1
|
Klementz BC, Brenneis G, Hinne IA, Laumer EM, Neu SM, Hareid GM, Gainett G, Setton EVW, Simian C, Vrech DE, Joyce I, Barnett AA, Patel NH, Harvey MS, Peretti AV, Gulia-Nuss M, Sharma PP. A Novel Expression Domain of extradenticle Underlies the Evolutionary Developmental Origin of the Chelicerate Patella. Mol Biol Evol 2024; 41:msae188. [PMID: 39235104 PMCID: PMC11422720 DOI: 10.1093/molbev/msae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2, suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2, disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio, which lacks dachshund-2. Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle. Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology.
Collapse
Affiliation(s)
- Benjamin C Klementz
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Georg Brenneis
- Unit Integrative Zoologie, Department Evolutionsbiologie, Universität Wien, Vienna, Austria
| | - Isaac A Hinne
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Ethan M Laumer
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Sophie M Neu
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Grace M Hareid
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Guilherme Gainett
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children,'s Hospital, Boston, MA, USA
| | - Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Catalina Simian
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - David E Vrech
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Isabella Joyce
- Department of Biology, DeSales University, Center Valley, PA, USA
| | - Austen A Barnett
- Department of Biology, DeSales University, Center Valley, PA, USA
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, USA
- Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
| | - Alfredo V Peretti
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Cientifícas Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Klementz BC, Brenneis G, Hinne IA, Laumer EM, Neu SM, Hareid GM, Gainett G, Setton EVW, Simian C, Vrech DE, Joyce I, Barnett AA, Patel NH, Harvey MS, Peretti AV, Gulia-Nuss M, Sharma PP. A novel expression domain of extradenticle underlies the evolutionary developmental origin of the chelicerate patella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594547. [PMID: 38826321 PMCID: PMC11142128 DOI: 10.1101/2024.05.16.594547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2 , suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2 , disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio , which lacks dachshund-2 . Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle . Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology.
Collapse
|
3
|
Ning Y, Duo S, Lin X, Zhang H, Fei J, Zhang B, Zeng Y, Xie D, Chen J, Liu X, Han C. Transcription factor PBX4 regulates limb development and haematopoiesis in mice. Cell Prolif 2024; 57:e13580. [PMID: 38230761 PMCID: PMC11056705 DOI: 10.1111/cpr.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 01/18/2024] Open
Abstract
The mammalian Pre-B cell leukaemia transcription factors 1-4 (PBX1-4) constitutes the PBC class of the homeodomain (HD)-containing proteins, which play important roles in diverse developmental processes. The functions and the underlying molecular mechanisms of PBX1-3 but not PBX4 have been extensively studied, and they have been reported to direct essential morphogenetic processes and organogenesis. In the present study, we generated knockin mice of FLAG-tagged PBX4 and the Pbx4 knockout (KO) mice and carried out in-depth characterisation of PBX4 expression and function. PBX4 was initially detected only in the testis among several organs of the adult mice and was expressed in spermatocytes and spermatids. However, no abnormality in spermatogenesis, but growth retardation and premature death after birth were observed in most adult Pbx4 KO mice. These animals were inactive and had shorter hindlimbs and lower numbers of reticulocytes and lymphocytes, probably caused by abnormalities at earlier developmental stages. Pbx4 mRNAs were indeed detected in several embryonic cell types related to limb development by in situ hybridisation and single-cell RNA-sequencing analysis. Pbx4 protein was also detected in the bone marrow of adult mice with a lower level compared with that in the testis. PBX4 preferentially binds to the promoters of a large number of genes including those for other HD-containing proteins and ribosomal proteins whose mutations are related to anaemia. PBX4-binding sites are enriched in motifs similar to those of other HD-containing proteins such as PKNOX1 indicating that PBX4 may also act as a co-transcription factor like other PBC proteins. Together, these results show that PBX4 participates in limb development and haematopoiesis while its function in spermatogenesis has not been revealed by gene KO probably due to the complementary effects of other genes.
Collapse
Affiliation(s)
- Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Shuguang Duo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Xiwen Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Hongbo Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Bao Zhang
- The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Medical College of Jiaying UniversityMeizhouChina
| | - Yanyun Zeng
- Department of Pathology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Dan Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Xiaowei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Gurley NJ, Szymanski RA, Dowen RH, Butcher TA, Ishiyama N, Peifer M. Exploring the evolution and function of Canoe's intrinsically disordered region in linking cell-cell junctions to the cytoskeleton during embryonic morphogenesis. PLoS One 2023; 18:e0289224. [PMID: 37535684 PMCID: PMC10399776 DOI: 10.1371/journal.pone.0289224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
One central question for cell and developmental biologists is defining how epithelial cells can change shape and move during embryonic development without tearing tissues apart. This requires robust yet dynamic connections of cells to one another, via the cell-cell adherens junction, and of junctions to the actin and myosin cytoskeleton, which generates force. The last decade revealed that these connections involve a multivalent network of proteins, rather than a simple linear pathway. We focus on Drosophila Canoe, homolog of mammalian Afadin, as a model for defining the underlying mechanisms. Canoe and Afadin are complex, multidomain proteins that share multiple domains with defined and undefined binding partners. Both also share a long carboxy-terminal intrinsically disordered region (IDR), whose function is less well defined. IDRs are found in many proteins assembled into large multiprotein complexes. We have combined bioinformatic analysis and the use of a series of canoe mutants with early stop codons to explore the evolution and function of the IDR. Our bioinformatic analysis reveals that the IDRs of Canoe and Afadin differ dramatically in sequence and sequence properties. When we looked over shorter evolutionary time scales, we identified multiple conserved motifs. Some of these are predicted by AlphaFold to be alpha-helical, and two correspond to known protein interaction sites for alpha-catenin and F-actin. We next identified the lesions in a series of eighteen canoe mutants, which have early stop codons across the entire protein coding sequence. Analysis of their phenotypes are consistent with the idea that the IDR, including the conserved motifs in the IDR, are critical for protein function. These data provide the foundation for further analysis of IDR function.
Collapse
Affiliation(s)
- Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rachel A. Szymanski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert H. Dowen
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Noboru Ishiyama
- Launchpad Therapeutics, Inc., Cambridge, MA, United States of America
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
5
|
Gurley NJ, Szymanski RA, Dowen RH, Butcher TA, Ishiyama N, Peifer M. Exploring the evolution and function of Canoe’s intrinsically disordered region in linking cell-cell junctions to the cytoskeleton during embryonic morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531372. [PMID: 36945496 PMCID: PMC10028902 DOI: 10.1101/2023.03.06.531372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
One central question for cell and developmental biologists is defining how epithelial cells can change shape and move during embryonic development without tearing tissues apart. This requires robust yet dynamic connections of cells to one another, via the cell-cell adherens junction, and of junctions to the actin and myosin cytoskeleton, which generates force. The last decade revealed that these connections involve a multivalent network of proteins, rather than a simple linear pathway. We focus on Drosophila Canoe, homolog of mammalian Afadin, as a model for defining the underlying mechanisms. Canoe and Afadin are complex, multidomain proteins that share multiple domains with defined and undefined binding partners. Both also share a long carboxy-terminal intrinsically disordered region (IDR), whose function is less well defined. IDRs are found in many proteins assembled into large multiprotein complexes. We have combined bioinformatic analysis and the use of a series of canoe mutants with early stop codons to explore the evolution and function of the IDR. Our bioinformatic analysis reveals that the IDRs of Canoe and Afadin differ dramatically in sequence and sequence properties. When we looked over shorter evolutionary time scales, we identified multiple conserved motifs. Some of these are predicted by AlphaFold to be alpha-helical, and two correspond to known protein interaction sites for alpha-catenin and F-actin. We next identified the lesions in a series of eighteen canoe mutants, which have early stop codons across the entire protein coding sequence. Analysis of their phenotypes are consistent with the idea that the IDR, including its C-terminal conserved motifs, are important for protein function. These data provide the foundation for further analysis of IDR function.
