1
|
Berrio A, Miranda E, Massri AJ, Afanassiev A, Schiebinger G, Wray GA, McClay DR. Reprogramming of cells during embryonic transfating: overcoming a reprogramming block. Development 2024; 151:dev203152. [PMID: 39628450 DOI: 10.1242/dev.203152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
Regulative development, demonstrated by many animal embryos, is the ability to replace missing cells or parts. The underlying molecular mechanism(s) of that ability is not well understood. If sea urchin micromeres (skeletogenic cell progenitors) are removed at the 16-cell stage, early endoderm initiates a sequential switch in cell fates, called transfating. Without micromeres, other mesoderm cells are absent as well, because their specification depends on signaling from micromeres. Most mesoderm cells later return by transfating, but pigment cells do not. Single-cell RNA sequencing, tracked over time, reveals the reprogramming sequence of those replacements. Beginning with an early endoderm specification state, cells progress through endomesoderm, then mesoderm, and finally distinct skeletogenic and blastocoelar cell specification states emerge, but pigment cells do not. Rescue of pigment cells was found to be a consequence of signal timing: if Delta is expressed prior to Nodal, pigment cells return. Thus, transfating operates through a series of gene regulatory state transitions, and reprogramming fails if endogenous negative signals occur prior to positive signals in the reprogramming sequence.
Collapse
Affiliation(s)
| | - Esther Miranda
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
2
|
Costantini M, Esposito R, Ruocco N, Caramiello D, Cordella A, Ventola GM, Zupo V. De Novo Assembly of the Genome of the Sea Urchin Paracentrotus lividus (Lamarck 1816). Int J Mol Sci 2024; 25:1685. [PMID: 38338963 PMCID: PMC10855541 DOI: 10.3390/ijms25031685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The Mediterranean purple sea urchin Paracentrotus lividus (Lamarck 1816) is a remarkable model system for molecular, evolutionary and cell biology studies, particularly in the field of developmental biology. We sequenced the genome, performed a de novo assembly, and analysed the assembly content. The genome of P. lividus was sequenced using Illumina NextSeq 500 System (Illumina) in a 2 × 150 paired-end format. More than 30,000 open reading frames (ORFs), (more than 8000 are unique), were identified and analysed to provide molecular tools accessible for the scientific community. In particular, several genes involved in complex innate immune responses, oxidative metabolism, signal transduction, and kinome, as well as genes regulating the membrane receptors, were identified in the P. lividus genome. In this way, the employment of the Mediterranean sea urchin for investigations and comparative analyses was empowered, leading to the explanation of cis-regulatory networks and their evolution in a key developmental model occupying an important evolutionary position with respect to vertebrates and humans.
Collapse
Affiliation(s)
- Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton n. 55, 80133 Napoli, Italy;
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton n. 55, 80133 Napoli, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, C.da Torre Spaccata, 87071 Amendolara, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Marine Animal Conservation and Public Engagement, Villa Comunale, 1, 80121 Naples, Italy;
| | - Angela Cordella
- Genomix4Life S.r.l., Baronissi, 84081 Salerno, Italy; (A.C.); (G.M.V.)
- Genome Research Center for Health-CRGS, Baronissi, 84081 Salerno, Italy
| | | | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80121 Naples, Italy
| |
Collapse
|
3
|
Yamakawa S, Yamazaki A, Morino Y, Wada H. Early expression onset of tissue-specific effector genes during the specification process in sea urchin embryos. EvoDevo 2023; 14:7. [PMID: 37101206 PMCID: PMC10131483 DOI: 10.1186/s13227-023-00210-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/01/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND In the course of animal developmental processes, various tissues are differentiated through complex interactions within the gene regulatory network. As a general concept, differentiation has been considered to be the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising questions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of differentiation itself. RESULTS Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumulated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs. CONCLUSIONS Based on this finding, we propose that the expression onset of tissue-specific effector genes is controlled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the evolution of novel cell types.
Collapse
Affiliation(s)
- Shumpei Yamakawa
- Institute of Zoology and Evolutionary Research, Friedrich-Shiller University Jena, Erbertstraße 1, 07747, Jena, Germany.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Atsuko Yamazaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshiaki Morino
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Wada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
4
|
Wound repair in sea urchin larvae involves pigment cells and blastocoelar cells. Dev Biol 2022; 491:56-65. [PMID: 36067837 DOI: 10.1016/j.ydbio.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
Abstract
Sea urchin larvae spend weeks to months feeding on plankton prior to metamorphosis. When handled in the laboratory they are easily injured, suggesting that in the plankton they are injured with some frequency. Fortunately, larval wounds are repaired through an efficient wound response with mesenchymal pigment cells and blastocoelar cells assisting as the epithelium closes. An injury to the epithelium leads to an immediate calcium transient that rapidly spreads around the entire larva and is necessary for activating pigment cell migration toward the wound. If calcium transport is blocked, the pigment cells fail to activate and remain in place. When activated, pigment cells initiate directed migration to the wound site from distances of at least 85 μm. Upon arrival at the wound site they participate in an innate immune response. Blastocoelar cells are recruited to the injury site as well, though the calcium transient is unnecessary for activating these cells. At the wound site, blastocoelar cells participate in several functions including remodeling the skeleton if it protrudes through the epithelium.
Collapse
|
5
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
6
|
Abstract
Larvae of sea urchins have a population of conspicuous pigmented cells embedded in the outer surface epithelium. Pigment cells are a distinct mesodermal lineage that gives rise to a key component of the larval immune system. During cleavage, signaling from adjacent cells influences a small crescent of cells to initiate a network of genetic interactions that prepare the cells for morphogenesis and specializes them as immunocytes. The cells become active during gastrulation, detach from the epithelium, migrate through the blastocoel, and insert into the ectoderm where they complete their differentiation. Studies of pigment cell development have helped establish how cellular signaling controls networks of genetic interactions that bring about morphogenesis and differentiation. This review summarizes studies of pigment cell development and concludes that pigment cells are an excellent experimental model. Pigment cells provide several opportunities to further test and refine our understanding of the molecular basis of cellular development.
Collapse
Affiliation(s)
- Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
7
|
Abstract
The micromeres of the sea urchin embryo are distinct from other blastomeres. After they arise through an asymmetric cell division at the 8- to 16-cell stage, micromeres immediately function as organizers. They also commit themselves to specific cell fates such as larval skeletogenic cells and primordial germ cells, while other blastomeres remain plastic and uncommitted at the 16-cell stage. In the phylum Echinodermata, only the sea urchin (class Echinoidea) embryo forms micromeres that serve as apparent organizers during early embryogenesis. Therefore, it is considered that micromeres are the derived features and that modification(s) of the developmental system allowed evolutionary introduction of this unique cell lineage. In this chapter, we summarize the both historic and recent observations that demonstrate unique properties of micromeres and discuss how this lineage of micromeres may have arisen during echinoderm evolution.
