1
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
2
|
Begum S, Irvin SD, Cox CK, Huang Z, Wilson JJ, Monroe JD, Gibert Y. Anti-ovarian cancer migration and toxicity characteristics of a platinum(IV) pro-drug with axial HDAC inhibitor ligands in zebrafish models. Invest New Drugs 2024; 42:644-654. [PMID: 39433643 PMCID: PMC11625067 DOI: 10.1007/s10637-024-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer is the fifth leading cause of cancer related death in the United States. Cisplatin is a platinum-based anti-cancer drug used against ovarian cancer that enters malignant cells and then damages DNA causing cell death. Typically, ovarian cancer cells become resistant to cisplatin making it necessary to increase subsequent dosage, which usually leads to side-effects including irreversible damage to kidney and auditory system tissue. Ovarian cancer resistance is often associated with upregulation of histone deacetylase (HDAC) enzymes that cause DNA to adopt a closed configuration which reduces the ability of cisplatin to target and damage DNA. Compound B, a platinum(IV) complex with two axial phenylbutyrate (PBA) HDAC inhibitor ligands attached to a cisplatin core, can simultaneously inhibit HDAC activity and damage DNA causing decreased cancer cell viability in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian cancer cell lines. However, compound B was not previously evaluated in vivo. As simultaneously inhibiting HDAC-mediated resistance with cisplatin treatment could potentiate the platinum drug's effect, we first confirmed the anti-cancer effect of compound B in the A2780 and A2780cis cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide spectrophotometric assay. Then, we used zebrafish embryo and transgenic animal models to comparatively analyze the effect of cisplatin, compound B, and controls on general organismal, auditory, and renal system toxicity, and cancer metastasis. We found that lower dosages of compound B (0.3 or 0.6 µM) than of cisplatin (2.0 µM) could cause similar or decreased levels of general, auditory, and renal tissue toxicity, and at 0.6 µM, compound B reduces cancer metastasis more than 2.0 µM cisplatin.
Collapse
Affiliation(s)
- Salma Begum
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 State Street, Jackson, MS, 39216, USA
| | - Scheldon D Irvin
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 State Street, Jackson, MS, 39216, USA
| | - Carol K Cox
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 State Street, Jackson, MS, 39216, USA
| | - Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853- 1301, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853- 1301, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106-9510, USA
| | - Jerry D Monroe
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 State Street, Jackson, MS, 39216, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
3
|
Thiel WA, Blume ZI, Mitchell DM. Compensatory engulfment and Müller glia reactivity in the absence of microglia. Glia 2022; 70:1402-1425. [PMID: 35451181 DOI: 10.1002/glia.24182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 01/25/2023]
Abstract
Microglia are known for important phagocytic functions in the vertebrate retina. Reports also suggest that Müller glia have phagocytic capacity, though the relative levels and contexts in which this occurs remain to be thoroughly examined. Here, we investigate Müller glial engulfment of dying cells in the developing zebrafish retina in the presence and absence of microglia, using a genetic mutant in which microglia do not develop. We show that in normal conditions clearance of dying cells is dominated by microglia; however, Müller glia do have a limited clearance role. In retinas lacking intact microglial populations, we found a striking increase in the engulfment load assumed by the Müller glia, which displayed prominent cellular compartments containing apoptotic cells, several of which localized with the early phagosome/endosome marker Rab5. Consistent with increased engulfment, lysosomal staining was also increased in Müller glia in the absence of microglia. Increased engulfment load led to evidence of Müller glia reactivity including upregulation of gfap but did not trigger cell cycle re-entry by differentiated Müller glia. Our work provides important insight into the phagocytic capacity of Müller glia and the ability for compensatory functions and downstream effects. Therefore, effects of microglial deficiency or depletion on other glial cell types should be well-considered in experimental manipulations, in neurodegenerative disease, and in therapeutic approaches that target microglia. Our findings further justify future work to understand differential mechanisms and contexts of phagocytosis by glial cells in the central nervous system, and the significance of these mechanisms in health and disease.