Collapse
Affiliation(s)
- Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Rachel A Szymanski
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Robert H Dowen
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - T. Amber Butcher
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noboru Ishiyama
- Launchpad Therapeutics, Inc., One Main Street, Cambridge MA 02142
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
The pioneering function of the hox transcription factors. Semin Cell Dev Biol 2022:S1084-9521(22)00354-8. [PMID: 36517345 DOI: 10.1016/j.semcdb.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Ever since the discovery that the Hox family of transcription factors establish morphological diversity in the developing embryo, major efforts have been directed towards understanding Hox-dependent patterning. This has led to important discoveries, notably on the mechanisms underlying the collinear expression of Hox genes and Hox binding specificity. More recently, several studies have provided evidence that Hox factors have the capacity to bind their targets in an inaccessible chromatin context and trigger the switch to an accessible, transcriptional permissive, chromatin state. In this review, we provide an overview of the evidences supporting that Hox factors behave as pioneer factors and discuss the potential mechanisms implicated in Hox pioneer activity as well as the significance of this functional property in Hox-dependent patterning.
Collapse
|
7
|
Safgren SL, Olson RJ, Pinto E Vairo F, Bothun ED, Hanna C, Klee EW, Schimmenti LA. De novo PBX1 variant in a patient with glaucoma, kidney anomalies, and developmental delay: An expansion of the CAKUTHED phenotype. Am J Med Genet A 2022; 188:919-925. [PMID: 34797033 DOI: 10.1002/ajmg.a.62576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
An infant was referred for evaluation of congenital glaucoma and corneal clouding. In addition, he had a pelvic kidney, hypotonia, patent ductus arteriosus, abnormal pinnae, and developmental delay. Exome sequencing identified a previously unpublished de novo single nucleotide insertion in PBX1 c.400dupG (NM_002585.3), predicted to cause a frameshift resulting in a truncated protein with loss of function (p.Ala134Glyfs*65). Identification of this loss of function variant supports the diagnosis of congenital anomalies of the kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay (CAKUTHED). Here, we propose glaucoma as an extra-renal manifestation associated with PBX1-related disease due to the relationship of PBX1 with MEIS1, MEIS2, and FOXC1 transcription factors associated with eye development.
Collapse
Affiliation(s)
- Stephanie L Safgren
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rory J Olson
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto E Vairo
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Erick D Bothun
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christian Hanna
- Department of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Klee
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
The Hox protein conundrum: The "specifics" of DNA binding for Hox proteins and their partners. Dev Biol 2021; 477:284-292. [PMID: 34102167 PMCID: PMC8846413 DOI: 10.1016/j.ydbio.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Homeotic genes (Hox genes) are homeodomain-transcription factors involved in conferring segmental identity along the anterior-posterior body axis. Molecular characterization of HOX protein function raises some interesting questions regarding the source of the binding specificity of the HOX proteins. How do HOX proteins regulate common and unique target specificity across space and time? This review attempts to summarize and interpret findings in this area, largely focused on results from in vitro and in vivo studies in Drosophila and mouse systems. Recent studies related to HOX protein binding specificity compel us to reconsider some of our current models for transcription factor-DNA interactions. It is crucial to study transcription factor binding by incorporating components of more complex, multi-protein interactions in concert with small changes in binding motifs that can significantly impact DNA binding specificity and subsequent alterations in gene expression. To incorporate the multiple elements that can determine HOX protein binding specificity, we propose a more integrative Cooperative Binding model.
Collapse
|
9
|
Grebbin BM, Schulte D. PBX1 as Pioneer Factor: A Case Still Open. Front Cell Dev Biol 2017; 5:9. [PMID: 28261581 PMCID: PMC5306212 DOI: 10.3389/fcell.2017.00009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Pioneer factors are proteins that can recognize their target sites in barely accessible chromatin and initiate a cascade of events that allows for later transcriptional activation of the respective genes. Pioneer factors are therefore particularly well-suited to initiate cell fate changes. To date, only a small number of pioneer factors have been identified and studied in depth, such as FOXD3/FOXA1, OCT4, or SOX2. Interestingly, several recent studies reported that the PBC transcription factor PBX1 can access transcriptionally inactive genomic loci. Here, we summarize the evidence linking PBX1 with transcriptional pioneer functions, suggest potential mechanisms involved and discuss open questions to be resolved.
Collapse
Affiliation(s)
- Britta M Grebbin
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, J. W. Goethe University Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, J. W. Goethe University Frankfurt, Germany
| |
Collapse
|
10
|
The elimination of an adult segment by the Hox gene Abdominal-B. Mech Dev 2015; 138 Pt 2:210-217. [DOI: 10.1016/j.mod.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
|
11
|
Smith FW, Angelini DR, Gaudio MS, Jockusch EL. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network. Evol Dev 2014; 16:78-91. [PMID: 24617987 DOI: 10.1111/ede.12066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT, 06269-3043, USA
| | | | | | | |
Collapse
|
12
|
Smith FW, Jockusch EL. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum. Dev Biol 2014; 395:182-97. [DOI: 10.1016/j.ydbio.2014.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
|
13
|
Smith FW, Angelini DR, Jockusch EL. A functional genetic analysis in flour beetles (Tenebrionidae) reveals an antennal identity specification mechanism active during metamorphosis in Holometabola. Mech Dev 2014; 132:13-27. [PMID: 24534744 DOI: 10.1016/j.mod.2014.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 11/27/2022]
Abstract
The antenna was the first arthropod ventral appendage to evolve non-leg identity. Models of antennal evolution have been based on comparisons of antennal and leg identity specification mechanisms in Drosophila melanogaster, a species in which appendages develop from highly derived imaginal discs during the larval period. We test for conservation of the Drosophila antennal identity specification mechanism at metamorphosis in Tribolium castaneum and three other flour beetle species (Tribolium confusum, Tribolium brevicornis and Latheticus oryzae) in the family Tenebrionidae. In Drosophila, loss of function of four transcription factors-homothorax, extradenticle, Distal-less, and spineless-causes large-scale transformations of the antenna to leg identity. Distal-less and spineless function similarly during metamorphosis in T. castaneum. RNA interference (RNAi) targeting homothorax (hth) or extradenticle (exd) caused transformation of the proximal antenna to distal leg identity in flour beetles, but did not affect the identity of the distal antenna. This differs from the functional domain of these genes in early instar Drosophila, where they are required for identity specification throughout the antenna, but matches their functional domain in late instar Drosophila. The similarities between antennal identity specification at metamorphosis in flour beetles and in late larval Drosophila likely reflect the conservation of an ancestral metamorphic developmental mechanism. There were two notable differences in hth/exd loss of function phenotypes between flies and beetles. Flour beetles retained all of their primary segments in both the antenna and legs, whereas flies undergo reduction and fusion of primary segments. This difference in ground state appendage morphology casts doubt on interpretations of developmental ground states as evolutionary atavisms. Additionally, adult Tribolium eyes were transformed to elytron-like structures; we provide a developmental hypothesis for this evolutionarily surprising transformation.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA.