Collapse
Affiliation(s)
- Natsuko Emura
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
8
|
Slota LA, Miranda EM, McClay DR. Spatial and temporal patterns of gene expression during neurogenesis in the sea urchin Lytechinus variegatus. EvoDevo 2019; 10:2. [PMID: 30792836 PMCID: PMC6371548 DOI: 10.1186/s13227-019-0115-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/30/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The sea urchin is a basal deuterostome that is more closely related to vertebrates than many organisms traditionally used to study neurogenesis. This phylogenetic position means that the sea urchin can provide insights into the evolution of the nervous system by helping resolve which developmental processes are deuterostome innovations, which are innovations in other clades, and which are ancestral. However, the nervous system of echinoderms is one of the least understood of all major metazoan phyla. To gain insights into echinoderm neurogenesis, spatial and temporal gene expression data are essential. Then, functional data will enable the building of a detailed gene regulatory network for neurogenesis in the sea urchin that can be compared across metazoans to resolve questions about how nervous systems evolved. RESULTS Here, we analyze spatiotemporal gene expression during sea urchin neurogenesis for genes that have been shown to be neurogenic in one or more species. We report the expression of 21 genes expressed in areas of neurogenesis in the sea urchin embryo from blastula stage (just before neural progenitors begin their specification sequence) through pluteus larval stage (when much of the nervous system has been patterned). Among those 21 gene expression patterns, we report expression of 11 transcription factors and 2 axon guidance genes, each expressed in discrete domains in the neuroectoderm or in the endoderm. Most of these genes are expressed in and around the ciliary band. Some including the transcription factors Lv-mbx, Lv-dmrt, Lv-islet, and Lv-atbf1, the nuclear protein Lv-prohibitin, and the guidance molecule Lv-semaa are expressed in the endoderm where they are presumably involved in neurogenesis in the gut. CONCLUSIONS This study builds a foundation to study how neurons are specified and evolved by analyzing spatial and temporal gene expression during neurogenesis in a basal deuterostome. With these expression patterns, we will be able to understand what genes are required for neural development in the sea urchin. These data can be used as a starting point to (1) build a spatial gene regulatory network for sea urchin neurogenesis, (2) identify how subtypes of neurons are specified, (3) perform comparative studies with the sea urchin, protostome, and vertebrate organisms.
Collapse
Affiliation(s)
- Leslie A. Slota
- Department of Biology, Duke University, 124 Science Dr., Box 90338, Durham, NC 27708 USA
| | - Esther M. Miranda
- Department of Biology, Duke University, 124 Science Dr., Box 90338, Durham, NC 27708 USA
| | - David R. McClay
- Department of Biology, Duke University, 124 Science Dr., Box 90338, Durham, NC 27708 USA
| |
Collapse
|
9
|
McClay DR, Miranda E, Feinberg SL. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development 2018; 145:dev167742. [PMID: 30413529 PMCID: PMC6240313 DOI: 10.1242/dev.167742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Stacy L Feinberg
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos. Dev Biol 2018; 444:83-92. [PMID: 30332609 DOI: 10.1016/j.ydbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 01/02/2023]
Abstract
The spatiotemporal expression of Frizzled receptors is critical for patterning along the early anterior-posterior axis during embryonic development in many animal species. However, the molecular mechanisms that regulate the expression of Frizzled receptors are incompletely understood in any species. In this study, I examine how the expression of two Frizzled receptors, Fzl1/2/7 and Fzl5/8, is controlled by the Wnt signaling network which directs specification and positioning of early regulatory states along the anterior-posterior (AP) axis of sea urchin embryos. I used a combination of morpholino- and dominant negative-mediated interference to knock down each Wnt signaling pathway involved in the AP Wnt signaling network. I found that the expression of zygotic fzl5/8 as well as that of the anterior neuroectoderm gene regulatory network (ANE GRN) is activated by an unknown broadly expressed regulatory state and that posterior Wnt/β-catenin signaling is necessary to down regulate fzl5/8's expression in posterior blastomeres. I show that zygotic expression of fzl1/2/7 in the equatorial ectodermal belt is dependent on an uncharacterized regulatory mechanism that works in the same cells receiving the TGF-β signals patterning this territory along the dorsal-ventral axis. In addition, my data indicate that Fzl1/2/7 signaling represses its own expression in a negative feedback mechanism. Finally, we discovered that a balance between the activities of posterior Wnt8 and anterior Dkk1 is necessary to establish the correct spatial expression of zygotic fzl12/7 expression in the equatorial ectodermal domain during blastula and gastrula stages. Together, these studies lead to a better understanding of the complex interactions among the three Wnt signaling pathway governing AP axis specification and patterning in sea urchin embryos.
Collapse
|
11
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
12
|
Erkenbrack EM. Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids. Dev Genes Evol 2018; 228:1-11. [PMID: 29249002 DOI: 10.1007/s00427-017-0599-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Notch signaling is a crucial cog in early development of euechinoid sea urchins, specifying both non-skeletogenic mesodermal lineages and serotonergic neurons in the apical neuroectoderm. Here, the spatial distributions and function of delta, gcm, and hesc, three genes critical to these processes in euechinoids, are examined in the distantly related cidaroid sea urchin Eucidaris tribuloides. Spatial distribution and experimental perturbation of delta and hesc suggest that the function of Notch signaling in ectodermal patterning in early development of E. tr ibuloides is consistent with canonical lateral inhibition. Delta transcripts were observed in t he archenteron, apical ectoderm, and lateral ectoderm in gastrulating e mbryos of E. tribuloides. Perturbation of Notch signaling by either delta morpholino or treatment of DAPT downregulated hesc and upregulated delta and gcm, resulting in ectopic expression of delta and gcm. Similarly, hesc perturbation mirrored the effects of delta perturbation. Interestingly, perturbation of delta or hesc resulted in more cells expressing gcm and supernumerary pigment cells, suggesting that pigment cell proliferation is regulated by Notch in E. tribuloides. These results are consistent with an evolutionary scenario whereby, in the echinoid ancestor, Notch signaling was deployed in the ectoderm to specify neurogenic progenitors and controlled pigment cell proliferation in the dorsal ectoderm.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Yale Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
13
|
Schrankel CS, Solek CM, Buckley KM, Anderson MK, Rast JP. A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Dev Biol 2016; 416:149-161. [PMID: 27265865 DOI: 10.1016/j.ydbio.2016.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
Abstract
E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.