Collapse
Affiliation(s)
- Whitney A Thiel
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Zachary I Blume
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
4
|
Elsaey MA, Namikawa K, Köster RW. Genetic Modeling of the Neurodegenerative Disease Spinocerebellar Ataxia Type 1 in Zebrafish. Int J Mol Sci 2021; 22:7351. [PMID: 34298970 PMCID: PMC8306488 DOI: 10.3390/ijms22147351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Dominant spinocerebellar ataxias (SCAs) are progredient neurodegenerative diseases commonly affecting the survival of Purkinje cells (PCs) in the human cerebellum. Spinocerebellar ataxia type 1 (SCA1) is caused by the mutated ataxin1 (Atx1) gene product, in which a polyglutamine stretch encoded by CAG repeats is extended in affected SCA1 patients. As a monogenetic disease with the Atx1-polyQ protein exerting a gain of function, SCA1 can be genetically modelled in animals by cell type-specific overexpression. We have established a transgenic PC-specific SCA1 model in zebrafish coexpressing the fluorescent reporter protein mScarlet together with either human wild type Atx1[30Q] as control or SCA1 patient-derived Atx1[82Q]. SCA1 zebrafish display an age-dependent PC degeneration starting at larval stages around six weeks postfertilization, which continuously progresses during further juvenile and young adult stages. Interestingly, PC degeneration is observed more severely in rostral than in caudal regions of the PC population. Although such a neuropathology resulted in no gross locomotor control deficits, SCA1-fish with advanced PC loss display a reduced exploratory behaviour. In vivo imaging in this SCA1 model may help to better understand such patterned PC death known from PC neurodegeneration diseases, to elucidate disease mechanisms and to provide access to neuroprotective compound characterization in vivo.
Collapse
Affiliation(s)
- Mohamed A. Elsaey
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Kazuhiko Namikawa
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
| | - Reinhard W. Köster
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany;
| |
Collapse
|
5
|
Weber T, Schlotawa L, Dosch R, Hamilton N, Kaiser J, Schiller S, Wenske B, Gärtner J, Henneke M. Zebrafish disease model of human RNASET2-deficient cystic leukoencephalopathy displays abnormalities in early microglia. Biol Open 2020; 9:bio049239. [PMID: 32295832 PMCID: PMC7225086 DOI: 10.1242/bio.049239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Human infantile-onset RNASET2-deficient cystic leukoencephalopathy is a Mendelian mimic of in utero cytomegalovirus brain infection with prenatally developing inflammatory brain lesions. We used an RNASET2-deficient zebrafish model to elucidate the underlying disease mechanisms. Mutant and wild-type zebrafish larvae brain development between 2 and 5 days post fertilization (dpf) was examined by confocal live imaging in fluorescent reporter lines of the major types of brain cells. In contrast to wild-type brains, RNASET2-deficient larvae displayed increased numbers of microglia with altered morphology, often containing inclusions of neurons. Furthermore, lysosomes within distinct populations of the myeloid cell lineage including microglia showed increased lysosomal staining. Neurons and oligodendrocyte precursor cells remained unaffected. This study provides a first look into the prenatal onset pathomechanisms of human RNASET2-deficient leukoencephalopathy, linking this inborn lysosomal disease to the innate immune system and other immune-related childhood encephalopathies like Aicardi-Goutières syndrome (AGS).
Collapse
Affiliation(s)
- Thomas Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Roland Dosch
- Department of Human Genetics, University Medical Center Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Noémie Hamilton
- The Bateson Centre, University of Sheffield, Firth Court D31, Sheffield S10 2PT, United Kingdom
| | - Jens Kaiser
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Stina Schiller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Britta Wenske
- Department of Haematology and Oncology, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| | - Marco Henneke
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Robert- Koch- Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
6
|
Blume ZI, Lambert JM, Lovel AG, Mitchell DM. Microglia in the developing retina couple phagocytosis with the progression of apoptosis via P2RY12 signaling. Dev Dyn 2020; 249:723-740. [PMID: 32072708 DOI: 10.1002/dvdy.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia colonize the developing vertebrate central nervous system coincident with the detection of developmental apoptosis. Our understanding of apoptosis in intact tissue in relation to microglial clearance of dying cells is largely based on fixed samples, which is limiting given that microglia are highly motile and mobile phagocytes. Here, we used a system of microglial depletion and in vivo real-time imaging in zebrafish to directly address microglial phagocytosis of apoptotic cells during normal retinal development, the relative timing of phagocytosis in relation to apoptotic progression, and the contribution of P2RY12 signaling to this process. RESULTS The depletion of microglia resulted in accumulation of numerous apoptotic cells in the retina. Real-time imaging revealed precise timing of microglial engulfment with the progression of apoptosis, and dynamic movement and displacement of engulfed apoptotic cells. Inhibition of P2RY12 signaling delayed microglial clearance of apoptotic cells. CONCLUSIONS Microglial engulfment of dying cells is coincident with apoptotic progression and requires P2RY12 signaling, indicating that microglial P2RY12 signaling is shared between development and injury response. Our work provides important in vivo insight into the dynamics of apoptotic cell clearance in the developing vertebrate retina and provides a basis to understand microglial phagocytic behavior in health and disease.