| | - David R Angelini
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA; Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME 04901, USA
| | - Elizabeth L Jockusch
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA
| |
Collapse
|
14
|
Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM. A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation. Dev Biol 2014; 385:417-32. [DOI: 10.1016/j.ydbio.2013.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/07/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
15
|
Corsetti E, Azpiazu N. Functional dissection of the splice variants of the Drosophila gene homothorax (hth). Dev Biol 2013; 384:72-82. [PMID: 24075905 DOI: 10.1016/j.ydbio.2013.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 01/22/2023]
Abstract
Homothorax belongs to the TALE-homeodomain family of transcription factors, together with its vertebrate counterparts, the Meis family of proto-oncogenes. It fulfills many important different functions during embryonic and larval developments in Drosophila, which encompass from subdivision and specification of body parts to assembly of heterochromatin structures. Hth interacts with Extradenticle, another member of the TALE-homeodomain family of conserved transcription factors, to facilitate its entrance to the nucleus. The many different functions described for Hth rely on the complexity of the locus, from which six different isoforms arise. The isoforms can be grouped into full-length and short versions, which contain either one or the two conserved domains of the protein (homeodomain and Exd-interacting domain). We have used molecular and genetic tools to analyze the levels of expression, the distribution and the function of the isoforms during embryonic development. Our results clearly show that the isoforms display distinct levels of expression and are differentially distributed in the embryo. This detailed study also shows that during normal embryonic development not all the Hth isoforms translocate Exd into the nucleus, suggesting that both the proteins can also function separately. We have demonstrated that the full-length Hth protein activates transcription of exd, augmenting the levels of exd mRNA in the cell. The higher levels of Exd protein in those cells facilitate its entrance to the nucleus. Our work demonstrates that hth is a complex gene that should not be considered as a functional unit. The roles of the different isoforms probably rely on their distinct protein domains and conformations and, at the end, on interactions with particular partners.
Collapse
Affiliation(s)
- Elise Corsetti
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, C/Nicolas Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
16
|
Grubbs N, Leach M, Su X, Petrisko T, Rosario JB, Mahaffey JW. New components of Drosophila leg development identified through genome wide association studies. PLoS One 2013; 8:e60261. [PMID: 23560084 PMCID: PMC3613359 DOI: 10.1371/journal.pone.0060261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/24/2013] [Indexed: 11/29/2022] Open
Abstract
The adult Drosophila melanogaster body develops from imaginal discs, groups of cells set-aside during embryogenesis and expanded in number during larval stages. Specification and development of Drosophila imaginal discs have been studied for many years as models of morphogenesis. These studies are often based on mutations with large developmental effects, mutations that are often lethal in embryos when homozygous. Such forward genetic screens can be limited by factors such as early lethality and genetic redundancy. To identify additional genes and genetic pathways involved in leg imaginal disc development, we employed a Genome Wide Association Study utilizing the natural genetic variation in leg proportionality found in the Drosophila Genetic Reference Panel fly lines. In addition to identifying genes already known to be involved in leg development, we identified several genes involved in pathways that had not previously been linked with leg development. Several of the genes appear to be involved in signaling activities, while others have no known roles at this time. Many of these uncharacterized genes are conserved in mammals, so we can now begin to place these genes into developmental contexts. Interestingly, we identified five genes which, when their function is reduced by RNAi, cause an antenna-to-leg transformation. Our results demonstrate the utility of this approach, integrating the tools of quantitative and molecular genetics to study developmental processes, and provide new insights into the pathways and networks involved in Drosophila leg development.
Collapse
Affiliation(s)
- Nathaniel Grubbs
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Megan Leach
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Xin Su
- Transgenics Department, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | | | - Juan B. Rosario
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - James W. Mahaffey
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Weasner BM, Kumar JP. Competition among gene regulatory networks imposes order within the eye-antennal disc of Drosophila. Development 2013; 140:205-15. [PMID: 23222441 DOI: 10.1242/dev.085423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eye-antennal disc of Drosophila gives rise to numerous adult tissues, including the compound eyes, ocelli, antennae, maxillary palps and surrounding head capsule. The fate of each tissue is governed by the activity of unique gene regulatory networks (GRNs). The fate of the eye, for example, is controlled by a set of fourteen interlocking genes called the retinal determination (RD) network. Mutations within network members lead to replacement of the eyes with head capsule. Several studies have suggested that in these instances all retinal progenitor and precursor cells are eliminated via apoptosis and as a result the surrounding head capsule proliferates to compensate for retinal tissue loss. This model implies that the sole responsibility of the RD network is to promote the fate of the eye. We have re-analyzed eyes absent mutant discs and propose an alternative model. Our data suggests that in addition to promoting an eye fate the RD network simultaneously functions to actively repress GRNs that are responsible for directing antennal and head capsule fates. Compromising the RD network leads to the inappropriate expression of several head capsule selector genes such as cut, Lim1 and wingless. Instead of undergoing apoptosis, a population of mutant retinal progenitors and precursor cells adopt a head capsule fate. This transformation is accompanied by an adjustment of cell proliferation rates such that just enough head capsule is generated to produce an intact adult head. We propose that GRNs simultaneously promote primary fates, inhibit alternative fates and establish cell proliferation states.
Collapse
Affiliation(s)
- Bonnie M Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
18
|
Chen CCG, Wang IE, Reddien PW. pbx is required for pole and eye regeneration in planarians. Development 2013; 140:719-29. [PMID: 23318641 DOI: 10.1242/dev.083741] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Planarian regeneration involves regionalized gene expression that specifies the body plan. After amputation, planarians are capable of regenerating new anterior and posterior poles, as well as tissues polarized along the anterior-posterior, dorsal-ventral and medial-lateral axes. Wnt and several Hox genes are expressed at the posterior pole, whereas Wnt inhibitory genes, Fgf inhibitory genes, and prep, which encodes a TALE-family homeodomain protein, are expressed at the anterior pole. We found that Smed-pbx (pbx for short), which encodes a second planarian TALE-family homeodomain transcription factor, is required for restored expression of these genes at anterior and posterior poles during regeneration. Moreover, pbx(RNAi) animals gradually lose pole gene expression during homeostasis. By contrast, pbx was not required for initial anterior-posterior polarized responses to wounds, indicating that pbx is required after wound responses for development and maintenance of poles during regeneration and homeostatic tissue turnover. Independently of the requirement for pbx in pole regeneration, pbx is required for eye precursor formation and, consequently, eye regeneration and eye replacement in homeostasis. Together, these data indicate that pbx promotes pole formation of body axes and formation of regenerative progenitors for eyes.
