1
|
Schroer J, Warm D, De Rosa F, Luhmann HJ, Sinning A. Activity-dependent regulation of the BAX/BCL-2 pathway protects cortical neurons from apoptotic death during early development. Cell Mol Life Sci 2023; 80:175. [PMID: 37269320 DOI: 10.1007/s00018-023-04824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
During early brain development, homeostatic removal of cortical neurons is crucial and requires multiple control mechanisms. We investigated in the cerebral cortex of mice whether the BAX/BCL-2 pathway, an important regulator of apoptosis, is part of this machinery and how electrical activity might serve as a set point of regulation. Activity is known to be a pro-survival factor; however, how this effect is translated into enhanced survival chances on a neuronal level is not fully understood. In this study, we show that caspase activity is highest at the neonatal stage, while developmental cell death peaks at the end of the first postnatal week. During the first postnatal week, upregulation of BAX is accompanied by downregulation of BCL-2 protein, resulting in a high BAX/BCL-2 ratio when neuronal death rates are high. In cultured neurons, pharmacological blockade of activity leads to an acute upregulation of Bax, while elevated activity results in a lasting increase of BCL-2 expression. Spontaneously active neurons not only exhibit lower Bax levels than inactive neurons but also show almost exclusively BCL-2 expression. Disinhibition of network activity prevents the death of neurons overexpressing activated CASP3. This neuroprotective effect is not the result of reduced caspase activity but is associated with a downregulation of the BAX/BCL-2 ratio. Notably, increasing neuronal activity has a similar, non-additive effect as the blockade of BAX. Conclusively, high electrical activity modulates BAX/BCL-2 expression and leads to higher tolerance to CASP3 activity, increases survival, and presumably promotes non-apoptotic CASP3 functions in developing neurons.
Collapse
Affiliation(s)
- Jonas Schroer
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Federico De Rosa
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
2
|
Shmakova AA, Rysenkova KD, Ivashkina OI, Gruzdeva AM, Klimovich PS, Popov VS, Rubina KA, Anokhin KV, Tkachuk VA, Semina EV. Early Induction of Neurotrophin Receptor and miRNA Genes in Mouse Brain after Pentilenetetrazole-Induced Neuronal Activity. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1326-1341. [PMID: 34903157 DOI: 10.1134/s0006297921100138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Neurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined early changes in the expression of neurotrophin receptor genes Ntk1 (TrkA), Ntrk2 (TrkB), Ntrk3 (TrkC), Ngfr (p75NTR) and miRNAs that target theses gens in the mouse brain after induction of seizure activity by pentylenetetrazol. We found that expression of Ntrk3 and Ngfr was upregulated in the cortex and the hippocampus 1-3 hours after the seizures, while Ntrk2 expression increased after 3-6 hours in the anterior cortex and after 1 and 6 hours in the hippocampus. At the same time, the ratio of Bcl-2/Bax signaling proteins increased in the anterior and posterior cortex, but not in the hippocampus, suggesting the activation of anti-apoptotic signaling. Expression of miRNA-9 and miRNA-29a, which were predicted to target Ntrk3, was upregulated in the hippocampus 3 hours after pentylenetetrazol injection. Therefore, early cellular response to seizures in the brain includes induction of the Ntrk2, Ntrk3, Ngfr, miRNA-9, and miRNA-29a expression, as well as activation of Bcl-2 and Bax signaling pathways, which may characterize them as important mediators of neuronal adaptation and survival upon induction of the generalized brain activity.
Collapse
Affiliation(s)
- Anna A Shmakova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Karina D Rysenkova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Olga I Ivashkina
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
- Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russia
- Kurchatov Institute National Research Center, Moscow, 123182, Russia
| | - Anna M Gruzdeva
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation
| | - Polina S Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Vladimir S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Konstantin V Anokhin
- Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow, 119192, Russian Federation.
- Anokhin Research Institute of Normal Physiology, Moscow, 125315, Russia
| | - Vsevolod A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Ekaterina V Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
3
|
Downregulation of Microrna-421 Relieves Cerebral Ischemia/Reperfusion Injuries: Involvement of Anti-apoptotic and Antioxidant Activities. Neuromolecular Med 2020; 22:411-419. [PMID: 32385800 DOI: 10.1007/s12017-020-08600-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Reperfusion after cerebral ischemia causes additional ischemic injuries due to sudden recovery of blood supply. It usually produces excessive reactive species, mitochondrial dysfunction, oxidative stress, and cell apoptosis. Our study is designed to examine the role of miR-421 antagomir in cerebral ischemia/reperfusion injuries, as well as its underlying mechanisms. Middle cerebral artery occlusion (MCAO) model was performed with male Sprague Dawley (SD) rats for the initiation of cerebral ischemia/reperfusion injuries. Malondialdehyde (oxidative stress marker) and superoxide dismutase (antioxidant enzyme) were measured as indicators for oxidative stress. Flow cytometry was utilized to evaluate the cell apoptosis effects from miR-421. miR-421 antagomir significantly decreased neurological deficits and infarction volumes. It also downregulated malondialdehyde contents, upregulated superoxide dismutase activities, promoted the expressions of myeloid cells leukemia-1 and B cells lymphoma-2, and downregulated the expressions of Bax in the ischemic cortex. In addition, miR-421targeted MCL1 to exert its biological functions. Our study indicated the neuroprotection effects of miR-421 antagomir on cerebral I/R injuries, which involved the suppression of cell apoptosis and oxidative stress. MiR-421 might provide a new therapeutic direction for ischemia/reperfusion injuries.
Collapse
|
4
|
Hollville E, Romero SE, Deshmukh M. Apoptotic cell death regulation in neurons. FEBS J 2019; 286:3276-3298. [PMID: 31230407 DOI: 10.1111/febs.14970] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.
Collapse
Affiliation(s)
| | - Selena E Romero
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| | - Mohanish Deshmukh
- Neuroscience Center, UNC Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, UNC Chapel Hill, NC, 27599-7250, USA
| |
Collapse
|
5
|
Zhang L, Ji H, Huang Y, Hu H, Li B, Yang Y, Yu H, Chen X, Li W, Liu F, Wang S, Wang C, Chen K, Bao Y, Liu H, Duan S. Association of BAX hypermethylation with coronary heart disease is specific to individuals aged over 70. Medicine (Baltimore) 2019; 98:e14130. [PMID: 30681575 PMCID: PMC6358363 DOI: 10.1097/md.0000000000014130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION As a member of B-cell lymphoma-2 (BCL-2) gene family, BCL-2 associated X (BAX) is important for cell apoptosis. In this work, we investigated the association of BAX promoter DNA methylation with coronary heart disease (CHD) in Han Chinese. METHODS A SYBR green-based quantitative methylation specific PCR (qMSP) was used to test BAX methylation levels in 959 CHD cases and 514 controls. RESULTS Although BAX methylation was not associated with CHD in the total samples, further breakdown analysis by age showed that BAX hypermethylation was significantly associated with CHD for individuals aged over 70 (median percentage of methylation ratio [PMR], 10.70% in cases versus (vs) 2.25% in controls, P =.046). Moreover, BAX methylation was associated with smoking and lipoprotein A (Lp(a)) for individuals aged over 70 (CHD: smoking P = .012, Lp(a) P = .001; non-CHD: smoking P = .051, Lp(a) P = .004). Further analysis of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data showed BAX expression was upregulated by 5-aza-2'-deoxycytidine demethylation agent (fold = 1.66, P = .038) and inversely correlated with BAX methylation (r = -0.428, P = 8E-05). CONCLUSIONS Our study supported that BAX hypermethylation might contribute to CHD risk via downregulation of BAX expression for individuals aged over 70.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Huihui Ji
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Yi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Hang Yu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Wenxia Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Fang Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| | - Shi Wang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Chunming Wang
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Ke Chen
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Yingchun Bao
- Department of Cardiology, Yinzhou People's Hospital, Ningbo University, Ningbo
| | - Haibo Liu
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo
| |
Collapse
|
6
|
Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell Death in the Developing Brain after Hypoxia-Ischemia. Front Cell Neurosci 2017; 11:248. [PMID: 28878624 PMCID: PMC5572386 DOI: 10.3389/fncel.2017.00248] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.