Collapse
Affiliation(s)
- Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jared M Lambert
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Anna G Lovel
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
7
|
Zambusi A, Ninkovic J. Regeneration of the central nervous system-principles from brain regeneration in adult zebrafish. World J Stem Cells 2020; 12:8-24. [PMID: 32110272 PMCID: PMC7031763 DOI: 10.4252/wjsc.v12.i1.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Poor recovery of neuronal functions is one of the most common healthcare challenges for patients with different types of brain injuries and/or neurodegenerative diseases. Therapeutic interventions face two major challenges: (1) How to generate neurons de novo to replenish the neuronal loss caused by injuries or neurodegeneration (restorative neurogenesis) and (2) How to prevent or limit the secondary tissue damage caused by long-term accumulation of glial cells, including microglia, at injury site (glial scar). In contrast to mammals, zebrafish have extensive regenerative capacity in numerous vital organs, including the brain, thus making them a valuable model to improve the existing therapeutic approaches for human brain repair. In response to injuries to the central nervous system (CNS), zebrafish have developed specific mechanisms to promote the recovery of the lost tissue architecture and functionality of the damaged CNS. These mechanisms include the activation of a restorative neurogenic program in a specific set of glial cells (ependymoglia) and the resolution of both the glial scar and inflammation, thus enabling proper neuronal specification and survival. In this review, we discuss the cellular and molecular mechanisms underlying the regenerative ability in the adult zebrafish brain and conclude with the potential applicability of these mechanisms in repair of the mammalian CNS.
Collapse
Affiliation(s)
- Alessandro Zambusi
- Helmholtz Center Munich, Biomedical Center, Inst Stem Cell Res, Institute of Stem Cell Research, Department of Cell Biology and Anatomy, University of Munich, Planegg 82152, Germany
| | - Jovica Ninkovic
- Helmholtz Center Munich, Biomedical Center, Inst Stem Cell Res, Institute of Stem Cell Research, Department of Cell Biology and Anatomy, University of Munich, Planegg 82152, Germany
| |
Collapse
|
8
|
Xu S, Xie F, Tian L, Manno SH, Manno FAM, Cheng SH. Prolonged neutrophil retention in the wound impairs zebrafish heart regeneration after cryoinjury. FISH & SHELLFISH IMMUNOLOGY 2019; 94:447-454. [PMID: 31526847 DOI: 10.1016/j.fsi.2019.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Neutrophils are the first line defenders in the innate immune response, and rapidly migrate to an infected or injured area. Recently, bidirectional migration of neutrophils to the wound and the corresponding functions have become popular research pursuits. In zebrafish larvae, CXCR1/CXCL8 is the predominant chemoattractant pathway to recruit neutrophil to wound, while CXCR2/CXCL8 pathway mediate neutrophil dispersal in wound after injury. Here, we found that both CXCR1/CXCL8 and LTB4/BLT1 signals are activated in zebrafish heart after cryoinjury. And with a CXCR1/2 selective inhibitor (SB225002) treatment, the recruitment of neutrophils was not affected, but reverse migration of neutrophils was inhibited after cryoinjury of heart. We suggested that the neutrophil recruitment to cryoinjured area might be mediated by LTB4/BLT1 signals at the presence of SB225002. Therefore, SB225002 treatment resulted more accumulation and long retention of neutrophils in the injured heart. The long retention of neutrophils in the wound promoted revascularization in the injured heart; however, the AKT/mTOR pathway was inhibited and the regeneration was impaired. Our findings suggest that retention of neutrophils is a well-orchestrated process and might regulate regeneration by the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shisan Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Fangjing Xie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Sinai Hc Manno
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Francis A M Manno
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution (SKLMP) at City University of Hong Kong, Hong Kong SAR, PR China; Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
9
|