Collapse
Affiliation(s)
- Chun-Chieh G Chen
- Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
19
|
Wang W, Tindell N, Yan S, Yoder JH. Homeotic functions of the Teashirt transcription factor during adult Drosophila development. Biol Open 2012; 2:18-29. [PMID: 23336073 PMCID: PMC3545265 DOI: 10.1242/bio.20122915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/24/2012] [Indexed: 12/31/2022] Open
Abstract
During Drosophila development region-specific regulation of target genes by Hox proteins is modulated by genetic interactions with various cofactors and genetic collaborators. During embryogenesis one such modulator of Hox target specificity is the zinc-finger transcription factor Teashirt (Tsh) that is expressed in the developing trunk and cooperatively functions with trunk-specific Hox proteins to promote appropriate segment fate. This embryonic function of Tsh is characterized as homeotic since loss of embryonic Tsh activity leads to transformation of trunk segments toward head identity. In addition to this embryonic homeotic role, Tsh also performs vital Hox-independent functions through patterning numerous embryonic, larval and adult structures. Here we address whether the homeotic function of Tsh is maintained throughout development by investigating its contribution to patterning the adult abdomen. We show that Tsh is expressed throughout the developing abdomen and that this expression is dependent on the three Bithorax Hox proteins Ultrabithorax, Abdominal-A and Abdominal-B. Conditional reduction of Tsh activity during pupation reveals broad homeotic roles for this transcription factor throughout the adult abdomen. Additionally we show that, as during embryogenesis, the tsh paralog tiptop (tio) plays a partially redundant role in this homeotic activity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biological Sciences, Box 870344, University of Alabama , Tuscaloosa, AL 35487 , USA
| | | | | | | |
Collapse
|
20
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
21
|
A dissection of the teashirt and tiptop genes reveals a novel mechanism for regulating transcription factor activity. Dev Biol 2011; 360:391-402. [PMID: 22019301 DOI: 10.1016/j.ydbio.2011.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/02/2011] [Accepted: 09/27/2011] [Indexed: 11/23/2022]
Abstract
In the Drosophila eye the retinal determination (RD) network controls both tissue specification and cell proliferation. Mutations in network members result in severe reductions in the size of the eye primordium and the transformation of the eye field into head cuticle. The zinc-finger transcription factor Teashirt (Tsh) plays a role in promoting cell proliferation in the anterior most portions of the eye field as well as in inducing ectopic eye formation in forced expression assays. Tiptop (Tio) is a recently discovered paralog of Tsh. It is distributed in an identical pattern to Tsh within the retina and can also promote ectopic eye development. In a previous study we demonstrated that Tio can induce ectopic eye formation in a broader range of cell populations than Tsh and is also a more potent inducer of cell proliferation. Here we have focused on understanding the molecular and biochemical basis that underlies these differences. The two paralogs are structurally similar but differ in one significant aspect: Tsh contains three zinc finger motifs while Tio has four such domains. We used a series of deletion and chimeric proteins to identify the zinc finger domains that are selectively used for either promoting cell proliferation or inducing eye formation. Our results indicate that for both proteins the second zinc finger is essential to the proper functioning of the protein while the remaining zinc finger domains appear to contribute but are not absolutely required. Interestingly, these domains antagonize each other to balance the overall activity of the protein. This appears to be a novel internal mechanism for regulating the activity of a transcription factor. We also demonstrate that both Tsh and Tio bind to C-terminal Binding Protein (CtBP) and that this interaction is important for promoting both cell proliferation and eye development. And finally we report that the physical interaction that has been described for Tsh and Homothorax (Hth) do not occur through the zinc finger domains.
Collapse
|
22
|
Ahn Y, Zou J, Mitchell PJ. Segment-specific regulation of the Drosophila AP-2 gene during leg and antennal development. Dev Biol 2011; 355:336-48. [PMID: 21575621 DOI: 10.1016/j.ydbio.2011.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/02/2011] [Accepted: 04/28/2011] [Indexed: 11/18/2022]
Abstract
Segmentation involves subdivision of a developing body part into multiple repetitive units during embryogenesis. In Drosophila and other insects, embryonic segmentation is regulated by genes expressed in the same domain of every segment. Less is known about the molecular basis for segmentation of individual body parts occurring at later developmental stages. The Drosophila transcription factor AP-2 gene, dAP-2, is required for outgrowth of leg and antennal segments and is expressed in every segment boundary within the larval imaginal discs. To investigate the molecular mechanisms generating the segmentally repetitive pattern of dAP-2 expression, we performed transgenic reporter analyses and isolated multiple cis-regulatory elements that can individually or cooperatively recapitulate endogenous dAP-2 expression in different segments of the appendages. We further analyzed an enhancer specific for the proximal femur region which corresponds to the distal-most expression domain of homothorax (hth) in the leg imaginal discs. Hth is known to be responsible for the nuclear localization and, hence, function of the Hox cofactor, Extradenticle (Exd). We show that both Hth and Exd are required for dAP-2 expression in the femur and that a conserved Exd/Hox binding site is essential for enhancer activity. Our loss- and gain-of-function studies further support direct regulation of dAP-2 by Hox proteins and suggest that Hox proteins function redundantly in dAP-2 regulation. Our study reveals that discrete segment-specific enhancers underlie the seemingly simple repetitive expression of dAP-2 and provides evidence for direct regulation of leg segmentation by regional combinations of the proximodistal patterning genes.
Collapse
Affiliation(s)
- Youngwook Ahn
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
23
|
Capellini TD, Zappavigna V, Selleri L. Pbx homeodomain proteins: TALEnted regulators of limb patterning and outgrowth. Dev Dyn 2011; 240:1063-86. [PMID: 21416555 DOI: 10.1002/dvdy.22605] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2011] [Indexed: 12/14/2022] Open
Abstract
Limb development has long provided an excellent model for understanding the genetic principles driving embryogenesis. Studies utilizing chick and mouse have led to new insights into limb patterning and morphogenesis. Recent research has centered on the regulatory networks underlying limb development. Here, we discuss the hierarchical, overlapping, and iterative roles of Pbx family members in appendicular development that have emerged from genetic analyses in the mouse. Pbx genes are essential in determining limb bud positioning, early bud formation, limb axes establishment and coordination, and patterning and morphogenesis of most elements of the limb and girdle. Pbx proteins directly regulate critical effectors of limb and girdle development, including morphogen-encoding genes like Shh in limb posterior mesoderm, and transcription factor-encoding genes like Alx1 in pre-scapular domains. Interestingly, at least in limb buds, Pbx appear to act not only as Hox cofactors, but also in the upstream control of 5' HoxA/D gene expression.