Collapse
Affiliation(s)
- Claire Thornton
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Carina Mallard
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Syam Nair
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Masako Jinnai
- Department of Physiology, Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Department of Clinical Sciences and Physiology and Neuroscience, Perinatal Center, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
7
|
Vilela TC, Scaini G, Furlanetto CB, Pasquali MAB, Santos JPA, Gelain DP, Moreira JCF, Schuck PF, Ferreira GC, Streck EL. Apoptotic signaling pathways induced by acute administration of branched-chain amino acids in an animal model of maple syrup urine disease. Metab Brain Dis 2017; 32:115-122. [PMID: 27510712 DOI: 10.1007/s11011-016-9892-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
Abstract
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. The affected patients present severe neurological symptoms, such as coma and seizures, as well as edema and cerebral atrophy. Considering that the mechanisms of the neurological symptoms presented by MSUD patients are still poorly understood, in this study, protein levels of apoptotic factors are measured, such as Bcl-2, Bcl-xL, Bax, caspase-3 and -8 in hippocampus and cerebral cortex of rats submitted to acute administration of branched-chain amino acids during their development. The results in this study demonstrated that BCAA acute exposure during the early postnatal period did not significantly change Bcl-2, Bcl-xL, Bax and caspase-8 protein levels. However, the Bax/Bcl-2 ratio and procaspase-3 protein levels were decreased in hippocampus. On the other hand, acute administration of BCAA in 30-day-old rats increase in Bax/Bcl-2 ratio followed by an increased caspase-3 activity in cerebral cortex, whereas BCAA induces apoptosis in hippocampus through activation and cleavage of caspase-3 and -8 without changing the Bax/Bcl-2 ratio. In conclusion, the results suggest that apoptosis could be of pivotal importance in the developmental neurotoxic effects of BCAA. In addition, the current studies also suggest that multiple mechanisms may be involved in BCAA-induced apoptosis in the cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- Thais C Vilela
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Camila B Furlanetto
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Matheus A B Pasquali
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Paulo A Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel P Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
8
|
Chen F, Ghosh A, Wu F, Tang S, Hu M, Sun H, Kong L, Hong H. Preventive effect of genetic knockdown and pharmacological blockade of CysLT 1R on lipopolysaccharide (LPS)-induced memory deficit and neurotoxicity in vivo. Brain Behav Immun 2017; 60:255-269. [PMID: 27810377 DOI: 10.1016/j.bbi.2016.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 12/19/2022] Open
Abstract
Previously we reported that cysteinyl leukotrienes (Cys-LTs) and the type 1 receptor for Cys-LTs (CysLT1R) are related to amyloid β (Aβ)-induced neurotoxicity. The aim of the current study was to find out the role of CysLT1R on lipopolysaccharide (LPS)-induced cognitive deficit and neurotoxicity. shRNA-mediated knockdown or pharmacological blockade (by pranlukast) of CysLT1R were performed in ICR mice for 21days prior to systemic infusion of LPS. From day 22, LPS was administered for 7days and then a set of behavioral, histopathological and biochemical tests were employed to test memory, neuroinflammation and apoptotic responses in the mouse hippocampus. LPS (only)-treated mice showed poor performance in both Morris water maze (MWM) and Y-maze tests. However, shRNA-mediated knockdown or pranlukast-treated blockade of CysLT1R improved performance of the mice in these tests. To find out the possible underlying mechanisms, we assessed several parameters such as microglial activation (by immunohistochemistry), level of CysLT1R (by WB and qRT-PCR) and the inflammatory/apoptotic pathways (by ELISA or TUNEL or WB) in the mouse hippocampus. LPS-induced memory impairment was accompanied by activation of microglia, higher level of CysLT1R, IL-1β, TNF-α and nuclear NF-κB p65. LPS also caused apoptosis in the hippocampus as detected by TUNEL staining, further supplemented by detection of increased Caspase-3 and a reduced Bcl-2/Bax ratio. All of these adverse changes in the mouse hippocampus were inhibited by pretreatment with CysLT1R-shRNA and pranlukast. Through this study we suggest that CysLT1R shares a strong correlation with LPS-associated memory deficit, neuroinflammation and apoptosis and CysLT1R could be a novel target for preventive measures to intervene the progression of Alzheimer's disease (AD)-like phenotypes.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Arijit Ghosh
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Feng Wu
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Susu Tang
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mei Hu
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Hongbin Sun
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Lingyi Kong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Hao Hong
- Department of Pharmacology, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory for Natural Medicines, China Pharmaceutical University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
9
|
Sexual Differences in Cell Loss during the Post-Hatch Development of Song Control Nuclei in the Bengalese Finch. PLoS One 2015; 10:e0125802. [PMID: 25938674 PMCID: PMC4418719 DOI: 10.1371/journal.pone.0125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
Birdsongs and the regions of their brain that control song exhibit obvious sexual differences. However, the mechanisms underlying these sexual dimorphisms remain unknown. To address this issue, we first examined apoptotic cells labeled with caspase-3 or TUNEL in Bengalese finch song control nuclei - the robust nucleus of the archopallium (RA), the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the high vocal center (HVC) and Area X from post-hatch day (P) 15 to 120. Next, we investigated the expression dynamics of pro-apoptotic (Bid, Bad and Bax) and anti-apoptotic (Bcl-2 and Bcl-xL) genes in the aforementioned nuclei. Our results revealed that the female RA at P45 exhibited marked cell apoptosis, confirmed by low densities of Bcl-xL and Bcl-2. Both the male and female LMAN exhibited apoptotic peaks at P35 and P45, respectively, and the observed cell loss was more extensive in males. A corresponding sharp decrease in the density of Bcl-2 after P35 was observed in both sexes, and a greater density of Bid was noted at P45 in males. In addition, we observed that RA volume and the total number of BDNF-expressing cells decreased significantly after unilateral lesion of the LMAN or HVC (two areas that innervate the RA) and that greater numbers of RA-projecting cells were immunoreactive for BDNF in the LMAN than in the HVC. We reasoned that a decrease in the amount of BDNF transported via HVC afferent fibers might result in an increase in cell apoptosis in the female RA. Our data indicate that cell apoptosis resulting from different pro- and anti-apoptotic agents is involved in generating the differences between male and female song control nuclei.
Collapse
|
10
|
Thornton C, Hagberg H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta 2015; 451:35-8. [PMID: 25661091 PMCID: PMC4661434 DOI: 10.1016/j.cca.2015.01.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 11/26/2022]
Abstract
Hypoxic–ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure. Currently, therapeutic hypothermia is the sole treatment available after severe intrapartum asphyxia in babies and acts to attenuate secondary loss of high energy phosphates improving both short- and long-term outcome. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. Hypoxia–ischemia creates a toxic intracellular environment including accumulation of reactive oxygen/nitrosative species and intracellular calcium after the insult, inducing mitochondrial impairment. More specifically mitochondrial respiration is suppressed and calcium signaling is dysregulated. At a certain threshold, Bax-dependent mitochondrial permeabilization will occur leading to activation of caspase-dependent and apoptosis-inducing factor-dependent apoptotic cell death. In addition, hypoxia–ischemia induces inflammation, which leads to the release of TNF-α, TRAIL, TWEAK, FasL and Toll-like receptor agonists that will activate death receptors on neurons and oligodendroglia. Death receptors trigger apoptotic death via caspase-8 and necroptotic cell death through formation of the necrosome (composed of RIP1, RIP3 and MLKL), both of which converge at the mitochondria. Hypoxic-ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure and excitotoxicity. Hypoxia-ischemia triggers accumulation of reactive oxygen species andintracellular calcium, which induces mitochondrial dysfunction. Mitochondrial impairment can cause Bax-dependent mitochondrial permeabilization, which triggers release of pro-apoptotic proteins and cell death. During the recovery phase, Inflammation is produced leading to death receptor activation and induction of necroptosis.