Collapse
Affiliation(s)
- Catherine S Schrankel
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Cynthia M Solek
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Katherine M Buckley
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jonathan P Rast
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Perillo M, Wang YJ, Leach SD, Arnone MI. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol Biol 2016; 16:117. [PMID: 27230062 PMCID: PMC4880809 DOI: 10.1186/s12862-016-0686-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. Results We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. Conclusions Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0686-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margherita Perillo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.,Present address: Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yue Julia Wang
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven D Leach
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.
| |
Collapse
|
15
|
Martik ML, Lyons DC, McClay DR. Developmental gene regulatory networks in sea urchins and what we can learn from them. F1000Res 2016; 5. [PMID: 26962438 PMCID: PMC4765714 DOI: 10.12688/f1000research.7381.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Sea urchin embryos begin zygotic transcription shortly after the egg is fertilized. Throughout the cleavage stages a series of transcription factors are activated and, along with signaling through a number of pathways, at least 15 different cell types are specified by the beginning of gastrulation. Experimentally, perturbation of contributing transcription factors, signals and receptors and their molecular consequences enabled the assembly of an extensive gene regulatory network model. That effort, pioneered and led by Eric Davidson and his laboratory, with many additional insights provided by other laboratories, provided the sea urchin community with a valuable resource. Here we describe the approaches used to enable the assembly of an advanced gene regulatory network model describing molecular diversification during early development. We then provide examples to show how a relatively advanced authenticated network can be used as a tool for discovery of how diverse developmental mechanisms are controlled and work.
Collapse
Affiliation(s)
- Megan L Martik
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - Deirdre C Lyons
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - David R McClay
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
16
|
Hayden L, Schlosser G, Arthur W. Functional analysis of centipede development supports roles for Wnt genes in posterior development and segment generation. Evol Dev 2015; 17:49-62. [PMID: 25627713 DOI: 10.1111/ede.12112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genes of the Wnt family play important and highly conserved roles in posterior growth and development in a wide range of animal taxa. Wnt genes also operate in arthropod segmentation, and there has been much recent debate regarding the relationship between arthropod and vertebrate segmentation mechanisms. Due to its phylogenetic position, body form, and possession of many (11) Wnt genes, the centipede Strigamia maritima is a useful system with which to examine these issues. This study takes a functional approach based on treatment with lithium chloride, which causes ubiquitous activation of canonical Wnt signalling. This is the first functional developmental study performed in any of the 15,000 species of the arthropod subphylum Myriapoda. The expression of all 11 Wnt genes in Strigamia was analyzed in relation to posterior development. Three of these genes, Wnt11, Wnt5, and WntA, were strongly expressed in the posterior region and, thus, may play important roles in posterior developmental processes. In support of this hypothesis, LiCl treatment of S. maritima embryos was observed to produce posterior developmental defects and perturbations in AbdB and Delta expression. The effects of LiCl differ depending on the developmental stage treated, with more severe effects elicited by treatment during germband formation than by treatment at later stages. These results support a role for Wnt signalling in conferring posterior identity in Strigamia. In addition, data from this study are consistent with the hypothesis of segmentation based on a "clock and wavefront" mechanism operating in this species.
Collapse
Affiliation(s)
- Luke Hayden
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
17
|
Sörensen-Zender I, Rong S, Susnik N, Zender S, Pennekamp P, Melk A, Haller H, Schmitt R. Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury. Am J Physiol Renal Physiol 2014; 306:F907-15. [DOI: 10.1152/ajprenal.00030.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aging kidney has a diminished regenerative potential and an increased tendency to develop tubular atrophy and fibrosis after acute injury. In this study, we found that activation of tubular epithelial Notch1 signaling was prolonged in the aging kidney after ischemia/reperfusion (IR) damage. To analyze the consequences of sustained Notch activation, we generated mice with conditional inducible expression of Notch1 intracellular domain (NICD) in proximal tubules. NICD kidneys were analyzed 1 and 4 wk after renal IR. Conditional NICD expression was associated with aggravated tubular damage, a fibrotic phenotype, and the expression of cellular senescence markers p21 and p16 INK4a. In wild-type mice pharmacological inhibition of Notch using the γ-secretase inhibitor N-[ N-(3,5-difluorophenacetyl)-l-alanyl]- S-phenylglycine t-butyl ester (DAPT) improved tubulo-interstitial damage and antagonized the prosenescent pathway activation after IR. In vitro, activation of Notch signaling with delta-like-ligand-4 caused prosenescent changes in tubular cells while inhibition with DAPT attenuated these changes. In conclusion, our data suggest that sustained epithelial Notch activation after IR might contribute to the inferior outcome of old kidneys after injury. Sustained epithelial activation of Notch is associated with a prosenescent phenotype and maladaptive repair.
Collapse
Affiliation(s)
- Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Nathan Susnik
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Steffen Zender
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Petra Pennekamp
- Children's Hospital, University of Munster, Munster, Germany; and
| | - Anette Melk
- Department of Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
McIntyre DC, Lyons DC, Martik M, McClay DR. Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 2014; 52:173-85. [PMID: 24549853 PMCID: PMC3990003 DOI: 10.1002/dvg.22756] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/08/2022]
Abstract
It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production.
Collapse
Affiliation(s)
| | | | - Megan Martik
- Department of Biology, Duke University, Durham, NC
| | | |
Collapse
|
19
|
Nakajima T, Aratani S, Nakazawa M, Hirose T, Fujita H, Nishioka K. Implications of transcriptional coactivator CREB binding protein complexes in rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-003-0258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
McIntyre DC, Seay NW, Croce JC, McClay DR. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 2013; 140:4881-9. [PMID: 24227654 DOI: 10.1242/dev.095844] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The border between the posterior ectoderm and the endoderm is a location where two germ layers meet and establish an enduring relationship that also later serves, in deuterostomes, as the anatomical site of the anus. In the sea urchin, a prototypic deuterostome, the ectoderm-endoderm boundary is established before gastrulation, and ectodermal cells at the boundary are thought to provide patterning inputs to the underlying mesenchyme. Here we show that a short-range Wnt5 signal from the endoderm actively patterns the adjacent boundary ectoderm. This signal activates a unique subcircuit of the ectoderm gene regulatory network, including the transcription factors IrxA, Nk1, Pax2/5/8 and Lim1, which are ultimately restricted to subregions of the border ectoderm (BE). Surprisingly, Nodal and BMP2/4, previously shown to be activators of ectodermal specification and the secondary embryonic axis, instead restrict the expression of these genes to subregions of the BE. A detailed examination showed that endodermal Wnt5 functions as a short-range signal that activates only a narrow band of ectodermal cells, even though all ectoderm is competent to receive the signal. Thus, cells in the BE integrate positive and negative signals from both the primary and secondary embryonic axes to correctly locate and specify the border ectoderm.