Collapse
Affiliation(s)
- Terence D Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | |
Collapse
|
24
|
Abstract
The road to producing an eye begins with the decision to commit a population of cells to adopting an eye tissue fate, the process of retinal determination. Over the past decade and a half, a network of transcription factors has been found to mediate this process in all seeing animals. This retinal determination network is known to regulate not only tissue fate but also cell proliferation, pattern formation, compartment boundary establishment, and even retinal cell specification. The compound eye of the fruit fly, Drosophila melanogaster, has proven to be an excellent experimental system to study the mechanisms by which this network regulates organogenesis and tissue patterning. In fact the founding members of most of the gene families that make up this network were first isolated in Drosophila based on loss-of-function phenotypes that affect the eye. This chapter will highlight the history of discovery of the retinal determination network and will draw attention to the molecular and biochemical mechanisms that underlie our understanding of how the fate of the retina is determined.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
25
|
Albrecht S, Altenhein B, Paululat A. The transmembrane receptor Uncoordinated5 (Unc5) is essential for heart lumen formation in Drosophila melanogaster. Dev Biol 2010; 350:89-100. [PMID: 21094637 DOI: 10.1016/j.ydbio.2010.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/17/2022]
Abstract
Transport of liquids or gases in biological tubes is fundamental for many physiological processes. Our knowledge on how tubular organs are formed during organogenesis and tissue remodeling has increased dramatically during the last decade. Studies on different animal systems have helped to unravel some of the molecular mechanisms underlying tubulogenesis. Tube architecture varies dramatically in different organs and different species, ranging from tubes formed by several cells constituting the cross section, tubes formed by single cells wrapping an internal luminal space or tubes that are formed within a cell. Some tubes display branching whereas others remain linear without intersections. The modes of shaping, growing and pre-patterning a tube are also different and it is still not known whether these diverse architectures and modes of differentiation are realized by sharing common signaling pathways or regulatory networks. However, several recent investigations provide evidence for the attractive hypothesis that the Drosophila cardiogenesis and heart tube formation shares many similarities with primary angiogenesis in vertebrates. Additionally, another important step to unravel the complex system of lumen formation has been the outcome of recent studies that junctional proteins, matrix components as well as proteins acting as attractant and repellent cues play a role in the formation of the Drosophila heart lumen. In this study we show the requirement for the repulsively active Unc5 transmembrane receptor to facilitate tubulogenesis in the dorsal vessel of Drosophila. Unc5 is localized in the luminal membrane compartment of cardiomyocytes and animals lacking Unc5 fail to form a heart lumen. Our findings support the idea that Unc5 is crucial for lumen formation and thereby represents a repulsive cue acting during Drosophila heart tube formation.
Collapse
Affiliation(s)
- Stefanie Albrecht
- Universität Osnabrück, Fachbereich Biologie/Chemie - Zoologie/Entwicklungsbiologie, Barbarastraße 11, 49069 Osnabrück, Germany
| | | | | |
Collapse
|
26
|
Reed HC, Hoare T, Thomsen S, Weaver TA, White RAH, Akam M, Alonso CR. Alternative splicing modulates Ubx protein function in Drosophila melanogaster. Genetics 2010; 184:745-58. [PMID: 20038634 PMCID: PMC2845342 DOI: 10.1534/genetics.109.112086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 01/02/2023] Open
Abstract
The Drosophila Hox gene Ultrabithorax (Ubx) produces a family of protein isoforms through alternative splicing. Isoforms differ from one another by the presence of optional segments-encoded by individual exons-that modify the distance between the homeodomain and a cofactor-interaction module termed the "YPWM" motif. To investigate the functional implications of Ubx alternative splicing, here we analyze the in vivo effects of the individual Ubx isoforms on the activation of a natural Ubx molecular target, the decapentaplegic (dpp) gene, within the embryonic mesoderm. These experiments show that the Ubx isoforms differ in their abilities to activate dpp in mesodermal tissues during embryogenesis. Furthermore, using a Ubx mutant that reduces the full Ubx protein repertoire to just one single isoform, we obtain specific anomalies affecting the patterning of anterior abdominal muscles, demonstrating that Ubx isoforms are not functionally interchangeable during embryonic mesoderm development. Finally, a series of experiments in vitro reveals that Ubx isoforms also vary in their capacity to bind DNA in presence of the cofactor Extradenticle (Exd). Altogether, our results indicate that the structural changes produced by alternative splicing have functional implications for Ubx protein function in vivo and in vitro. Since other Hox genes also produce splicing isoforms affecting similar protein domains, we suggest that alternative splicing may represent an underestimated regulatory system modulating Hox gene specificity during fly development.
Collapse
Affiliation(s)
- Hilary C. Reed
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Tim Hoare
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Stefan Thomsen
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Thomas A. Weaver
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Robert A. H. White
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Claudio R. Alonso
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
27
|
Bowsher JH, Nijhout HF. Partial co-option of the appendage patterning pathway in the development of abdominal appendages in the sepsid fly Themira biloba. Dev Genes Evol 2010; 219:577-87. [PMID: 20182886 DOI: 10.1007/s00427-010-0319-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/19/2010] [Indexed: 11/24/2022]
Abstract
The abdominal appendages on male Themira biloba (Diptera: Sepsidae) are complex novel structures used during mating. These abdominal appendages superficially resemble the serially homologous insect appendages in that they have a joint and a short segment that can be rotated. Non-genital appendages do not occur in adult pterygote insects, so these abdominal appendages are novel structures with no obvious ancestry. We investigated whether the genes that pattern the serially homologous insect appendages have been co-opted to pattern these novel abdominal appendages. Immunohistochemistry was used to determine the expression patterns of the genes extradenticle (exd), Distal-less (Dll), engrailed (en), Notch, and the Bithorax Complex in the appendages of T. biloba during pupation. The expression patterns of Exd, En, and Notch were consistent with the hypothesis that a portion of the patterning pathway that establishes the coxopodite has been co-opted to pattern the developing abdominal appendages. However, Dll was only expressed in the bristles of the developing appendages and not the proximal-distal axis of the appendage itself. The lack of Dll expression indicates the absence of a distal domain of the appendage suggesting that sepsid abdominal appendages only use genes that normally pattern the base of segmental appendages.
Collapse
Affiliation(s)
- Julia H Bowsher
- Center for Insect Science, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA.
| | | |
Collapse
|
28
|
Shippy TD, Yeager SJ, Denell RE. The Tribolium spineless ortholog specifies both larval and adult antennal identity. Dev Genes Evol 2008; 219:45-51. [PMID: 19030877 DOI: 10.1007/s00427-008-0261-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022]
Abstract
The morphology of insect antennae varies widely among species, but our understanding of antennal development comes almost solely from studies of one species-the fruit fly, Drosophila melanogaster. Moreover, this knowledge applies mostly to adult structures, since Drosophila lacks external larval appendages. In contrast to Drosophila, the red flour beetle, Tribolium castaneum, has both larval and adult antennae, which are very different from one another in morphology. Thus, Tribolium provides an ideal system to compare modes of antennal development both within and between species. Here, we report that the Tribolium ortholog of spineless (Tc-ss) is required in both the larval and adult antennae. Knockdown of Tc-ss by RNAi during either larval or imaginal development causes transformation of the distal portion of the antennae to legs. Thus, the function of ss is conserved between Drosophila and Tribolium with respect to adult antennal specification and also between Tribolium larval and adult antennal development. The similarity of the Tc-ss RNAi phenotype to that of a classically described Tribolium mutation, antennapedia (ap) (of no relationship to the Drosophila Hox gene of the same name), led us to characterize the original ap mutation and two newly identified ap alleles. Our mapping and phenotypic data suggest that Tc-ss is the best candidate for the ap locus. These results represent a first step in characterizing larval and adult antennal patterning in Tribolium, which should provide important insights into the evolution of insect antennal development.