Collapse
Affiliation(s)
- Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Perinatal Center, Department of Clinical Sciences & Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden
| |
Collapse
|
11
|
Wang Y, Zhang H, Chai F, Liu X, Berk M. The effects of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 during myocardial ischemia/reperfusion in a model of rats with depression. BMC Psychiatry 2014; 14:349. [PMID: 25471226 PMCID: PMC4259089 DOI: 10.1186/s12888-014-0349-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/24/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is an independent risk factor for coronary heart disease (CHD), and influences the occurrence and prognosis of cardiovascular events. Although there is evidence that antidepressants may be cardioprotective after acute myocardial infarction (AMI) comorbid with MDD, the operative pathophysiological mechanisms remain unclear. Our aim was therefore to explore the molecular mechanisms of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 in a rat model of depression during myocardial ischemia/reperfusion (I/R). METHODS Rats were divided randomly into 3 groups (n = 8): D group (depression), DI/R group (depression with myocardial I/R) and escitalopram + DI/R group. The rats in all three groups underwent the same chronic mild stress and separation for 21 days, at the same time, in the escitalopram + DI/R group, rats were administered escitalopram by gavage (10 mg/kg/day). Ligation of the rat's left anterior descending branch was done in the myocardial I/R model. Following which behavioral tests were done. The size of the myocardial infarction was detected using 1.5% TTC dye. The Tunel method was used to detect apoptotic myocardial cells, and both the Rt-PCR method and immunohistochemical techniques were used to detect the expression of Bcl-2 and Bax. RESULTS Compared with the D and DI/R groups, rats in Escitalopram + DI/R group showed significantly increased movements and sucrose consumption (P < .01). Compared with the DI/R group, the myocardial infarct size in the escitalopram + DI/R group was significantly decreased (P < .01). Compared with the D group, there were significantly increased apoptotic myocardial cells in the DI/R and escitalopram + DI/R groups (P < .01); however compared with the DI/R group, apoptotic myocardial cell numbers in the escitalopram + DI/R group were significantly decreased (P < .01). Compared with the DI/R group, there was a down-regulated Bax:Bcl-2 ratio in the escitalopram + DI/R group (P < .01). CONCLUSIONS These results suggest that in patients with AMI comorbid with MDD, there is an increase in pro-apoptotic pathways that is reversed by escitalopram. This suggests that clinically escitalopram may have a direct cardioprotective after acute myocardial infarction.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Psychiatry, Hospital Affiliated to Guiyang Medical University, Guiyang, Guizhou, 550004, China.
| | - Hongming Zhang
- Department of Cardiology, The General Hospital of Jinan Military Region, Jinan, 250031, China.
| | - Fangxian Chai
- Department of Psychiatry, Hospital Affiliated to Guiyang Medical University, Guiyang, Guizhou, 550004, China.
| | - Xingde Liu
- Department of Cardiology, Hospital Affiliated to Medical University, 28 Guiyi Street, Guiyang City, Guizhou, 550004, China.
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, 3220, Australia.
- School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia.
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, 3050, Australia.
- Orygen Youth Health Research Centre, The University of Melbourne, Parkville, VIC, 3050, Australia.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Level 3, Alan Gilbert Building, Parkville, VIC, 3010, Australia.
| |
Collapse
|
12
|
Singh M, Singh K, Shukla S, Dikshit M. Assessment of
in‐utero
venlafaxine induced, ROS‐mediated, apoptotic neurodegeneration in fetal neocortex and neurobehavioral sequelae in rat offspring. Int J Dev Neurosci 2014; 40:60-9. [DOI: 10.1016/j.ijdevneu.2014.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/18/2023] Open
Affiliation(s)
- Manish Singh
- Institute of Nano Science and TechnologyMohaliIndia
| | - K.P. Singh
- Neurobiology LabDepartment of ZoologyUniversity of AllahabadAllahabadIndia
| | | | | |
Collapse
|
13
|
Kristiansen M, Ham J. Programmed cell death during neuronal development: the sympathetic neuron model. Cell Death Differ 2014; 21:1025-35. [PMID: 24769728 PMCID: PMC4207485 DOI: 10.1038/cdd.2014.47] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/05/2014] [Accepted: 03/13/2014] [Indexed: 01/08/2023] Open
Abstract
Developing sympathetic neurons of the superior cervical ganglion are one of the best studied models of neuronal apoptosis. These cells require nerve growth factor (NGF) for survival at the time that they innervate their final target tissues during late embryonic and early postnatal development. In the absence of NGF, developing sympathetic neurons die by apoptosis in a transcription-dependent manner. Molecular studies of sympathetic neuron apoptosis began in the 1980s. We now know that NGF withdrawal activates the mitochondrial (intrinsic) pathway of apoptosis in sympathetic neurons cultured in vitro, and the roles of caspases, Bcl-2 (B-cell CLL/lymphoma 2) family proteins and XIAP (X-linked inhibitor of apoptosis protein) have been extensively studied. Importantly, a considerable amount has also been learned about the intracellular signalling pathways and transcription factors that regulate programmed cell death in sympathetic neurons. In this article, we review the key papers published in the past few years, covering all aspects of apoptosis regulation in sympathetic neurons and focusing, in particular, on how signalling pathways and transcription factors regulate the cell death programme. We make some comparisons with other models of neuronal apoptosis and describe possible future directions for the field.
Collapse
Affiliation(s)
- M Kristiansen
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - J Ham
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
14
|
Hagberg H, Mallard C, Rousset CI, Thornton C. Mitochondria: hub of injury responses in the developing brain. Lancet Neurol 2014; 13:217-32. [PMID: 24457191 DOI: 10.1016/s1474-4422(13)70261-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progress in the field of mitochondrial biology in the past few years has shown that mitochondrial activities go beyond bioenergetics. These new aspects of mitochondrial physiology and pathophysiology have important implications for the immature brain. A picture emerges in which mitochondrial biogenesis, mitophagy, migration, and morphogenesis are crucial for brain development and synaptic pruning, and play a part in recovery after acute insults. Mitochondria also affect brain susceptibility to injury, and mitochondria-directed interventions can make the immature brain highly resistant to acute injury. Finally, the mitochondrion is a platform for innate immunity, contributes to inflammation in response to infection and acute damage, and participates in antiviral and antibacterial defence. Understanding of these new aspects of mitochondrial function will provide insights into brain development and neurological disease, and enable discovery and development of new strategies for treatment.
Collapse
Affiliation(s)
- Henrik Hagberg
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK; Perinatal Center, Departments of Clinical Sciences and Physiology & Neurosciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Carina Mallard
- Perinatal Center, Departments of Clinical Sciences and Physiology & Neurosciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Catherine I Rousset
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK
| | - Claire Thornton
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
15
|
Guo YJ, Wang SH, Yuan Y, Li FF, Ye KP, Huang Y, Xia WQ, Zhou Y. Vulnerability for apoptosis in the hippocampal dentate gyrus of STZ-induced diabetic rats with cognitive impairment. J Endocrinol Invest 2014; 37:87-96. [PMID: 24464455 DOI: 10.1007/s40618-013-0030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 11/17/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hyperglycemia impaired hippocampal network via triggering suicide program of immanent neurons, this is regarded as an etiological factor for diabetic cognition deficits. AIM To investigate the occurrence of apoptosis in the hippocampal dentate gyrus of streptozotocin (STZ)-induced diabetic rats with cognitive impairment and assess the gene and protein expression of the apoptotic proteins bax, bcl-2, and caspase-3. MATERIALS AND METHODS Four weeks after the verification of STZ-induced diabetes, diabetic rats with and without cognitive decline subgroups were subsequently assigned according to Morris water maze test. The expression levels of apoptotic proteins were measured using real-time RT-PCR and western blotting, respectively. Neuronal apoptosis was detected by TUNEL staining and electron microscopy. RESULTS In the dentate gyrus of the rats with cognitive decline, Bcl-2 exhibited lower gene and protein levels, whereas a higher expression of bax was detected contributing to a significant increase in their mean bax/bcl-2 ratio. However, caspase-3 was not activated. Statistically different numbers of TUNEL-staining cells and features of apoptosis were no found. CONCLUSIONS The higher bax/bcl ratio probably represents neurons of dentate gyrus vulnerable to apoptosis in the diabetes with cognitive decline. However, the normal caspase-3 level suggests that apoptosis is not active in this illness phase.