Xu S, Liu C, Xie F, Tian L, Manno SH, Manno FAM, Fallah S, Pelster B, Tse G, Cheng SH. Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. FISH & SHELLFISH IMMUNOLOGY 2019; 89:117-126. [PMID: 30928664 DOI: 10.1016/j.fsi.2019.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Inflammation plays a crucial role in cardiac regeneration. Numerous advantages, including a robust regenerative ability, make the zebrafish a popular model to study cardiovascular diseases. The zebrafish breakdance (bre) mutant shares several key features with human long QT syndrome that predisposes to ventricular arrhythmias and sudden death. However, how inflammatory response and tissue regeneration following cardiac damage occur in bre mutant is unknown. Here, we have found that inflammatory response related genes were markedly expressed in the injured heart and excessive leukocyte accumulation occurred in the injured area of the bre mutant zebrafish. Furthermore, bre mutant zebrafish exhibited aberrant apoptosis and impaired heart regenerative ability after ventricular cryoinjury. Mild dosages of anti-inflammatory or prokinetic drugs protected regenerative cells from undergoing aberrant apoptosis and promoted heart regeneration in bre mutant zebrafish. We propose that immune or prokinetic therapy could be a potential therapeutic regimen for patients with genetic long QT syndrome who suffers from myocardial infarction.
Collapse
Affiliation(s)
- Shisan Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Chichi Liu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Fangjing Xie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Sinai Hc Manno
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Francis A M Manno
- Department of Physics, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China
| | - Samane Fallah
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China
| | - Bernd Pelster
- Institut für Zoologie, Universität Innsbruck, Center for Molecular Biosciences, Universität Innsbruck, Innsbruck, Austria.
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution (SKLMP) at City University of Hong Kong, Hong Kong SAR, PR China; Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
10
|
Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, Dübel S, Korte M, Köster RW. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J Neurosci 2019; 39:3948-3969. [PMID: 30862666 PMCID: PMC6520513 DOI: 10.1523/jneurosci.1862-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
Collapse
Affiliation(s)
| | | | - Marta Zagrebelsky
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
| | - Giulio Russo
- Cellular and Molecular Neurobiology
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | | | - Wieland Fahr
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Martin Korte
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | | |
Collapse
|
11
|
Green AJ, Planchart A. The neurological toxicity of heavy metals: A fish perspective. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:12-19. [PMID: 29199130 PMCID: PMC5936656 DOI: 10.1016/j.cbpc.2017.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
The causes of neurodegenerative diseases are complex with likely contributions from genetic susceptibility and environmental exposures over an organism's lifetime. In this review, we examine the role that aquatic models, especially zebrafish, have played in the elucidation of mechanisms of heavy metal toxicity and nervous system function over the last decade. Focus is applied to cadmium, lead, and mercury as significant contributors to central nervous system morbidity, and the application of numerous transgenic zebrafish expressing fluorescent reporters in specific neuronal populations or brain regions enabling high-resolution neurodevelopmental and neurotoxicology research.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Behavior, Animal/drug effects
- Disease Models, Animal
- Gene Expression Regulation, Developmental/drug effects
- Heavy Metal Poisoning, Nervous System/etiology
- Heavy Metal Poisoning, Nervous System/genetics
- Heavy Metal Poisoning, Nervous System/metabolism
- Heavy Metal Poisoning, Nervous System/pathology
- Humans
- Metals, Heavy/toxicity
- Nerve Degeneration
- Nervous System/drug effects
- Nervous System/metabolism
- Nervous System/pathology
- Nervous System/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Risk Assessment
- Water Pollutants, Chemical/toxicity
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Adrian J Green
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Antonio Planchart
- Graduate Program in Toxicology, North Carolina State University, Raleigh, NC 27695, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States; W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
12
|
Sassen WA, Lehne F, Russo G, Wargenau S, Dübel S, Köster RW. Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Dev Biol 2017; 430:18-31. [DOI: 10.1016/j.ydbio.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|