Collapse
Affiliation(s)
- Teresa D Shippy
- Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
29
|
Divergent and conserved roles of extradenticle in body segmentation and appendage formation, respectively, in the cricket Gryllus bimaculatus. Dev Biol 2008; 313:67-79. [DOI: 10.1016/j.ydbio.2007.09.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 09/19/2007] [Accepted: 09/26/2007] [Indexed: 11/19/2022]
|
30
|
Stevens KE, Mann RS. A balance between two nuclear localization sequences and a nuclear export sequence governs extradenticle subcellular localization. Genetics 2007; 175:1625-36. [PMID: 17277370 PMCID: PMC1855138 DOI: 10.1534/genetics.106.066449] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During animal development, transcription factor activities are modulated by several means, including subcellular localization. The Hox cofactor Extradenticle (Exd) has a dynamic subcellular localization, such that Exd is cytoplasmic by default, but is nuclear when complexed with another homeodomain protein, Homothorax (Hth). These observations raise the question of whether dimerization with Hth simply induces Exd's nuclear localization or, alternatively, if Hth is also necessary for Exd activity. To address this question, we analyzed the nuclear transport signals in Exd, including a divergent nuclear export signal (NES) and two nuclear localization signals (NLSs). We show that, although these signals are weak compared to canonical signals, they balance each other in Exd. We also provide evidence that Exd contains an NLS mask that contributes to its cytoplasmic localization. With these signals characterized, we generated forms of Exd that are nuclear localized in the absence of Hth. Surprisingly, although these Exd forms are functional, they do not phenocopy Hth overexpression. These findings suggest that Hth is required for Exd activity, not simply for inducing its nuclear localization.
Collapse
Affiliation(s)
- Katherine E Stevens
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
31
|
Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2006; 6:893-904. [PMID: 16341070 DOI: 10.1038/nrg1726] [Citation(s) in RCA: 618] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With their power to shape animal morphology, few genes have captured the imagination of biologists as the evolutionarily conserved members of the Hox clusters have done. Recent research has provided new insight into how Hox proteins cause morphological diversity at the organismal and evolutionary levels. Furthermore, an expanding collection of sequences that are directly regulated by Hox proteins provides information on the specificity of target-gene activation, which might allow the successful prediction of novel Hox-response genes. Finally, the recent discovery of microRNA genes within the Hox gene clusters indicates yet another level of control by Hox genes in development and evolution.
Collapse
Affiliation(s)
- Joseph C Pearson
- Section in Cell & Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
32
|
Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291:193-206. [PMID: 16515781 DOI: 10.1016/j.ydbio.2005.10.032] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/18/2022]
Abstract
Hox genes encode homeodomain-containing transcription factors that pattern the body axes of animal embryos. It is well established that the exquisite DNA-binding specificity that allows different Hox proteins to specify distinct structures along the body axis is frequently dependent on interactions with other DNA-binding proteins which act as Hox cofactors. These include the PBC and MEIS classes of TALE (Three Amino acid Loop Extension) homeodomain proteins. The PBC class comprises fly Extradenticle (Exd) and vertebrate Pbx homeoproteins, whereas the MEIS class includes fly Homothorax (Hth) and vertebrate Meis and Prep homeoproteins. Exd was first implicated as a Hox cofactor based on mutant phenotypes in the fly. In vertebrates, PBC and MEIS homeobox proteins play important roles in development and disease. In this review, we describe the evidence that these functions reflect a requirement for Pbx and Meis/Prep proteins as Hox cofactors. However, there is mounting evidence that, like in the fly, Pbx and Meis/Prep proteins function more broadly, and we also discuss how "Hox cofactors" function as partners for other, non-Hox transcription factors during development. Conversely, we review the evidence that Hox proteins have functions that are independent of Pbx and Meis/Prep cofactors and discuss the possibility that other proteins may participate in the DNA-bound Hox complex, contributing to DNA-binding specificity in the absence of, or in addition to, Pbx and Meis/Prep.
Collapse
Affiliation(s)
- Cecilia B Moens
- Division of Basic Science and HHMI, Fred Hutchinson Cancer Research Center, Seattle, WA 98115, USA.
| | | |
Collapse
|
33
|
Angelini DR, Kaufman TC. Insect appendages and comparative ontogenetics. Dev Biol 2005; 286:57-77. [PMID: 16112665 DOI: 10.1016/j.ydbio.2005.07.006] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/23/2005] [Accepted: 07/12/2005] [Indexed: 11/30/2022]
Abstract
It is arguable that the evolutionary and ecological success of insects is due in large part to the versatility of their articulated appendages. Recent advances in our understanding of appendage development in Drosophila melanogaster, as well as functional and expression studies in other insect species have begun to frame the general themes of appendage development in the insects. Here, we review current studies that provide for a comparison of limb developmental mechanisms acting at five levels: (1) the specification of ventral appendage primordia; (2) specification of the limb axes; (3) regulation and interactions of genes expressed in specific domains of the proximal-distal axis, such as Distal-less; (4) the specification of appendage identity; and (5) genetic regulation of appendage allometry.
Collapse
Affiliation(s)
- David R Angelini
- Department of Biology, Indiana University, 1001 E. Third St., Bloomington, IN 47405-7005, USA
| | | |
Collapse
|
34
|
Abstract
During development of higher organisms, most patterning events occur in growing tissues. Thus, unraveling the mechanism of how growing tissues are patterned into final morphologies has been an essential subject of developmental biology. Limb or appendage development in both vertebrates and invertebrates has attracted great attention from many researchers for a long time, because they involve almost all developmental processes required for tissue patterning, such as generation of the positional information by morphogen, subdivision of the tissue into distinct parts according to the positional information, localized cell growth and proliferation, and control of adhesivity, movement and shape changes of cells. The Drosophila leg development is a good model system, upon which a substantial amount of knowledge has been accumulated. In this review, the current understanding of the mechanism of Drosophila leg development is described.
Collapse
Affiliation(s)
- Tetsuya Kojima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Prpic NM, Janssen R, Wigand B, Klingler M, Damen WGM. Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 2003; 264:119-40. [PMID: 14623236 DOI: 10.1016/j.ydbio.2003.08.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.
Collapse
|
36
|
Prpic NM, Tautz D. The expression of the proximodistal axis patterning genes Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda) suggests a special role of these genes in patterning the head appendages. Dev Biol 2003; 260:97-112. [PMID: 12885558 DOI: 10.1016/s0012-1606(03)00217-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.
Collapse
|
37
|
Maeda R, Ishimura A, Mood K, Park EK, Buchberg AM, Daar IO. Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene expression in Xenopus embryos. Proc Natl Acad Sci U S A 2002; 99:5448-53. [PMID: 11960001 PMCID: PMC122789 DOI: 10.1073/pnas.082654899] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Indexed: 11/18/2022] Open
Abstract
Pbx1 is a homeodomain protein that functions in complexes with other homeodomain-containing proteins to regulate gene expression during embryogenesis and oncogenesis. Pbx proteins bind DNA cooperatively as heterodimers or higher order complexes with Meis family members and Hox proteins and are believed to specify cell identity during development. Here, we present evidence that Pbx1, in partnership with Meis1b, can regulate posterior neural markers and neural crest marker genes during Xenopus development. A Xenopus homolog of the Pbx1b homeodomain protein was isolated and shown to be expressed throughout embryogenesis. Xpbx1b expression overlaps with Xmeis1 in several areas, including the lateral neural folds, caudal branchial arch, hindbrain, and optic cup. When ectopically expressed, Xpbx1b can synergize with Xmeis1b to promote posterior neural and neural crest gene expression in ectodermal explants. Further, a physical interaction between these two homeodomain proteins is necessary for induction of these genes in embryonic tissue. In addition, coexpression of Xmeis1b and Xpbx1b leads to a prominent shift in the localization of Xmeis1b from the cytoplasm to the nucleus, suggesting that nuclear transport or retention of Xmeis1b may depend upon Xpbx1b. Finally, expression of a mutant construct in which Xpbx1b protein is fused to the repressor domain from Drosophila Engrailed inhibits posterior neural and neural crest gene expression. These data indicate that Xpbx1b and its partner, Xmeis1b, function in a transcriptional activation complex during hindbrain and neural crest development.