Collapse
Affiliation(s)
- Yi-jing Guo
- Department of Neurology, The Affiliated ZhongDa Hospital of Southeast University, No.87 DingJiaQiao Road, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahern TH, Krug S, Carr AV, Murray EK, Fitzpatrick E, Bengston L, McCutcheon J, De Vries GJ, Forger NG. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex. J Comp Neurol 2013; 521:2551-69. [PMID: 23296992 PMCID: PMC4968939 DOI: 10.1002/cne.23298] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 12/26/2012] [Indexed: 01/21/2023]
Abstract
Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain.
Collapse
Affiliation(s)
- Todd H. Ahern
- Center for Behavioral Neuroscience, Department of Psychology, Quinnipiac University, Hamden, Connecticut 06518
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Stefanie Krug
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Audrey V. Carr
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Elaine K. Murray
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Emmett Fitzpatrick
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynn Bengston
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jill McCutcheon
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Geert J. De Vries
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Nancy G. Forger
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
17
|
Saito M, Saito M. Involvement of sphingolipids in ethanol neurotoxicity in the developing brain. Brain Sci 2013; 3:670-703. [PMID: 24961420 PMCID: PMC4061845 DOI: 10.3390/brainsci3020670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/30/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022] Open
Abstract
Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathways are often mediated by sphingolipids, a class of bioactive lipids ubiquitously present in eukaryotic cellular membranes. While the central role of lipids in ethanol liver toxicity is well recognized, the involvement of sphingolipids in ethanol neurotoxicity is less explored despite mounting evidence of their importance in neuronal apoptosis. Nevertheless, recent studies indicate that ethanol-induced neuronal apoptosis in animal models of FASD is mediated or regulated by cellular sphingolipids, including via the pro-apoptotic action of ceramide and through the neuroprotective action of GM1 ganglioside. Such sphingolipid involvement in ethanol neurotoxicity in the developing brain may provide unique targets for therapeutic applications against FASD. Here we summarize findings describing the involvement of sphingolipids in ethanol-induced apoptosis and discuss the possibility that the combined action of various sphingolipids in mitochondria may control neuronal cell fate.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| |
Collapse
|
18
|
Wang Y, Liu X, Zhang D, Chen J, Liu S, Berk M. The effects of apoptosis vulnerability markers on the myocardium in depression after myocardial infarction. BMC Med 2013; 11:32. [PMID: 23394076 PMCID: PMC3606393 DOI: 10.1186/1741-7015-11-32] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND There is an increased incidence of major depressive disorder (MDD) in individuals after myocardial infarction (MI), but the pathophysiological processes mediating this association are unclear. Our previous study demonstrated an increase in pro-apoptotic pathways in the myocardium and hippocampus in MDD, which was reversed by venlafaxine. This study aimed to attempt to confirm the effects of apoptosis vulnerability markers on the myocardium in a model of depression after myocardial infarction. METHODS Rats were divided into four groups: sham (N = 8), depression (N = 8, chronic mild unpredictable stress and separation were used in the depression group), MI (N = 13) and post-MI depression (N = 7). The rats in all four groups underwent the same open field and sucrose preference behavioral tests. Evan Blue staining was used to determine the area at risk of myocardial infarction in the left ventricle, and 2,3,5-triphenyl tetrazolium chloride (1.5% TTC) dye was used to detect the size of the myocardial infarction. The expression of bax and bcl-2 protein in the myocardium was investigated by immunohistochemistry, and the mRNA expression of bax, bcl-2 and caspase-3 in the myocardium was investigated by real time RT-PCR. Apoptosis was estimated in the myocardium by measuring the Bax:Bcl-2 ratio. RESULTS In the depression and post-MI depression rats, there were significantly decreased movements and total sucrose consumption, modeling behavioral deficits and an anhedonic-like state. In terms of myocardial infarction size, no difference was seen between the MI and post-MI depression groups. There was an up-regulated Bax:Bcl-2 ratio in the depression, MI and post-MI depression groups. Furthermore, in the latter group, there was a greater up-regulated Bax:Bcl-2 ratio. However, caspase-3 did not differ among the four groups. CONCLUSIONS These results of this animal model suggest that active pro-apoptotic pathways may be involved in the nexus between myocardial infarction and depression. This mechanism may be germane to understanding this relationship in humans.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Psychiatry, Hospital Affiliated to Guiyang Medical University, 28 Guiyi Street, Guiyang City, 550004, Guizhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Driving apoptosis-relevant proteins toward neural differentiation. Mol Neurobiol 2012; 46:316-31. [PMID: 22752662 DOI: 10.1007/s12035-012-8289-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/05/2012] [Indexed: 01/12/2023]
Abstract
Emerging evidence suggests that apoptosis regulators and executioners may control cell fate, without involving cell death per se. Indeed, several conserved elements of apoptosis are integral components of terminal differentiation, which must be restrictively activated to assure differentiation efficiency, and carefully regulated to avoid cell loss. A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation, as an alternative to cell death will surely make stem cells more suitable for neuro-replacement therapies. In this review, we summarize recent studies on the mechanisms underlying the non-apoptotic function of p53, caspases, and Bcl-2 family members during neural differentiation. In addition, we discuss how apoptosis-regulatory proteins control the decision between differentiation, self-renewal, and cell death in neural stem cells, and how activity is restrained to prevent cell loss.
Collapse
|
20
|
Rousset CI, Baburamani AA, Thornton C, Hagberg H. Mitochondria and perinatal brain injury. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:35-8. [PMID: 22348594 DOI: 10.3109/14767058.2012.666398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Secondary brain injury after hypoxia-ischemia is associated with delayed loss of high energy phosphates implicating bioenergetic mitochondrial failure at least partly related to deregulation of the energy sensor adenosine monophosphate-activated protein kinase. Furthermore, the toxic intracellular environment (accumulation of reactive oxygen/nitrosative species and intracellular calcium) during post-ischemic reperfusion triggers Bax-dependent mitochondrial permeabilization (MP) leading to activation of caspase-dependent and apoptosis-inducing factor dependent cell death. We still do not understand how MP is induced but some data suggest that mitochondrial fusion/fission as well as migration play a critical role. Mitochondrial dynamics also seem critical for brain development as genetic deficiency of proteins involved in mitochondrial fusion and fission results in malformations including microcephaly, abnormal brain development and dysmyelination. In this brief review, we update the critical role of mitochondria in brain development and the decision of cell fate after hypoxia-ischemia in the immature CNS.
Collapse
Affiliation(s)
- Catherine I Rousset
- Centre for the Developing Brain, Institute of Reproductive and Developmental biology, Department of Surgery & Cancer, Imperial College, Hammersmith Campus, London, UK
| | | | | | | |
Collapse
|
21
|
Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:103026. [PMID: 22454652 PMCID: PMC3291301 DOI: 10.1155/2012/103026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/21/2022]
Abstract
With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay) and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s) in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs.