Collapse
|
21
|
Lhomond G, McClay DR, Gache C, Croce JC. Frizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis. Development 2012; 139:816-25. [PMID: 22274701 DOI: 10.1242/dev.072215] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In sea urchins, the nuclear accumulation of β-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Paracentrotus lividus, the receptor Frizzled1/2/7 is required by 5th cleavage for β-catenin nuclearisation selectively in macromere daughter cells. Perturbation analyses established further that Frizzled1/2/7 signaling is required subsequently for the specification of the endomesoderm and then the endoderm but not for that of the non-skeletogenic mesoderm, even though this cell type also originates from the endomesoderm lineage. Complementary analyses on Wnt6 showed that this maternal ligand is similarly required at 5th cleavage for the nuclear accumulation of β-catenin exclusively in the macromeres and for endoderm but not for non-skeletogenic mesoderm specification. In addition, Wnt6 misexpression reverses Frizzled1/2/7 downregulation-induced phenotypes. Thus, the results indicate that Wnt6 and Frizzled1/2/7 are likely to behave as the ligand-receptor pair responsible for initiating β-catenin nuclearisation in macromeres at 5th cleavage and that event is necessary for endoderm specification. They show also that β-catenin nuclearisation in micromeres and macromeres takes place through a different mechanism, and that non-skeletogenic mesoderm specification occurs independently of the nuclear accumulation of β-catenin in macromeres at the 5th cleavage. Evolutionarily, this analysis outlines further the conserved involvement of the Frizzled1/2/7 subfamily, but not of specific Wnts, in the activation of canonical Wnt signaling during early animal development.
Collapse
Affiliation(s)
- Guy Lhomond
- UPMC Université Paris 06, UMR7009, CNRS, Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | | | | | | |
Collapse
|
22
|
Sethi AJ, Wikramanayake RM, Angerer RC, Range RC, Angerer LM. Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos. Science 2012; 335:590-3. [PMID: 22301319 PMCID: PMC4827163 DOI: 10.1126/science.1212867] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The segregation of embryonic endomesoderm into separate endoderm and mesoderm fates is not well understood in deuterostomes. Using sea urchin embryos, we showed that Notch signaling initiates segregation of the endomesoderm precursor field by inhibiting expression of a key endoderm transcription factor in presumptive mesoderm. The regulatory circuit activated by this transcription factor subsequently maintains transcription of a canonical Wnt (cWnt) ligand only in endoderm precursors. This cWnt ligand reinforces the endoderm state, amplifying the distinction between emerging endoderm and mesoderm. Before gastrulation, Notch-dependent nuclear export of an essential β-catenin transcriptional coactivator from mesoderm renders it refractory to cWnt signals, insulating it against an endoderm fate. Thus, we report that endomesoderm segregation is a progressive process, requiring a succession of regulatory interactions between cWnt and Notch signaling.
Collapse
Affiliation(s)
- Aditya J. Sethi
- National Institute of Dental and Craniofacial Research,
National Institutes of Health, Bethesda, Maryland, USA
| | | | - Robert C. Angerer
- National Institute of Dental and Craniofacial Research,
National Institutes of Health, Bethesda, Maryland, USA
| | - Ryan C. Range
- National Institute of Dental and Craniofacial Research,
National Institutes of Health, Bethesda, Maryland, USA
| | - Lynne M. Angerer
- National Institute of Dental and Craniofacial Research,
National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Lyons DC, Kaltenbach SL, McClay DR. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:231-52. [PMID: 23801438 DOI: 10.1002/wdev.18] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The nonskeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events, an increasingly complex input of transcription factors controls the specification and the cell biological events that conduct the gastrulation movements.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Department of Biology, French Family Science Center, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
24
|
Abstract
Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
25
|
Croce J, Range R, Wu SY, Miranda E, Lhomond G, Peng JCF, Lepage T, McClay DR. Wnt6 activates endoderm in the sea urchin gene regulatory network. Development 2011; 138:3297-306. [PMID: 21750039 PMCID: PMC3133919 DOI: 10.1242/dev.058792] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2011] [Indexed: 12/22/2022]
Abstract
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.
Collapse
Affiliation(s)
- Jenifer Croce
- Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, UPMC, UMR7009 CNRS, 06230 Villefranche-sur-Mer, France
| | - Ryan Range
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shu-Yu Wu
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA
| | - Guy Lhomond
- Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, UPMC, UMR7009 CNRS, 06230 Villefranche-sur-Mer, France
| | - Jeff Chieh-fu Peng
- Department of Biology, Cox Science Center, University of Miami, Coral Gables, FL 33124, USA
| | - Thierry Lepage
- Biologie du Développement, Observatoire Océanologique de Villefranche-sur-Mer, UPMC, UMR7009 CNRS, 06230 Villefranche-sur-Mer, France
| | - David R. McClay
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA
| |
Collapse
|
26
|
Takata H, Kominami T. Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni. Dev Growth Differ 2011; 53:625-38. [DOI: 10.1111/j.1440-169x.2011.01278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Röttinger E, Martindale MQ. Ventralization of an indirect developing hemichordate by NiCl₂ suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol 2011; 354:173-90. [PMID: 21466800 DOI: 10.1016/j.ydbio.2011.03.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 12/16/2022]
Abstract
One of the earliest steps in embryonic development is the establishment of the future body axes. Morphological and molecular data place the Ambulacraria (echinoderms and hemichordates) within the Deuterostomia and as the sister taxon to chordates. Extensive work over the last decades in echinoid (sea urchins) echinoderms has led to the characterization of gene regulatory networks underlying germ layer specification and axis formation during embryogenesis. However, with the exception of recent studies from a direct developing hemichordate (Saccoglossus kowalevskii), very little is known about the molecular mechanism underlying early hemichordate development. Unlike echinoids, indirect developing hemichordates retain the larval body axes and major larval tissues after metamorphosis into the adult worm. In order to gain insight into dorso-ventral (D/V) patterning, we used nickel chloride (NiCl₂), a potent ventralizing agent on echinoderm embryos, on the indirect developing enteropneust hemichordate, Ptychodera flava. Our present study shows that NiCl₂ disrupts the D/V axis and induces formation of a circumferential mouth when treated before the onset of gastrulation. Molecular analysis, using newly isolated tissue-specific markers, shows that the ventral ectoderm is expanded at expense of dorsal ectoderm in treated embryos, but has little effect on germ layer or anterior-posterior markers. The resulting ventralized phenotype, the effective dose, and the NiCl₂ sensitive response period of Ptychodera flava, is very similar to the effects of nickel on embryonic development described in larval echinoderms. These strong similarities allow one to speculate that a NiCl₂ sensitive pathway involved in dorso-ventral patterning may be shared between echinoderms, hemichordates and a putative ambulacrarian ancestor. Furthermore, nickel treatments ventralize the direct developing hemichordate, S. kowalevskii indicating that a common pathway patterns both larval and adult body plans of the ambulacrarian ancestor and provides insight in to the origin of the chordate body plan.