Collapse
Affiliation(s)
- Ryu Maeda
- Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
38
|
Mann RS, Morata G. The developmental and molecular biology of genes that subdivide the body of Drosophila. Annu Rev Cell Dev Biol 2001; 16:243-71. [PMID: 11031237 DOI: 10.1146/annurev.cellbio.16.1.243] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the past decade, much progress has been made in understanding how the adult fly is built. Some old concepts such as those of compartments and selector genes have been revitalized. In addition, recent work suggests the existence of genes involved in the regionalization of the adult that do not have all the features of selector genes. Nevertheless, they generate morphological distinctions within the body plan. Here we re-examine some of the defining criteria of selector genes and suggest that these newly characterized genes fulfill many, but not all, of these criteria. Further, we propose that these genes can be classified according to the domains in which they function. Finally, we discuss experiments that address the molecular mechanisms by which selector and selector-like gene products function in the fly.
Collapse
Affiliation(s)
- R S Mann
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York 10032, USA.
| | | |
Collapse
|
39
|
Abstract
Just a glance at the body of the fruit fly Drosophila reveals that it has a main body part--the trunk--and a number of specialized appendages such as legs, wings, halteres and antennae. How do Drosophila appendages develop, what gives each appendage its unique identity, and what can the fruit fly teach us about appendage development in vertebrates?
Collapse
Affiliation(s)
- G Morata
- Centro de Biología Molecular, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
40
|
Spieker N, van Sluis P, Beitsma M, Boon K, van Schaik BD, van Kampen AH, Caron H, Versteeg R. The MEIS1 oncogene is highly expressed in neuroblastoma and amplified in cell line IMR32. Genomics 2001; 71:214-21. [PMID: 11161815 DOI: 10.1006/geno.2000.6408] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroblastoma is an embryonal tumor originating from neural crest-derived cells. Here we present the serendipitous cloning of amplified sequences of chromosome 2p15 in neuroblastoma cell line IMR32. The amplified region was analyzed for oncogene activation using a SAGE (serial analysis of gene expression) library of IMR32. SAGE permits a quantitative analysis of all transcripts of a tissue or cell line. The expression of genes and ESTs mapping within a 30-cR region covering the amplicon was compared to 4 additional SAGE libraries of neuroblastomas and 12 SAGE libraries of other tissues in the CGAP databases. The IMR32 SAGE database revealed increased expression of the MEIS1 oncogene, whereas other SAGE libraries showed little or no MEIS1 expression. MEIS1 turned out to be highly amplified and overexpressed in IMR32. Analysis of 24 neuroblastoma cell lines and 22 tumors showed high-level expression in about 25% of the cases. The MEIS1 homeobox protein forms a complex with the HOXA9 and PBX proteins that are implicated in human leukemia. MEIS1 is a target of retroviral insertion in murine leukemia. This is the first report of a MEIS1 amplification and high expression levels in human cancer and the first time that identification of a candidate target of amplification is facilitated by high-throughput mRNA expression profiling.
Collapse
Affiliation(s)
- N Spieker
- Department of Human Genetics, University of Amsterdam, Amsterdam, 1100DE, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu J, Fire A. Overlapping roles of two Hox genes and the exd ortholog ceh-20 in diversification of the C. elegans postembryonic mesoderm. Development 2000; 127:5179-90. [PMID: 11060243 DOI: 10.1242/dev.127.23.5179] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Hox family of homeoproteins and their cofactors play a central role in pattern formation of all germ layers. During postembryonic development of C. elegans, non-gonadal mesoderm arises from a single mesoblast cell M. Starting in the first larval stage, M divides to produce 14 striated muscles, 16 non-striated muscles, and two non-muscle cells (coelomocytes). We investigated the role of the C. elegans Hox cluster and of the exd ortholog ceh-20 in patterning of the postembryonic mesoderm. By examining the M lineage and its differentiation products in different Hox mutant combinations, we found an essential but overlapping role for two of the Hox cluster genes, lin-39 and mab-5, in diversification of the postembryonic mesoderm. This role of the two Hox gene products required the CEH-20 cofactor. One target of these two Hox genes is the C. elegans twist ortholog hlh-8. Using both in vitro and in vivo assays, we demonstrated that twist is a direct target of Hox activation. We present evidence from mutant phenotypes that twist is not the only target for Hox genes in the M lineage: in particular we show that lin-39 mab-5 double mutants exhibit a more severe M lineage defect than the hlh-8 null mutant.
Collapse
Affiliation(s)
- J Liu
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210, USA
| | | |
Collapse
|
42
|
Abramovich C, Shen WF, Pineault N, Imren S, Montpetit B, Largman C, Humphries RK. Functional cloning and characterization of a novel nonhomeodomain protein that inhibits the binding of PBX1-HOX complexes to DNA. J Biol Chem 2000; 275:26172-7. [PMID: 10825160 DOI: 10.1074/jbc.m001323200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PBX1 is a homeodomain protein that functions in complexes with other homeodomain-containing proteins to regulate gene expression during developmental and/or differentiation processes. A yeast two-hybrid screen of a fetal liver-hematopoietic cDNA library using PBX1a as bait led to the discovery of a novel non-homeodomain-containing protein that interacts with PBX1 as well as PBX2 and PBX3. RNA analysis revealed it to be expressed in CD34(+) hematopoietic cell populations enriched in primitive progenitors, as is PBX1; search of the expressed sequence tag data base indicated that it is also expressed in other early embryonic as well as adult tissues. The full-length cDNA encodes a 731-amino acid protein that has no significant homology to known proteins. This protein that we have termed hematopoietic PBX-interacting protein (HPIP) is mainly localized in the cytosol and in small amounts in the nucleus. The region of PBX that interacts with HPIP includes both the homeodomain and immediate N-terminal flanking sequences. Strikingly, electrophoretic mobility shift assays revealed that HPIP inhibits the ability of PBX-HOX heterodimers to bind to target sequences. Moreover, HPIP strongly inhibits the transactivation activity of E2A-PBX. Together these findings suggest that HPIP is a new regulator of PBX function.
Collapse
Affiliation(s)
- C Abramovich
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Azpiazu N, Morata G. Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development 2000; 127:2685-93. [PMID: 10821766 DOI: 10.1242/dev.127.12.2685] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene homothorax (hth) is originally expressed uniformly in the wing imaginal disc but, during development, its activity is restricted to the cells that form the thorax and the hinge, where the wing blade attaches to the thorax, and eliminated in the wing pouch, which forms the wing blade. We show that hth repression in the wing pouch is a prerequisite for wing development; forcing hth expression prevents growth of the wing blade. Both the Dpp and the Wg pathways are involved in hth repression. Cells unable to process the Dpp (lacking thick veins or Mothers against Dpp activity) or the Wg (lacking dishevelled function) signal express hth in the wing pouch. We have identified vestigial (vg) as a Wg and Dpp response factor that is involved in hth control. In contrast to its repressing role in the wing pouch, wg upregulates hth expression in the hinge. We have also identified the gene teashirt (tsh) as a positive regulator of hth in the hinge. tsh plays a role specifying hinge structures, possibly in co-operation with hth.
