiliation(s)
- T L Chen
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
12
|
Brazill DT, Lindsey DF, Bishop JD, Gomer RH. Cell density sensing mediated by a G protein-coupled receptor activating phospholipase C. J Biol Chem 1998; 273:8161-8. [PMID: 9525920 DOI: 10.1074/jbc.273.14.8161] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When the unicellular eukaryote Dictyostelium discoideum starves, it senses the local density of other starving cells by simultaneously secreting and sensing a glycoprotein called conditioned medium factor (CMF). When the density of starving cells is high, the corresponding high density of CMF permits signal transduction through cAR1, the chemoattractant cAMP receptor. cAR1 activates a heterotrimeric G protein whose alpha-subunit is Galpha2. CMF regulates cAMP signal transduction in part by regulating the lifetime of the cAMP-stimulated Galpha2-GTP configuration. We find here that guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) inhibits the binding of CMF to membranes, suggesting that the putative CMF receptor is coupled to a G protein. Cells lacking Galpha1 (Galpha1 null) do not exhibit GTPgammaS inhibition of CMF binding and do not exhibit CMF regulation of cAMP signal transduction, suggesting that the putative CMF receptor interacts with Galpha1. Work by others has suggested that Galpha1 inhibits phospholipase C (PLC), yet when cells lacking either Galpha1 or PLC were starved at high cell densities (and thus in the presence of CMF), they developed normally and had normal cAMP signal transduction. We find that CMF activates PLC. Galpha1 null cells starved in the absence or presence of CMF behave in a manner similar to control cells starved in the presence of CMF in that they extend pseudopods, have an activated PLC, have a low cAMP-stimulated GTPase, permit cAMP signal transduction, and aggregate. Cells lacking Gbeta have a low PLC activity that cannot be stimulated by CMF. Cells lacking PLC exhibit IP3 levels and cAMP-stimulated GTP hydrolysis rates intermediate to what is observed in wild-type cells starved in the absence or in the presence of an optimal amount of CMF. We hypothesize that CMF binds to its receptor, releasing Gbetagamma from Galpha1. This activates PLC, which causes the Galpha2 GTPase to be inhibited, prolonging the lifetime of the cAMP-activated Galpha2-GTP configuration. This, in turn, allows cAR1-mediated cAMP signal transduction to take place.
Collapse
Affiliation(s)
- D T Brazill
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, MS-140, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | |
Collapse
|
13
|
Milne JL, Kim JY, Devreotes PN. Chemoattractant receptor signaling: G protein-dependent and -independent pathways. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997; 31:83-104. [PMID: 9344244 DOI: 10.1016/s1040-7952(97)80011-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J L Milne
- Department of Biological Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | |
Collapse
|
14
|
Maeda M, Firtel RA. Activation of the mitogen-activated protein kinase ERK2 by the chemoattractant folic acid in Dictyostelium. J Biol Chem 1997; 272:23690-5. [PMID: 9295311 DOI: 10.1074/jbc.272.38.23690] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Dictyostelium MAP kinase ERK2 is activated by extracellular cAMP in aggregation-competent cells and is required for receptor activation of adenylyl cyclase (Maeda, M., Aubry, L., Insall, R., Gaskins, C., Devreotes, P. N., and Firtel, R. A. (1996) J. Biol. Chem. 271, 3351-3354; Segall, J., Kuspa, A., Shaulsky, G., Ecke, M., Maeda, M., Gaskins, C., Firtel, R., and Loomis, W. (1995) J. Cell Biol. 128, 405-413). This cAMP-dependent activation of ERK2 is mediated by the serpentine, G protein-coupled cAMP receptors. However, ERK2 activation by cAMP is at least partially heterotrimeric G protein-independent, with a level of activation in cells lacking the sole Gbeta subunit or the G protein-coupled cAMP receptors-coupled Galpha2 subunit that is approximately 50% that of wild-type cells (Maeda, M., Aubry, L., Insall, R., Gaskins, C., Devreotes, P. N., and Firtel, R. A. (1996) J. Biol. Chem. 271, 3351-3354; Segall, J., Kuspa, A., Shaulsky, G., Ecke, M., Maeda, M., Gaskins, C., Firtel, R., and Loomis, W. (1995) J. Cell Biol. 128, 405-413). Folic acid, a chemoattractant in the vegetative cells that enables amoebae to find bacteria in the wild, also triggers the activation of adenylyl cyclase, which is impaired in the vegetative cells lacking the Galpha protein subunit Galpha4 (Hadwiger, J., Lee, S., and Firtel, R. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 10566-10570). In this study, we show that folic acid activates ERK2 in developmentally regulated manner and is required for ERK2 stimulation of adenylyl cyclase activity. Maximum levels of folate-stimulated ERK2 activity occur in cells from very early in development, prior to aggregation, and again at the tipped aggregate stages, corresponding to the stages in which folate receptors and the coupled Galpha subunit Galpha4 are maximally expressed. During the activation by folic acid, ERK2 is phosphorylated on tyrosine residue(s) and contemporaneously shows a mobility shift on SDS-PAGE. Interestingly, this activation is not elicited in the absence of Gbeta subunits, in contrast to the response to cAMP. This response also requires the Galpha4 subunit known to be required for other folic acid-mediated responses (Hadwiger, J., Lee, S., and Firtel, R. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 10566-10570). Furthermore, we show that the activation of ERK2 by cAMP is independent of the Galpha4 subunit, while the activation of ERK2 by folate is independent of Galpha2. Taken together, these data indicate that there are at least two pathways of ERK2 activation, heterotrimeric G protein-dependent and -independent pathways.