Collapse
Affiliation(s)
- E Röttinger
- Kewalo Marine Laboratory, PBRC, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|
28
|
Ohguro Y, Takata H, Kominami T. Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 2011; 53:110-23. [DOI: 10.1111/j.1440-169x.2010.01233.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
The effect of systemic corticosteroid treatment on the immunolocalisation of Notch-1, Delta, CD105 and CD166 in rat articular cartilage. Acta Histochem 2010; 112:424-31. [PMID: 19481784 DOI: 10.1016/j.acthis.2009.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/16/2009] [Accepted: 04/04/2009] [Indexed: 12/31/2022]
Abstract
We studied the immunolocalisation of the stem cell-specific markers Notch-1, Delta, CD105 and CD166 in rat articular cartilage and analysed the effect of systemic corticosteroid treatment on the patterns of distribution of cells labelling for these markers. Female Wistar rats were separated randomly into two groups: the control group (n=8) was injected with isotonic salt solution and the corticosteroid group (n=8) was injected with 10 mg/kg intramuscular corticosteroid (methylprednisolone) once a week for a period of 8 weeks. Femoral head specimens from each group were obtained at the end of the treatment and processed for routine histological and immunohistochemical examinations. Quantitative data were obtained by H-SCORE and statistical evaluations were performed. The immunolocalisation of all markers was more apparent in the superficial zone and decreased through the deeper zones in all groups. However, the intensity of labelling was much less obvious in the group treated with corticosteroid compared to control. H-SCORE analysis confirmed that in the group treated with corticosteroid, the intensity of Notch-1, Delta, CD105 and CD166 labelling had decreased significantly compared to control (p<0.05). In conclusion, based on the immunolocalisation of stem cell-specific markers Notch-1, Delta, CD105 and CD166, the data suggest that the stem cells may continue to exist in adult rat articular cartilage. It was also observed that systemic corticosteroid treatment may effect the immunolabelling intensity of these markers, suggesting that corticosteroid treatment may reduce the function and the regenerative capacity of these cells in articular cartilage.
Collapse
|
30
|
Croce JC, McClay DR. Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 2010; 137:83-91. [PMID: 20023163 DOI: 10.1242/dev.044149] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.
Collapse
Affiliation(s)
- Jenifer C Croce
- 1Biologie du Développement, UPMC (Univ. Paris 6) and CNRS, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France.
| | | |
Collapse
|
31
|
Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, Haillot E, Quirin M, Lepage T. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 2010; 137:223-35. [PMID: 20040489 DOI: 10.1242/dev.042531] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulation of the expression of key transcription factors and signalling molecules, including BMP2/4 and FGFA. In addition, we uncovered an essential role for Nodal and BMP2/4 in the formation and patterning of the non-skeletogenic mesoderm. By comparing the effects of misexpressing Nodal or an activated Nodal receptor in clones of cells, we provide evidence that Nodal acts over a long range in the endomesoderm and that its effects on the blastocoelar cell precursors are likely to be direct. The activity of Nodal and BMP2/4 are antagonistic, and although bmp2/4 is transcribed in the ventral ectoderm downstream of Nodal, the BMP2/4 ligand is translocated to the dorsal side, where it activates signalling in the dorsal primary mesenchyme cells, the dorsal endoderm and in pigment cell precursors. Therefore, correct patterning of the endomesoderm depends on a balance between ventralising Nodal signals and dorsalising BMP2/4 signals. These experiments confirm that Nodal is a key regulator of dorsal-ventral polarity in the sea urchin and support the idea that the ventral ectoderm, like the Spemann organiser in vertebrates, is an organising centre that is required for patterning all three germ layers of the embryo.
Collapse
Affiliation(s)
- Véronique Duboc
- UPMC Univ Paris 06-CNRS, UMR 7009 Biologie du Développement Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sherwood D. David Sherwood: invasive procedures. Interview by Ben Short. J Cell Biol 2009; 185:568-9. [PMID: 19451269 PMCID: PMC2711564 DOI: 10.1083/jcb.1854pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Theodosiou A, Arhondakis S, Baumann M, Kossida S. Evolutionary Scenarios of Notch Proteins. Mol Biol Evol 2009; 26:1631-40. [DOI: 10.1093/molbev/msp075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Smith J, Davidson EH. Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo. Proc Natl Acad Sci U S A 2008; 105:20089-94. [PMID: 19104065 PMCID: PMC2629318 DOI: 10.1073/pnas.0806442105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Indexed: 11/18/2022] Open
Abstract
We dissect the transcriptional regulatory relationships coordinating the dynamic expression patterns of two signaling genes, wnt8 and delta, which are central to specification of the sea urchin embryo endomesoderm. cis-Regulatory analysis shows that transcription of the gene encoding the Notch ligand Delta is activated by the widely expressed Runx transcription factor, but spatially restricted by HesC-mediated repression through a site in the delta 5'UTR. Spatial transcription of the hesC gene, however, is controlled by Blimp1 repression. Blimp1 thus represses the repressor of delta, thereby permitting its transcription. The blimp1 gene is itself linked into a feedback circuit that includes the wnt8 signaling ligand gene, and we showed earlier that this circuit generates an expanding torus of blimp1 and wnt8 expression. The finding that delta expression is also controlled at the cis-regulatory level by the blimp1-wnt8 torus-generating subcircuit now explains the progression of Notch signaling from the mesoderm to the endoderm of the developing embryo. Thus the specific cis-regulatory linkages of the gene regulatory network encode the coordinated spatial expression of Wnt and Notch signaling as they sweep outward across the vegetal plate of the embryo.
Collapse
Affiliation(s)
- Joel Smith
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125
| | - Eric H. Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
35
|
Oliveri P, Tu Q, Davidson EH. Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 2008; 105:5955-62. [PMID: 18413610 PMCID: PMC2329687 DOI: 10.1073/pnas.0711220105] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Indexed: 11/18/2022] Open
Abstract
Explanation of a process of development must ultimately be couched in the terms of the genomic regulatory code. Specification of an embryonic cell lineage is driven by a network of interactions among genes encoding transcription factors. Here, we present the gene regulatory network (GRN) that directs the specification of the skeletogenic micromere lineage of the sea urchin embryo. The GRN now includes all regulatory genes expressed in this lineage up to late blastula stage, as identified in a genomewide survey. The architecture of the GRN was established by a large-scale perturbation analysis in which the expression of each gene in the GRN was cut off by use of morpholinos, and the effects on all other genes were measured quantitatively. Several cis-regulatory analyses provided additional evidence. The explanatory power of the GRN suffices to provide a causal explanation for all observable developmental functions of the micromere lineage during the specification period. These functions are: (i) initial acquisition of identity through transcriptional interpretation of localized maternal cues; (ii) activation of specific regulatory genes by use of a double negative gate; (iii) dynamic stabilization of the regulatory state by activation of a feedback subcircuit; (iv) exclusion of alternative regulatory states; (v) presentation of a signal required by the micromeres themselves and of two different signals required for development of adjacent endomesodermal lineages; and (vi) lineage-specific activation of batteries of skeletogenic genes. The GRN precisely predicts gene expression responses and provides a coherent explanation of the biology of specification.