Collapse
Affiliation(s)
- N Azpiazu
- Centro de Biologia Molecular CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
44
|
Wu J, Cohen SM. Proximal distal axis formation in the Drosophila leg: distinct functions of teashirt and homothorax in the proximal leg. Mech Dev 2000; 94:47-56. [PMID: 10842058 DOI: 10.1016/s0925-4773(00)00311-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The proximal distal axis of the Drosophila leg is patterned by expression of a number of transcription factors in discrete domains along the axis. The homeodomain protein Homothorax and the zinc-finger protein Teashirt are broadly coexpressed in the presumptive body wall and proximal leg segments. Homothorax has been implicated in forming a boundary between proximal and distal segments of the leg. We present evidence that Teashirt is required for the formation of proximal leg segments, but has no role in boundary formation.
Collapse
Affiliation(s)
- J Wu
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
45
|
Casares F, Mann RS. A dual role for homothorax in inhibiting wing blade development and specifying proximal wing identities in Drosophila. Development 2000; 127:1499-508. [PMID: 10704395 DOI: 10.1242/dev.127.7.1499] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila wing imaginal disc gives rise to three body parts along the proximo-distal (P-D) axis: the wing blade, the wing hinge and the mesonotum. Development of the wing blade initiates along part of the dorsal/ventral (D/V) compartment boundary and requires input from both the Notch and wingless (wg) signal transduction pathways. In the wing blade, wg activates the gene vestigial (vg), which is required for the wing blade to grow. wg is also required for hinge development, but wg does not activate vg in the hinge, raising the question of what target genes are activated by wg to generate hinge structures. Here we show that wg activates the gene homothorax (hth) in the hinge and that hth is necessary for hinge development. Further, we demonstrate that hth also limits where along the D/V compartment boundary wing blade development can initiate, thus helping to define the size and position of the wing blade within the disc epithelium. We also show that the gene teashirt (tsh), which is coexpressed with hth throughout most of wing disc development, collaborates with hth to repress vg and block wing blade development. Our results suggest that tsh and hth block wing blade development by repressing some of the activities of the Notch pathway at the D/V compartment boundary.
Collapse
Affiliation(s)
- F Casares
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, New York, NY 10032 USA
| | | |
Collapse
|
46
|
Abstract
The Drosophila salivary gland is proving to be an excellent experimental system for understanding how cells commit to specific developmental programs and, once committed, how cells implement such decisions. Through genetic studies, the factors that determine where salivary glands will form, the number of cells committed to a salivary gland fate, and the distinction between the two major cell types (secretory cells and duct cells) have been discovered. Within the next few years, we will learn the molecular details of the interactions among the salivary gland regulators and salivary gland target genes. We will also learn how the early-expressed salivary gland genes coordinate their activities to mediate the morphogenetic movements required to form the salivary gland and the changes in cell physiology required for high secretory activity.
Collapse
Affiliation(s)
- D J Andrew
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA.
| | | | | |
Collapse
|
47
|
Jaw TJ, You LR, Knoepfler PS, Yao LC, Pai CY, Tang CY, Chang LP, Berthelsen J, Blasi F, Kamps MP, Sun YH. Direct interaction of two homeoproteins, homothorax and extradenticle, is essential for EXD nuclear localization and function. Mech Dev 2000; 91:279-91. [PMID: 10704852 DOI: 10.1016/s0925-4773(99)00316-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Drosophila Homothorax (HTH) and Extradenticle (EXD) are two homeoproteins required in a number of developmental processes. EXD can function as a cofactor to Hox proteins. Its nuclear localization is dependent on HTH. In this study we present evidence of in vivo physical interaction between HTH and EXD, mediated primarily through an evolutionarily conserved MH domain in HTH. This interaction is essential for the mutual stabilization of both proteins, for EXD nuclear localization, and for the cooperative DNA binding of the EXD-HTH heterodimer. Some in vivo functions require both EXD and HTH in the nucleus, suggesting that the EXD-HTH complex may function as a transcriptional regulator.
Collapse
Affiliation(s)
- T J Jaw
- Institute of Genetics, National Yang-Ming University, Shipai, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Henderson KD, Andrew DJ. Regulation and function of Scr, exd, and hth in the Drosophila salivary gland. Dev Biol 2000; 217:362-74. [PMID: 10625560 DOI: 10.1006/dbio.1999.9560] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salivary gland formation in the Drosophila embryo is dependent on the homeotic gene Sex combs reduced (Scr). When Scr function is missing, salivary glands do not form, and when SCR is expressed everywhere in the embryo, salivary glands form in new places. Scr is normally expressed in all the cells that form the salivary gland. However, as the salivary gland invaginates, Scr mRNA and protein disappear. Homeotic genes, such as Scr, specify tissue identity by regulating the expression of downstream target genes. For many homeotic proteins, target gene specificity is achieved by cooperatively binding DNA with cofactors. Therefore, it is likely that SCR also requires a cofactor(s) to specifically bind to DNA and regulate salivary gland target gene expression. Here, we show that two homeodomain-containing proteins encoded by the extradenticle (exd) and homothorax (hth) genes are also required for salivary gland formation. exd and hth function at two levels: (1) exd and hth are required to maintain the expression of Scr in the salivary gland primordia prior to invagination and (2) exd and hth are required in parallel with Scr to regulate the expression of downstream salivary gland genes. We also show that Scr regulates the nuclear localization of EXD in the salivary gland primordia through repression of homothorax (hth) expression, linking the regulation of Scr activity to the disappearance of Scr expression in invaginating salivary glands.
Collapse
Affiliation(s)
- K D Henderson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205-2196, USA
| | | |
Collapse
|
49
|
Milán M, Cohen SM. Subdividing cell populations in the developing limbs of Drosophila: do wing veins and leg segments define units of growth control? Dev Biol 2000; 217:1-9. [PMID: 10625531 DOI: 10.1006/dbio.1999.9493] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | | |
Collapse
|
50
|
Ryoo HD, Marty T, Casares F, Affolter M, Mann RS. Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. Development 1999; 126:5137-48. [PMID: 10529430 DOI: 10.1242/dev.126.22.5137] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To regulate their target genes, the Hox proteins of Drosophila often bind to DNA as heterodimers with the homeodomain protein Extradenticle (EXD). For EXD to bind DNA, it must be in the nucleus, and its nuclear localization requires a third homeodomain protein, Homothorax (HTH). Here we show that a conserved N-terminal domain of HTH directly binds to EXD in vitro, and is sufficient to induce the nuclear localization of EXD in vivo. However, mutating a key DNA binding residue in the HTH homeodomain abolishes many of its in vivo functions. HTH binds to DNA as part of a HTH/Hox/EXD trimeric complex, and we show that this complex is essential for the activation of a natural Hox target enhancer. Using a dominant negative form of HTH we provide evidence that similar complexes are important for several Hox- and exd-mediated functions in vivo. These data suggest that Hox proteins often function as part of a multiprotein complex, composed of HTH, Hox, and EXD proteins, bound to DNA.
Collapse
Affiliation(s)
- H D Ryoo
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, New York, NY, USA
| | | | | | | | | |
Collapse
|