Collapse
|
22
|
Flora SJS, Gautam P, Kushwaha P. Lead and ethanol co-exposure lead to blood oxidative stress and subsequent neuronal apoptosis in rats. Alcohol Alcohol 2012; 47:92-101. [PMID: 22215003 DOI: 10.1093/alcalc/agr152] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The present study was aimed at investigating chronic exposure to lead and ethanol, individually and in combination with blood oxidative stress leading to possible brain apoptosis in rats. METHODS Rats were exposed to lead (0.1% w/v in drinking water) or ethanol (1 and 10%) either individually or in combination for four months. Biochemical variables indicative of oxidative stress (blood and brain) and brain apoptosis were examined. Native polyacrylamide agarose gel electrophoresis was carried out in brain homogenates for glucose-6-phosphate dehydrogenase (G6PD) analysis, whereas western blot analysis was done for the determination of apoptotic markers like Bax, Bcl-2, caspase-3, cytochrome c and p53. RESULTS The results suggest that most pronounced increase in oxidative stress in red blood cells and brain of animals co-exposed to lead and 10% ethanol compared all the other groups. Decrease in G6PD activity followed the same trend. Upregulation of Bax, cytochrome c, caspase-3, p53 and down-regulation of Bcl-2 suggested apoptosis in the rat brain co-exposed to lead and ethanol (10%) compared with their individual exposures. Significantly high lead accumulation in blood and brain during co-exposure further support synergistic toxicity. CONCLUSION The present study thus suggests that higher consumption of ethanol during lead exposure may lead to brain apoptosis, which may be mediated through oxidative stress.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| | | | | |
Collapse
|
23
|
Abstract
The characterization of functional CD8(+) inhibitory or regulatory T cells and their gene regulation remains a critical challenge in the field of tolerance and autoimmunity. Investigating the genes induced in regulatory cells and the regulatory networks and pathways that underlie mechanisms of immune resistance and prevent apoptosis in the CD8(+) T cell compartment are crucial to understanding tolerance mechanisms in systemic autoimmunity. Little is currently known about the genetic control that governs the ability of CD8(+) Ti or regulatory cells to suppress anti-DNA Ab production in B cells. Silencing genes with siRNA or shRNA and overexpression of genes with lentiviral cDNA transduction are established approaches to identifying and understanding the function of candidate genes in tolerance and immunity. Elucidation of interactions between genes and proteins, and their synergistic effects in establishing cell-cell cross talk, including receptor modulation/antagonism, are essential for delineating the roles of these cells. In this review, we will examine recent reports which describe the modulation of cells from lupus prone mice or lupus patients to confer anti-inflammatory and protective gene expression and novel associated phenotypes. We will highlight recent findings on the role of selected genes induced by peptide tolerance in CD8(+) Ti.
Collapse
|
24
|
Edwards A, Treiber CD, Breuss M, Pidsley R, Huang GJ, Cleak J, Oliver PL, Flint J, Keays DA. Cytoarchitectural disruption of the superior colliculus and an enlarged acoustic startle response in the Tuba1a mutant mouse. Neuroscience 2011; 195:191-200. [PMID: 21875651 PMCID: PMC3188702 DOI: 10.1016/j.neuroscience.2011.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 12/17/2022]
Abstract
The Jenna mutant mouse harbours an S140G mutation in Tuba1a that impairs tubulin heterodimer formation resulting in defective neuronal migration during development. The consequence of decreased neuronal motility is a fractured pyramidal cell layer in the hippocampus and wave-like perturbations in the cerebral cortex. Here, we extend our characterisation of this mouse investigating the laminar architecture of the superior colliculus (SC). Our results reveal that the structure of the SC in mutant animals is intact; however, it is significantly thinner with an apparent fusion of the intermediate grey and white layers. Birthdate labelling at E12.5 and E13.5 showed that the S140G mutation impairs the radial migration of neurons in the SC. A quantitative assessment of neuronal number in adulthood reveals a massive reduction in postmitotic neurons in mutant animals, which we attribute to increased apoptotic cell death. Consistent with the role of the SC in modulating sensorimotor gating, and the circuitry that modulates this behaviour, we find that Jenna mutants exhibit an exaggerated acoustic startle response. Our results highlight the importance of Tuba1a for correct neuronal migration and implicate postnatal apoptotic cell death in the pathophysiological mechanisms underlying the tubulinopathies.
Collapse
Affiliation(s)
- A Edwards
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kotipatruni RR, Dasari VR, Veeravalli KK, Dinh DH, Fassett D, Rao JS. p53- and Bax-mediated apoptosis in injured rat spinal cord. Neurochem Res 2011; 36:2063-74. [PMID: 21748659 DOI: 10.1007/s11064-011-0530-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 01/07/2023]
Abstract
Spinal cord injury (SCI) induces a series of endogenous biochemical changes that lead to secondary degeneration, including apoptosis. p53-mediated mitochondrial apoptosis is likely to be an important mechanism of cell death in spinal cord injury. However, the signaling cascades that are activated before DNA fragmentation have not yet been determined. DNA damage-induced, p53-activated neuronal cell death has already been identified in several neurodegenerative diseases. To determine DNA damage-induced, p53-mediated apoptosis in spinal cord injury, we performed RT-PCR microarray and analyzed 84 DNA damaging and apoptotic genes. Genes involved in DNA damage and apoptosis were upregulated whereas anti-apoptotic genes were downregulated in injured spinal cords. Western blot analysis showed the upregulation of DNA damage-inducing protein such as ATM, cell cycle checkpoint kinases, 8-hydroxy-2'-deoxyguanosine (8-OHdG), BRCA2 and H2AX in injured spinal cord tissues. Detection of phospho-H2AX in the nucleus and release of 8-OHdG in cytosol were demonstrated by immunohistochemistry. Expression of p53 was observed in the neurons, oligodendrocytes and astrocytes after spinal cord injury. Upregulation of phospho-p53, Bax and downregulation of Bcl2 were detected after spinal cord injury. Sub-cellular distribution of Bax and cytochrome c indicated mitochondrial-mediated apoptosis taking place after spinal cord injury. In addition, we carried out immunohistochemical analysis to confirm Bax translocation into the mitochondria and activated p53 at Ser³⁹². Expression of APAF1, caspase 9 and caspase 3 activities confirmed the intrinsic apoptotic pathway after SCI. Activated p53 and Bax mitochondrial translocation were detected in injured spinal neurons. Taken together, the in vitro data strengthened the in vivo observations of DNA damage-induced p53-mediated mitochondrial apoptosis in the injured spinal cord.
Collapse
Affiliation(s)
- Ramaprasada Rao Kotipatruni
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61656, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bunk EC, König HG, Bernas T, Engel T, Henshall DC, Kirby BP, Prehn JHM. BH3-only proteins BIM and PUMA in the regulation of survival and neuronal differentiation of newly generated cells in the adult mouse hippocampus. Cell Death Dis 2011; 1:e15. [PMID: 21364616 PMCID: PMC3039291 DOI: 10.1038/cddis.2009.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurogenesis persists in the adult hippocampus, where several thousand neurons are born every day. Most of the newly generated cells are eliminated by apoptosis, possibly because of their failure to integrate properly into neural networks. The BH3-only proteins Bim and Puma have been shown to mediate trophic factor withdrawal- and anoikis-induced apoptosis in various systems. We therefore determined their impact on proliferation, survival, and differentiation of adult-generated cells in the mouse hippocampus using gene-deficient mice. Wild-type, bim-, and puma-deficient mice showed similar rates of precursor cell proliferation, as evidenced by 5-bromo-2-deoxyuridine (BrdU)-incorporation. Deficiency in either bim or puma significantly increased the survival of adult-born cells in the dentate gyrus (DG) after 7 days. Consistently, we detected increased numbers of doublecortin (DCX)-positive and fewer terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelled-positive cells in the DG of bim- and puma-deficient mice. Bim and puma deficiency did not change early markers of neuronal differentiation, as evidenced by BrdU/DCX double-labelling. However, BrdU/NeuN double-labelling revealed that deficiency of bim, but not puma, accelerated the differentiation of newly generated cells into a neuronal phenotype. Our data show that Bim and Puma are prominently involved in the regulation of neuronal progenitor cell survival in the adult DG, but also suggest that Bim has an additional role in neuronal differentiation of adult-born neural precursor cells.