Collapse
Affiliation(s)
- Paola Oliveri
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Qiang Tu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Eric H. Davidson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
36
|
Abstract
Controlling the differential expression of many thousands of genes is the most fundamental task of a developing organism. It requires an enormous computational device that has the capacity to process in parallel a vast number of regulatory inputs in the various cells of the embryo and come out with regulatory outputs that are tissue specific. The regulatory genome constitutes this computational device, comprising many thousands of processing units in the form of cis-regulatory modules. The interconnected cis-regulatory modules that control regulatory gene expression create a network that is the underlying mechanism of specification. In this review we use the gene regulatory network that governs endomesoderm specification in the sea urchin embryo to demonstrate the salient features of developmental gene regulatory networks and illustrate the information processing that is done by the regulatory sequences.
Collapse
|
37
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
38
|
Kitazawa C, Amemiya S. Micromere-derived signal regulates larval left-right polarity during sea urchin development. ACTA ACUST UNITED AC 2007; 307:249-62. [PMID: 17351911 DOI: 10.1002/jez.378] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The micromeres (Mics) lineage functions as a morphogenetic signaling center in early embryos of sea urchins. The Mics lineage releases signals that regulate the specification of cell fates along the animal-vegetal and oral-aboral axes. We tested whether the Mics lineage might also be responsible for differentiation of the left-right (LR) axis by observing of the placement of the adult rudiment, which normally forms only on the left side of the larvae, after removal of the Mics lineage. When all of the Mics lineage were removed from embryos of the regular sea urchin Hemicentrotus pulcherrimus between the 16- and 64-cell stages, the LR placement of the rudiment became randomized. However, the immediate retransplantation of the Mics rescued the normal LR placement of the rudiment, indicating that the Mics lineage releases a signal that specifies LR polarity. Additionally, we investigated whether the specification of LR polarity of whole embryos in the indirect-developing sea urchin H. pulcherrimus is affected by LiCl exposure, which disturbs the establishment of LR asymmetry in a direct-developing sea urchin. Larvae derived from normal animal caps combined with LiCl-exposed Mics descendants were defective in normal LR placement of the rudiment, suggesting that LiCl interferes with the Mics-derived signal. In contrast, embryos of two sand dollar species (Scaphechinus mirabilis and Astriclypeus manni) were resistant to alteration of LR placement of the rudiment by either removal of the Mics lineage or LiCl exposure. These results indicate that the Mics lineage is involved in specification of LR polarity in the regular sea urchin H. pulcherrimus, and suggest that LiCl impairs the normal LR patterning by affecting Mics-derived signaling.
Collapse
Affiliation(s)
- Chisato Kitazawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
39
|
Walton KD, Croce JC, Glenn TD, Wu SY, McClay DR. Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development. Dev Biol 2006; 300:153-64. [PMID: 17067570 PMCID: PMC1880897 DOI: 10.1016/j.ydbio.2006.08.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/18/2006] [Accepted: 08/28/2006] [Indexed: 12/22/2022]
Abstract
The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis.
Collapse
Affiliation(s)
- Katherine D Walton
- Developmental, Cellular, and Molecular Biology Group, Duke University, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
40
|
Holland LZ, Panfilio KA, Chastain R, Schubert M, Holland ND. Nuclear beta-catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos. Dev Dyn 2005; 233:1430-43. [PMID: 15973712 DOI: 10.1002/dvdy.20473] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In vertebrate development, Wnt/beta-catenin signaling has an early role in specification of dorsal/anterior identity and a late one in posterior specification. To understand the evolution of these roles, we cloned beta-catenin from the invertebrate chordate amphioxus. The exon/intron organization of beta-catenin is highly conserved between amphioxus and other animals including a cnidarian, but not Drosophila. In development, amphioxus beta-catenin is concentrated in all nuclei from the 16-cell stage until the onset of gastrulation when it becomes undetectable in presumptive mesendoderm. Li(+), which up-regulates Wnt/beta-catenin signaling, had no detectable effect on axial patterning when applied before the late blastula stage, suggesting that a role for beta-catenin in specification of dorsal/anterior identity may be a vertebrate innovation. From the mid-gastrula through the neurula stage, the highest levels of nuclear beta-catenin are around the blastopore. In the early neurula, beta-catenin is down-regulated in the neural plate, but remains high in adjacent non-neural ectoderm. Embryos treated with Li(+) at the late blastula stage are markedly posteriorized and lack a neural plate. These results suggest that in amphioxus, as in vertebrates, down-regulation of Wnt/beta-catenin signaling in the neural plate is necessary for maintenance of the neuroectoderm and that a major evolutionarily conserved role of Wnt/beta-catenin signaling is to specify posterior identity and pattern the anterior/posterior axis.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202, USA.
| | | | | | | | | |
Collapse
|
41
|
Contakos SP, Gaydos CM, Pfeil EC, McLaughlin KA. Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis. Dev Biol 2005; 288:294-307. [PMID: 16289076 DOI: 10.1016/j.ydbio.2005.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 09/07/2005] [Accepted: 09/08/2005] [Indexed: 11/25/2022]
Abstract
The development of all vertebrate embryos requires the establishment of a three-dimensional coordinate system in order to pattern embryonic structures and create the complex shape of the adult organism. During the process of gastrulation, the three primary germ layers are created under the guidance of numerous signaling pathways, allowing cells to communicate during development. Cell-cell communication, mediated by receptors of the Notch family, has been shown to be involved in mediating diverse cellular behaviors during development and has been implicated in the regulation of cell fate decisions in both vertebrate and invertebrate organisms. In order to investigate a role for Notch signaling during boundary formation between the mesoderm and endoderm during gastrulation, we manipulated Notch signaling in gastrula stage embryos and examined gene expression in resultant tissues and organs. Our findings demonstrate a much broader role for Notch signaling during germ layer determination than previously reported in a vertebrate organism. Activation of the Notch pathway, specifically in gastrula stage embryos, results in a dramatic decrease in the expression of genes necessary to create many different types of mesodermal tissues while causing a dramatic expansion of endodermal tissue markers. Conversely, temporally controlled suppression of this pathway results in a loss of endodermal cell types and an expansion of molecular markers of mesoderm. Thus, our data are consistent with and significantly extend the implications of prior observations suggesting roles for Notch signaling during germ layer formation and establish an evolutionarily conserved role for Notch signaling in mediating mesoderm-endoderm boundaries during early vertebrate development.