Collapse
Affiliation(s)
- M Maeda
- Department of Biology, Graduate School of Science, Osaka University, Machikaneyama-cho 1-16, Toyonaka, Osaka 560, Japan
| | | |
Collapse
|
15
|
Firtel RA. Interacting signaling pathways controlling multicellular development in Dictyostelium. Curr Opin Genet Dev 1996; 6:545-54. [PMID: 8939724 DOI: 10.1016/s0959-437x(96)80082-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
cAMP functions as the key extracellular signaling molecule controlling Dictyostelium development acting through classic G-protein-coupled/serpentine receptors. Whereas aggregation is controlled by nanomolar pulses of cAMP, a more continuous micromolar signal controls multicellular differentiation by activating a transcriptional cascade via a receptor-mediated but non G-protein-coupled pathway. Potential mechanisms by which extracellular cAMP functions to differentially control aggregation followed by morphogenesis and cell-type differentiation are discussed. This review also summarizes new findings elucidating pathways controlling cell-type regulation in this organism, including signaling cascades mediated by glycogen synthase kinase 3 and cAMP-dependent protein kinase, key regulators of cell-type differentiation in metazoans, and newly identified transcription factors.
Collapse
Affiliation(s)
- R A Firtel
- Department of Biology, Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0634, USA.
| |
Collapse
|
16
|
Abstract
Over the past year, the thrust of work in the field of heterotrimeric G proteins has been primarily in the following areas: first, resolution of their three-dimensional structures by X-ray crystallography; second, elucidation of the effect of lipid modifications on the Galpha and Ggamma subunits; third, understanding the role of the Gbetagamma dimer in stimulation of a variety of effectors following receptor activation; and fourth, identification of the points of contact among the Galpha, Gbeta, and Ggamma subunits, and between these subunits and their cognate receptor or effector molecules.
Collapse
Affiliation(s)
- H E Hamm
- University of Illinois at Chicago, Department of Physiology and Biophysics, 835 S Wolcott, Chicago, IL 60612, USA
| | | |
Collapse
|
17
|
Abstract
Dictyostelium discoideum displays chemoattractant-directed cell migration typical of many higher cell types. Signaling through chemoattractant receptors involves a standard G-protein-linked pathway. Genetic analysis has distinguished essential and dispensable components and demonstrated that some signaling events are independent of G proteins. Genetic analysis has also led to the identification of additional genes involved in chemosensory transduction. Further studies on the newly discovered components and pathways should help in elucidating the molecular mechanisms of eukaryotic chemotaxis.
Collapse
Affiliation(s)
- M Y Chen
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
18
|
Firtel RA. Integration of signaling information in controlling cell-fate decisions in Dictyostelium. Genes Dev 1995; 9:1427-44. [PMID: 7601348 DOI: 10.1101/gad.9.12.1427] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R A Firtel
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| |
Collapse
|
19
|
Schnitzler GR, Briscoe C, Brown JM, Firtel RA. Serpentine cAMP receptors may act through a G protein-independent pathway to induce postaggregative development in Dictyostelium. Cell 1995; 81:737-45. [PMID: 7774015 DOI: 10.1016/0092-8674(95)90535-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription factor G box-binding factor (GBF) is required for the developmental switch between aggregative and postaggregative gene expression, cell-type differentiation, and morphogenesis. We show that constitutive expression of GBF allows ectopic expression of postaggregative genes, but only in response to exogenous cAMP. GBF activation requires the serpentine cAMP receptors required for aggregation, but not the coupled G alpha 2 or the G beta subunit, suggesting a novel signaling pathway. In response to high cAMP, g alpha 2-null cells can bypass the aggregation stage, expressing cell type-specific genes and forming fruiting bodies. Our results demonstrate that the same receptors regulate aggregation and cell-type differentiation, but via distinct pathways depending upon whether the receptor perceives a pulsatile or sustained signal.
Collapse
Affiliation(s)
- G R Schnitzler
- Department of Biology, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|