Collapse
Affiliation(s)
- E C Bunk
- Department of Physiology and Medical Physics, RCSI Neuroscience Research Centre, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
27
|
Balaszczuk V, Bender C, Pereno GL, Beltramino CA. Alcohol-induced neuronal death in central extended amygdala and pyriform cortex during the postnatal period of the rat. Int J Dev Neurosci 2011; 29:733-42. [PMID: 21664448 DOI: 10.1016/j.ijdevneu.2011.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/12/2011] [Accepted: 05/25/2011] [Indexed: 02/06/2023] Open
Abstract
Mothers who consume alcohol during pregnancy may cause a neurotoxic syndrome defined as fetal alcohol spectrum disorder (FASD) in their offspring. This disorder is characterized by reduction in brain size, cognitive deficits and emotional/social disturbances. These alterations are thought to be caused by an alcohol-induced increase in apoptosis during neurodevelopment. Little is known about neuroapoptosis in the central extended amygdala and the pyriform cortex, which are key structures in emotional/social behaviors. The goal of this study was to determine the vulnerability of neuroapoptotic alcohol effects in those areas. Rats were administered alcohol (2.5g/kg s.c. at 0 and 2h) or saline on postnatal day (PND) 7, 15 and 20. The Amino-cupric-silver technique was used to evaluate neurodegeneration and immunohistochemistry to detect activated caspases 3-8 and 9 at 2h, 4, 6, 8, 12 and 24h after drug administration. We measured blood alcohol levels each hour, from 2 to 8h post second administration of alcohol in each of the ages studied. Results showed alcohol induced apoptotic neurodegeneration in the central extended amygdala on PND 7 and 15, and pyriform cortex on PND 7, 15 and 20. These structures showed activation of caspase 3 and 9 but not of caspase 8 suggesting that alcohol-induced apoptosis could occur by the intrinsic pathway. The pharmacokinetic differences between ages did not associate with the neurodegeneration age dependence. In conclusion, these limbic areas are damaged by alcohol, and each one has their own window of vulnerability during the postnatal period. The possible implications in emotional/social features in FASD are discussed.
Collapse
Affiliation(s)
- V Balaszczuk
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli, Córdoba, Argentina.
| | | | | | | |
Collapse
|
28
|
Wang Y, Xiao Z, Liu X, Berk M. Venlafaxine modulates depression-induced behaviour and the expression of Bax mRNA and Bcl-xl mRNA in both hippocampus and myocardium. Hum Psychopharmacol 2011; 26:95-101. [PMID: 21308783 DOI: 10.1002/hup.1177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 01/12/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Major depressive disorder is associated with progressive brain changes and is frequently comorbid with cardiovascular disease. There may be shared pathophysiological pathways between cerebral and myocardial dysfunction that impact on apoptosis related proteins. Our aim was to examine behaviour changes of rats with chronic mild stress (CMS), explore the expression of Bax and Bcl-xl in the hippocampus and myocardium, and additionally evaluate the effects of venlafaxine on these molecular mechanisms. METHODS Rats were randomly divided into three groups. The behaviour was assessed using the open field and sucrose consumption tests. Gene expression was measured by RT-PCR. RESULTS In CMS, there was a significant reduction of movements and sucrose consumption, an increased Bax level and a decreased Bcl-xl level in both the hippocampus and myocardium. The venlafaxine group showed an increase in movements and sucrose consumption, as well as upregulated expression of Bcl-xl and downregulated expression of Bax in both the hippocampus and myocardium. CONCLUSIONS These results demonstrate that in CMS, there is an increase in pro-apoptotic pathways that is reversed by venlafaxine. This suggests that there are shared active biochemical pathways that may play a role in the process of neuroprogression that is seen in depression and cardiovascular disorders.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Psychiatry, Hospital Affiliated to Guiyang Medical University, Guiyang, Guizhou Province, China
| | | | | | | |
Collapse
|
29
|
Craciunescu CN, Johnson AR, Zeisel SH. Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain. J Nutr 2010; 140:1162-6. [PMID: 20392884 PMCID: PMC2869500 DOI: 10.3945/jn.110.122044] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In mice, maternal dietary folate, a cofactor in 1-carbon metabolism, modulates neurogenesis and apoptosis in the fetal brain. Similarly, maternal dietary choline, an important methyl-donor, also influences these processes. Choline and folate are metabolically interrelated, and we determined whether choline supplementation could reverse the effects of folate deficiency on brain development. Timed-pregnant mice were fed control (CT), folate-deficient (FD), or folate-deficient, choline-supplemented (FDCS) AIN-76 diets from d 11 to 17 (E11-17) of pregnancy, and on E17, fetal brains were collected for analysis. Compared with the CT group, the FD group had fewer neural progenitor cells undergoing mitosis in the ventricular zones of the developing mouse brain septum (47%; P < 0.01), hippocampus (29%; P < 0.01), striatum (34%; P < 0.01), and anterior and mid-posterior neocortex (33% in both areas; P < 0.01). In addition, compared with CT, the FD diet almost doubled the rate of apoptosis in the fetal septum and hippocampus (P < 0.01). In the FDCS group, the mitosis rates generally were intermediate between those of the CT and FD groups; mitosis rates in the septum and striatum were significantly greater compared with the FD group and were significantly lower than in the CT group only in the septum and neocortex. In the FDCS group, the hippocampal apoptosis rate was significantly lower than in the FD group (P < 0.01) and was the same as in the CT group. In the septum, the apotosis rate in the FDCS group was intermediate between the CT and FD groups' rates. These results suggest that neural progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation and that choline supplementation can modify some, but not all, of these effects.
Collapse
Affiliation(s)
- Corneliu N. Craciunescu
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081
| | - Amy R. Johnson
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081
| | - Steven H. Zeisel
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599; Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Lung FW, Shu BC, Kao WT, Chen CN, Ku YC, Tzeng DS. Association of DRD4 uVNTR and TP53 codon 72 polymorphisms with schizophrenia: a case-control study. BMC MEDICAL GENETICS 2009; 10:147. [PMID: 20040103 PMCID: PMC2808306 DOI: 10.1186/1471-2350-10-147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 12/29/2009] [Indexed: 02/02/2023]
Abstract
Background The tumour supressor gene TP53 is thought to be involved in neural apoptosis. The polymorphism at codon 72 in TP53 and the long form variants of the upstream variable number of tandem repeats (uVNTR) polymorphism in the dopamine D4 receptor (DRD4) gene are reported to confer susceptibility to schizophrenia. Methods We recruited 934 patients with schizophrenia and 433 healthy individuals, and genotyped the locus of the TP53 codon 72 and DRD4 uVNTR polymorphisms by combining the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) with direct sequencing. Results No significant differences were found in the frequency of the genotype of the TP53 codon72 polymorphism between patients with schizophrenia and their controls. However, the long form alleles (≥ 5 repeats) of the DRD4 uVNTR polymorphism were more frequent in patients with schizophrenia than in controls (p = 0.001). Hence, this class of alleles might be a risk factor for enhanced vulnerability to schizophrenia (odds ratio = 3.189, 95% confidence interval = 1.535-6.622). In the logistic regression analysis, the long form variants of the DRD4 polymorphism did predict schizophrenia after the contributions of the age and gender of the subjects were included (p = 0.036, OR = 2.319), but the CC and GG genotypes of the codon 72 polymorphism of TP53 did not. Conclusions The long form variants of the uVNTR polymorphism in DRD4 were associated with schizophrenia, in a manner that was independent of the TP53 codon 72 polymorphism. In addition, given that the genetic effect of the TP53 codon 72 polymorphism on the risk of developing schizophrenia was very small, this polymorphism is unlikely to be associated with schizophrenia. The roles that other single nucleotide polymorphisms (SNPs) in the TP53 gene or in other apoptosis-related genes play in the synaptic dysfunction involved in the pathogenesis of schizophrenia should be investigated.