Collapse
Affiliation(s)
- Stacey P Contakos
- Department of Biology, Tufts University, 120 Dana Hall, 163 Packard Avenue, Medford, MA 02155, USA
| | | | | | | |
Collapse
|
42
|
Shi S, Stahl M, Lu L, Stanley P. Canonical Notch signaling is dispensable for early cell fate specifications in mammals. Mol Cell Biol 2005; 25:9503-8. [PMID: 16227600 PMCID: PMC1265842 DOI: 10.1128/mcb.25.21.9503-9508.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/03/2005] [Accepted: 08/13/2005] [Indexed: 01/25/2023] Open
Abstract
The canonical Notch signaling pathway mediated by Delta- and Jagged-like Notch ligands determines a variety of cell fates in metazoa. In Caenorhabditis elegans and sea urchins, canonical Notch signaling is essential for different cell fate specifications during early embryogenesis or the formation of endoderm, mesoderm, or ectoderm germ layers. Transcripts of Notch signaling pathway genes are present during mouse blastogenesis, suggesting that the canonical Notch signaling pathway may also function in early mammalian development. To test this directly, we used conditional deletion in oocytes carrying a ZP3Cre recombinase transgene to generate mouse embryos lacking both maternal and zygotic protein O-fucosyltransferase 1, a cell-autonomous and essential component of canonical Notch receptor signaling. Homozygous mutant embryos derived from eggs lacking Pofut1 gene transcripts developed indistinguishably from the wild type until approximately embryonic day 8.0, a postgastrulation stage after the formation of the three germ layers. Thus, in contrast to the case with C. elegans and sea urchins, canonical Notch signaling is not required in mammals for earliest cell fate specifications or for formation of the three germ layers. The use of canonical Notch signaling for early cell fate specifications by lower organisms may represent co-option of a regulatory pathway originally used later in development by all metazoa.
Collapse
Affiliation(s)
- Shaolin Shi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | |
Collapse
|
43
|
Primus AE. Regional specification in the early embryo of the brittle star Ophiopholis aculeata. Dev Biol 2005; 283:294-309. [PMID: 15922322 DOI: 10.1016/j.ydbio.2005.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 03/16/2005] [Accepted: 04/19/2005] [Indexed: 11/26/2022]
Abstract
Early embryogenesis has been examined experimentally in several echinoderm and hemichordate classes. Although these studies suggest that the mechanisms which underlie regional specification have been highly conserved within the echinoderm + hemichordate clade, nothing is known about these mechanisms in several other echinoderm classes, including the Ophiuroidea. In this study, early embryogenesis was examined in a very little studied animal, the ophiuroid Ophiopholis aculeata. In O. aculeata, the first two cleavage planes do not coincide with the animal-vegetal axis but rather form approximately 45 degrees off this axis. A fate map of the early embryo was constructed using microinjected lineage tracers. Most significantly, this fate map indicates that there is a major segregation of ectodermal from endomesodermal fates at first cleavage. The distribution of developmental potential in the early embryo was also examined by isolating different regions of the early embryo and following these isolates though larval development. These analyses indicate that endomesodermal developmental potential segregates unequally at first, second, and third cleavage in O. aculeata. These results provide insight into the mechanisms of regional specification in O. aculeata and yield new material for the study of the evolution of echinoderm development.
Collapse
Affiliation(s)
- Alexander E Primus
- Section of Integrative Biology, University of Texas, 1 University Station CO939, Austin, 78712, USA.
| |
Collapse
|
44
|
Egaña AL, Ernst SG. Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus. Dev Dyn 2005; 231:370-8. [PMID: 15366014 DOI: 10.1002/dvdy.20125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have sequenced the Sphedgehog (Sphh) gene from the sea urchin Strongylocentrotus purpuratus. Sphh transcripts are detected first at the mesenchyme blastula stage, and they accumulate throughout early embryogenesis. The Sphh protein is produced by precursor pigment cells during early and midgastrulation. NiCl2 inhibits pigment cell differentiation in sea urchins. Here, we show that, in S. purpuratus, nickel affects a process(es) between 17 and 24 hr of development, corresponding to the time period when Sphh mRNA is first detected. However, nickel treatment does not alter the early expression of Sphh.
Collapse
Affiliation(s)
- Ana L Egaña
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
45
|
Yamazaki A, Kawabata R, Shiomi K, Amemiya S, Sawaguchi M, Mitsunaga-Nakatsubo K, Yamaguchi M. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo. Dev Genes Evol 2005; 215:450-59. [PMID: 16078091 DOI: 10.1007/s00427-005-0006-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
In the sea urchin embryo, micromeres have two distinct functions: they differentiate cell autonomously into the skeletogenic mesenchyme cells and act as an organizing center that induces endomesoderm formation. We demonstrated that micro1 controls micromere specification as a transcriptional repressor. Because micro1 is a multicopy gene with at least six polymorphic loci, it has been difficult to consistently block micro1 function by morpholino-mediated knockdown. Here, to block micro1 function, we used an active activator of micro1 consisting of a fusion protein of the VP16 activation domain and the micro1 homeodomain. Embryos injected with mRNA encoding the fusion protein exhibited a phenotype similar to that of micromere-less embryos. To evaluate micro1 function in the micromere, we constructed chimeric embryos composed of animal cap mesomeres and a micromere quartet from embryos injected with the fusion protein mRNA. The chimeras developed into dauerblastulae with no vegetal structures, in which the micromere progeny constituted the blastula wall. We also analyzed the phenotype of chimeras composed of an animal cap and a mesomere expressing micro1. These chimeras developed into pluteus larvae, in which the mesomere descendants ingressed as primary mesenchyme cells and formed a complete set of skeletal rods. The hindgut and a part of the midgut were also generated from host mesomeres. However, the foregut and nonskeletogenic mesoderm were not formed in the larvae. From these observations, we conclude that micro1 is necessary and sufficient for both micromere differentiation and mid/hindgut-inducing activity, and we also suggest that micro1 may not fulfill all micromere functions.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Peterson RE, McClay DR. A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo. Dev Biol 2005; 282:126-37. [PMID: 15936334 DOI: 10.1016/j.ydbio.2005.02.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 10/12/2004] [Accepted: 02/24/2005] [Indexed: 11/19/2022]
Abstract
Fringe proteins are O-fucose-specific beta-1,3 N-acetylglucosaminyltransferases that glycosylate the extracellular EGF repeats of Notch and enable Notch to be activated by the ligand Delta. In the sea urchin, signaling between Delta and Notch is known to be necessary for specification of secondary mesenchyme cells (SMCs). The Lytechinus variegatus Fringe homologue is expressed in both the signaling and receiving cells during this first Delta-Notch signal. Perturbation of Fringe expression through morpholino antisense oligonucleotide (MO) injection results in fewer SMCs but also causes decreased and delayed archenteron invagination. Partial endoderm specification occurs but expression of some endoderm genes is compromised. The data are consistent with a Fringe-requiring Notch signal as one upstream component of archenteron morphogenesis. Finally, Fringe perturbations result in more severe phenotypes than those previously reported for Notch dominant-negative (LvN(neg)) injections or reported here for Notch MO (NMO) injections. Injecting a combination of LvN(neg) and NMO results in a more severe phenotype than either treatment alone, and this combination phenocopies the fringe MO embryos. Taken together, the results show that Fringe is necessary both for maternal and zygotic Notch signals, and these Notch signals affect specification of mesoderm and endoderm.
Collapse
Affiliation(s)
- Robert E Peterson
- Department of Biology and Developmental, Cell, and Molecular Biology Group, Duke University, Box 91000, Durham, NC 27708, USA.
| | | |
Collapse
|
47
|
Sahin Z, Bayram Z, Celik-Ozenci C, Akkoyunlu G, Seval Y, Erdogru T, Ustunel I, Baykara M, Demir R. Effect of experimental varicocele on the expressions of notch 1, 2, and 3 in rat testes: An immunohistochemical study. Fertil Steril 2005; 83:86-94. [PMID: 15652892 DOI: 10.1016/j.fertnstert.2004.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 09/14/2004] [Accepted: 09/14/2004] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To study expressions of Notch receptor isoforms (Notch 1, 2, and 3) in normal and varicocele-induced rat testes to examine their possible functions in cell fate. DESIGN Comparative and controlled study. SETTING Animal Care and Operation Unit, Akdeniz University. ANIMAL(S) Wistar male rats for experimental and control groups. INTERVENTION(S) The control group underwent a sham operation (n = 6). The experimental groups underwent partial ligation of the renal vein to induce an experimental varicocele and then were killed 9 (n = 6), 11 (n = 6), and 13 (n = 6) weeks after the induction of varicocele. MAIN OUTCOME MEASURE(S) All tissues were fixed and routinely processed for paraffin embedding. Subsequent immunohistochemical studies were performed. RESULT(S) In the sham-operation rat testes, Leydig cells and elongated spermatids were immunopositive for Notch 1. Notch-2 expression was present in Leydig cells, spermatogonia, and primary spermatocytes. Notch-3 expression was limited to Leydig cells. Varicocele formation diminished the expression of both Notch-1 and Notch-2 receptors as the varicocele formation progressed over time. CONCLUSION(S) The present study suggests that Notch 1 is related to the maturation of spermatids. Notch 2 is related to both proliferation and maturation of spermatogenic cells, whereas Notch 3 seems to be related to Leydig cell functions. The decrease of both Notch-1 and Notch-2 expression depended on the degree of varicocele development over time, indicating a potential role in varicocele-associated testicular dysfunction.
Collapse
Affiliation(s)
- Zeliha Sahin
- Department of Histology, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Minokawa T, Rast JP, Arenas-Mena C, Franco CB, Davidson EH. Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr Patterns 2004; 4:449-56. [PMID: 15183312 DOI: 10.1016/j.modgep.2004.01.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Revised: 12/14/2003] [Accepted: 01/06/2004] [Indexed: 11/27/2022]
Abstract
The spatial and temporal expression patterns of Strongylocentrotus purpuratus genes encoding four different transcription factors, viz. SpFoxb, SpHes, SpKrl, and SpNk1, have been examined, using a recently developed, highly sensitive whole mount in situ hybridization procedure, and quantitative real time PCR. Two of the genes studied, SpHes and SpNk1, are newly isolated. Their expression patterns suggest the existence of previously unknown ectodermal domains. Re-examination of the expression pattern of SpFoxb reveals domains of expression not previously reported for this gene, and we also provide a more detailed, temporal and spatial description of the expression pattern of SpKrl than heretofore available.
Collapse
Affiliation(s)
- Takuya Minokawa
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
49
|
Takata H, Kominami T. Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei. Dev Growth Differ 2004; 46:23-35. [PMID: 15008852 DOI: 10.1111/j.1440-169x.2004.00726.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the tropical sea urchin Echinometra mathaei, pigment cells are just detectable before the onset of gastrulation, owing to an early accumulation of red pigment granules. Taking advantage of this feature, behavior of pigment cells was studied in relation to the processes of gastrulation. Before the initiation of primary invagination, pigment cells were arranged in a hemi-circle in the dorsal half of the vegetal plate. Inward bending of the vegetal plate first occurred at the position occupied by pigment cells, while the bending was not conspicuous in the ventral half of the blastopore. Rhodamine-phalloidin staining showed that actin filaments were abundant at the apical corticies of pigment cells. It was also found that the onset of gastrulation was considerably delayed in the NiCl2-treated embryos, in which pigment cells were drastically reduced in number. It is notable that the NiCl2-treated embryos began to gastrulate on schedule if they contained a number of pigment cells in spite of treatment. This shows that pigment cells are the bottle cells that trigger the onset of gastrulation. In the embryos devoid of pigment cells, a short stub-like gut rudiment formed in a delayed fashion, and several secondary mesenchyme cells (SMC) appeared at the tip of the rudiment and elongated gradually until its tip reached the apical plate. This observation suggests that the SMC that pull the gut rudiment upward are not pigment cells but blastocoelar cells, because pigment cells change their fate to blastocoelar cells upon NiCl2-treatment.
Collapse
Affiliation(s)
- Hiromi Takata
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan.
| | | |
Collapse
|
50
|
Takata H, Kominami T. Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei. Dev Growth Differ 2003; 45:473-83. [PMID: 14706072 DOI: 10.1111/j.1440-169x.2003.00714.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The behavior and differentiation processes of pigment cells were studied in embryos of a tropical sea urchin Echinometra mathaei, whose egg volume was one half of those of well-known sea urchin species. Owing to earlier accumulation of pigments, pigment cells could be detected in the vegetal plate even before the onset of gastrulation, distributed dorsally in a hemi-circle near the center of the vegetal plate. Although some pigment cells left the archenteron during gastrulation, most of them remained at the archenteron tip. At the end of gastrulation, pigment cells left the archenteron and migrated into the blastocoele. Unlike pigment cells in typical sea urchins, however, they did not enter the ectoderm, and stayed in the blastocoele even at the pluteus stage. It is of interest that the majority of pigment cells were distributed in the vicinity of the larval skeleton. Aphidicolin treatment revealed that eight blastomeres were specific to pigment cell lineage after the eighth cleavage, one cell cycle earlier than that in well-known sea urchins. The pigment founder cells divided twice, and the number of pigment cells was around 32 at the pluteus stage. It was also found that the differentiation of pigment cells was blocked with Ni2+, whereas the treatment was effective only during the first division cycle of the founder cells.
Collapse
Affiliation(s)
- Hiromi Takata
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, 2-5 Bunkyo-Cho, Matsuyama, 790-8577, Japan.
| | | |
Collapse
|