Collapse
Affiliation(s)
- For-Wey Lung
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|
31
|
Hammonds MD, Shim SS. Effects of 4-week Treatment with Lithium and Olanzapine on Levels of Brain-derived Neurotrophic Factor, B-Cell CLL/Lymphoma 2 and Phosphorylated Cyclic Adenosine Monophosphate Response Element-binding Protein in the Sub-regions of the Hippocampus. Basic Clin Pharmacol Toxicol 2009; 105:113-9. [DOI: 10.1111/j.1742-7843.2009.00416.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Ohi K, Hashimoto R, Yasuda Y, Yamamori H, Hori H, Saitoh O, Tatsumi M, Takeda M, Iwata N, Ozaki N, Kamijima K, Kunugi H. No association between the Bcl2-interacting killer (BIK) gene and schizophrenia. Neurosci Lett 2009; 463:60-3. [PMID: 19632297 DOI: 10.1016/j.neulet.2009.07.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/02/2009] [Accepted: 07/21/2009] [Indexed: 01/14/2023]
Abstract
The Bcl2-interacting killer (BIK) gene interacts with cellular and viral survival-promoting proteins, such as Bcl-2, to enhance apoptosis. The BIK protein promotes cell death in a manner analogous to Bcl-2-related death-promoting proteins, Bax and Bak. There have been lower Bcl-2 levels and increased Bax/Bcl-2 ratio in the temporal cortex of patients with schizophrenia compared with those in controls. Because the death-promoting activity of BIK was suppressed in the presence of the cellular and viral survival-promoting proteins, the BIK protein is suggested as a likely target for antiapoptotic proteins. The purpose of this study is to investigate the association between genetic variants in the BIK gene and schizophrenia in a large Japanese population (1181 patients with schizophrenia and 1243 healthy controls). We found nominal evidence for association of alleles, rs926328 (chi2=4.44, p=0.035, odds ratio=1.13) and rs2235316 (chi2=4.41, p=0.036, odds ratio=1.13), with schizophrenia. However, these associations were no longer positive after correction for multiple testing (rs926328: corrected p=0.105, rs2235316: corrected p=0.108). We conclude that BIK might not play a major role in the susceptibility of schizophrenia in Japanese population.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Savion S, Shtelman E, Orenstein H, Torchinsky A, Fein A, Toder V. Bax-associated mechanisms underlying the response of embryonic cells to methotrexate. Toxicol In Vitro 2009; 23:1062-8. [PMID: 19524032 DOI: 10.1016/j.tiv.2009.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
Bax was shown previously to regulate apoptotic cell death in various experimental systems, however, its involvement in teratogen-induced apoptosis is not clear yet. Therefore, we explored the involvement of Bax in the response of mouse embryonic fibroblasts (MEFs) to the anti cancer drug methotrexate (MTX), using Bax wild type (WT) and knockout (Bax(-/-)) MEFs. Our results demonstrated a significant teratogen-induced dose- and time-dependant decrease in the survival and culture density of both cell lines, which were found to be somewhat more prominent in WT cells. Exposure to MTX resulted also in decreased cell proliferation of WT but not Bax(-/-) cells and accordingly, we observed an accumulation of cells in the S phase and an increased percentage of cells in the Sub-G(1) phase of the cell cycle and the appearance of condensed nuclei, which were found to be somewhat more prominent in WT MEFs. In parallel, WT MEFs demonstrated a MTX-induced increase in the percentage of Bax-positive cells and a significant decrease in the percentage of bcl-2-, p65- or IkappaBalpha-positive cells, which were not detected in Bax(-/-) MEFs. Altogether, the differential sensitivity of WT or Bax(-/-) MEFs to MTX suggests a possible involvement of this molecule in the response of embryonic cells to teratogens.
Collapse
Affiliation(s)
- S Savion
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | | | | | | | | | | |
Collapse
|
34
|
Dicou E, Perez-Polo JR. Bax-an emerging role in ectopic cell death. Int J Dev Neurosci 2009; 27:299-304. [PMID: 19460623 DOI: 10.1016/j.ijdevneu.2009.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/20/2009] [Indexed: 11/19/2022] Open
Abstract
During embryonic and early postnatal development the combination of cell proliferation, migration, survival and cell death is intimately regulated. In the mouse embryo, significant numbers of primordial germ cells, the founder cells of the gametes, fail to migrate correctly to the genital ridges early in histogenesis. Studies in Bcl-2 associated X protein null mice (Bax(-/-)) have shown that the pro-apoptotic Bax gene is required for the programmed cell death of germ cells left in ectopic locations during and after germ cell migration. Independent studies carried out in the central nervous system of Bax(-/-) mice have shown impaired and ectopic neuronal migration in the cerebellum and olfactory bulb during development and in the adult hippocampus. Taken together, these evidences identify Bax as a major mechanism in ectopic cell death and are the subject of this review.
Collapse
Affiliation(s)
- Eleni Dicou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0652, USA.
| | | |
Collapse
|
35
|
Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernández C, Soria-Valles C, De Gonzalo-Calvo D, Tolivia D, Pallás M, Camins A, Rodríguez-Colunga MJ, Coto-Montes A. Melatonin alters cell death processes in response to age-related oxidative stress in the brain of senescence-accelerated mice. J Pineal Res 2009; 46:106-14. [PMID: 19090913 DOI: 10.1111/j.1600-079x.2008.00637.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the effect of age and melatonin on cell death processes in brain aging. Senescence-accelerated prone mice 8 (SAMP8) and senescence-accelerated resistant mice (SAMR1) at 5 and 10 months of age were used as models of the study. Melatonin (10 mg/kg) or its vehicle (ethanol at 0.066%) was administered in the drinking water from 1 to 9 months of age. Neurodegeneration, previously shown in the aged brain of SAMP8 and SAMR1 at 10 months of age, may be due to a drop in age-related proteolytic activities (cathepsin D, calpains, and caspase-3). Likewise, lack of apoptotic and macroautophagic processes were found, without apparent modification by melatonin. However, the caspase-independent cell death, owing to high p53 and apoptosis-inducing factor (AIF) levels, might be an alternative pathway of cell death in the aged brain. The main effects of melatonin treatment were observed in the aged SAMR1 mice; in this strain we observed a marked increase in antioxidant activity (catalase and superoxide dismutase). Likewise, a key antioxidant role of apoptosis-related proteins, Bcl-2 and AIF, was suggested in the aged brain of SAM mice, which was clearly influenced by melatonin. Moreover, the age-related increase of lysosomal activity of cathepsin B and a lysosomal membrane-associated protein 2 supports the possibility of the maintenance of lysosomal viability in addition to age-related impairments of the proteolytic or macroautophagic activities. The effectiveness of melatonin against the oxidative stress-related impairments and apoptosis during the aging process is, once more, corroborated in this article.
Collapse
Affiliation(s)
- Beatriz Caballero
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sahdev S, Saini KS, Hasnain SE. Baculovirus P35 protein: An overview of its applications across multiple therapeutic and biotechnological arenas. Biotechnol Prog 2009; 26:301-12. [DOI: 10.1002/btpr.339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Chamberlain WA, Prayson RA. Focal Cortical Dysplasia Type II (Malformations of Cortical Development) Aberrantly Expresses Apoptotic Proteins. Appl Immunohistochem Mol Morphol 2008; 16:471-6. [DOI: 10.1097/pai.0b013e31815d9ac7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Fontaine RH, Cases O, Lelièvre V, Mesplès B, Renauld JC, Loron G, Degos V, Dournaud P, Baud O, Gressens P. IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ 2008; 15:1542-52. [PMID: 18551134 DOI: 10.1038/cdd.2008.79] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In mammals, programmed cell death (PCD) is a central event during brain development. Trophic factors have been shown to prevent PCD in postmitotic neurons. Similarly, cytokines have neurotrophic effects involving regulation of neuronal survival. Nevertheless, neuronal PCD is only partially understood and host determinants are incompletely defined. The present study provides evidence that the cytokine interleukin-9 (IL-9) and its receptor specifically control PCD of neurons in the murine newborn neocortex. IL-9 antiapoptotic action appeared to be time-restricted to early postnatal stages as both ligand and receptor transcripts were mostly expressed in neocortex between postnatal days 0 and 10. This period corresponds to the physiological peak of apoptosis for postmitotic neurons in mouse neocortex. In vivo studies showed that IL-9/IL-9 receptor pathway inhibits apoptosis in the newborn neocortex. Furthermore, in vitro studies demonstrated that IL-9 and its receptor are mainly expressed in neurons. IL-9 effects were mediated by the activation of the JAK/STAT (janus kinase/signal transducer and activator of transcription) pathway, whereas nuclear factor-kappaB (NF-kappaB) or Erk pathways were not involved in mediating IL-9-induced inhibition of cell death. Finally, IL-9 reduced the expression of the mitochondrial pro-apoptotic factor Bax whereas Bcl-2 level was not significantly affected. Together, these data suggest that IL-9/IL-9 receptor signaling pathway represents a novel endogenous antiapoptotic mechanism for cortical neurons by controlling JAK/STAT and Bax levels.
Collapse
|
39
|
Degos V, Loron G, Mantz J, Gressens P. Neuroprotective Strategies for the Neonatal Brain. Anesth Analg 2008; 106:1670-80. [DOI: 10.1213/ane.0b013e3181733f6f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Vukojevic K, Carev D, Sapunar D, Petrovic D, Saraga-Babic M. Developmental patterns of caspase-3, bax and bcl-2 proteins expression in the human spinal ganglia. J Mol Histol 2008; 39:339-49. [PMID: 18415689 DOI: 10.1007/s10735-008-9171-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/08/2008] [Indexed: 02/04/2023]
Abstract
The distribution of the bcl-2, bax and caspase-3 proteins was investigated in the cells of developing human spinal ganglia. Paraffin sections of 10 human conceptuses between 5th and 9th gestational weeks were analysed morphologically, immunohistochemically and by TUNEL-method. Cells positive to caspase-3 had brown stained nuclei or nuclear fragmentations. At earliest stages, 6% of ganglion population were caspase-3 positive cells. Later on, a significant increase in number of caspase-3 positive cells appeared, particularly in the ventral part of ganglia (12%), and subsequently decreased to 6%. TUNEL-positive cells had the same distribution pattern as caspase-3 positive cells. Bax-positive cells followed the developmental pattern similar to caspase-3 cells, changing in range between 20% and 32%. There were 8% of bcl-2 positive cells at earliest stages. They increased significantly in dorsal part of the ganglion during the 7th week (28%), and than dropped to 15% by the end of the 8th week. These findings suggest a ventro-dorsal course of development in human spinal ganglia. Number of bcl-2, bax and caspase-3 positive cells changed in a temporally and spatially restricted manner, coincidently with ganglion differentiation. While apoptosis might control cell number, bcl-2 could act in suppression of apoptosis and enhancement of cell differentiation.
Collapse
Affiliation(s)
- Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia.
| | | | | | | | | |
Collapse
|
41
|
Chao SL, Moss JM, Harry GJ. Lead-induced alterations of apoptosis and neurotrophic factor mRNA in the developing rat cortex, hippocampus, and cerebellum. J Biochem Mol Toxicol 2008; 21:265-72. [PMID: 17912701 PMCID: PMC2366037 DOI: 10.1002/jbt.20191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous reports have recently shown the prototypic neurotoxicant, lead, to induce apoptosis in the brains of developing organisms. In the current study, timed-pregnant rats were exposed to lead acetate (0.2% in the drinking water) 24 h following birth at postnatal day 1 (PND 1). Dams and pups were continuously exposed to lead through the drinking water of the dam until PND 20. Postnatal exposure in the pups resulted in altered mRNA levels of the following apoptotic and neurotrophic factors: caspase 2 and 3, bax, bcl-x, brain-derived neurotrophic factor (BDNF). Ribonuclease protection assays were conducted to measure the factors simultaneously at the following postnatal time points: 9, 12, 15, 20, 25, days. Our results suggest a brain region- and time-specific response following lead acetate exposure. The region most vulnerable to alterations occurs in the hippocampus with alterations beginning at PND 12, in which caspase 3, bcl-x, BDNF increase with lead exposure. Significant treatment effects were not observed for both the cortex and cerebellum.
Collapse
Affiliation(s)
- Shirley L Chao
- Department of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA.
| | | | | |
Collapse
|
42
|
Abstract
Neural stem cells (NSCs) are the main vehicle for genetic and molecular therapies in the central nervous system (CNS). The sustainability of NSCs has been ensured through genetic manipulation both in vitro and in vivo. NSC lines have also been immortalized and controlled for cell growth in similar fashion. Their potential to differentiate and their genetic plasticity make them the modality of choice for cellular transplantation. After transplantation, NSCs also exhibit inherent long-distance migratory capabilities and a remarkable capacity to integrate into brain structures. This makes NSCs the ideal candidate for delivery and expression of therapeutic genes. Mouse models of CNS diseases have already demonstrated the efficacy of such NSC-mediated treatment, and further investigations are underway to bridge the gap into true clinical application. Finally, the imaging possibilities with NSC transplants are endless, and they will be a pivotal component to safe and effective human transplantation. This paper provides an overview on NSCs and the various methods in which they have been genetically manipulated for biological investigation.
Collapse
Affiliation(s)
- Rahul Jandial
- Division of Neurological Surgery, University of California, San Diego, California, USA.
| | | | | | | |
Collapse
|
43
|
Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008; 37:7-38. [PMID: 18066503 DOI: 10.1007/s12035-007-8013-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 11/05/2007] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow, 226001, India
| | | | | | | |
Collapse
|
44
|
Abstract
More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
Collapse
Affiliation(s)
- Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
45
|
Wright KM, Smith MI, Farrag L, Deshmukh M. Chromatin modification of Apaf-1 restricts the apoptotic pathway in mature neurons. ACTA ACUST UNITED AC 2007; 179:825-32. [PMID: 18056406 PMCID: PMC2099178 DOI: 10.1083/jcb.200708086] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although apoptosis has been extensively studied in developing neurons, the dynamic changes in this pathway after neuronal maturation remain largely unexplored. We show that as neurons mature, cytochrome c– mediated apoptosis progresses from inhibitor of apoptosis protein–dependent to –independent regulation because of a complete loss of Apaf-1 expression. However, after DNA damage, mature neurons resynthesize Apaf-1 through the cell cycle–related E2F1 pathway and restore their apoptotic potential. Surprisingly, we find that E2F1 is sufficient to induce Apaf-1 expression in developing but not mature neurons. Rather, Apaf-1 up-regulation in mature neurons requires both chromatin derepression and E2F1 transcriptional activity. This differential capacity of E2F1 to induce Apaf-1 transcription is because of the association of the Apaf-1 promoter with active chromatin in developing neurons and repressed chromatin in mature neurons. These data specifically illustrate how the apoptotic pathway in mature neurons becomes increasingly restricted by a novel mechanism involving the regulation of chromatin structure.
Collapse
Affiliation(s)
- Kevin M Wright
- Neuroscience Center and 2Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
46
|
Heck N, Golbs A, Riedemann T, Sun JJ, Lessmann V, Luhmann HJ. Activity-Dependent Regulation of Neuronal Apoptosis in Neonatal Mouse Cerebral Cortex. Cereb Cortex 2007; 18:1335-49. [DOI: 10.1093/cercor/bhm165] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
47
|
Han JM, Chang BJ, Li TZ, Choe NH, Quan FS, Jang BJ, Cho IH, Hong HN, Lee JH. Protective effects of ascorbic acid against lead-induced apoptotic neurodegeneration in the developing rat hippocampus in vivo. Brain Res 2007; 1185:68-74. [PMID: 17959157 DOI: 10.1016/j.brainres.2007.09.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 08/31/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Lead is a neurotoxin that affects the developing central nervous system and may potentially induce apoptotic cell death. We investigated the effect of ascorbic acid against lead-induced neurotoxicity in the developing rat hippocampus. Female Sprague-Dawley rats were divided into three groups: control group, lead-treated group and lead plus ascorbic acid-treated group. Lead (0.2% lead acetate) was administered to female rats during pregnancy and lactation, in their drinking water. During this period, rats in the lead plus ascorbic acid-treated group received 100 mg/kg/day ascorbic acid, orally. At the end of the treatment, neuronal damage, apoptosis and blood lead levels were determined and the levels of Bax and Bcl-2 were immunodetected in the hippocampus of 21-day-old male pups. Histopathological evaluation demonstrated that ascorbic acid significantly attenuates apoptosis in the developing hippocampus and also spares hippocampal CA1, CA3 and dentate gyrus (DG) neurons. Simultaneous administration of ascorbic acid and lead lowered the level of Bax protein and increased Bcl-2 in pup hippocampus and reduced lead level in blood of dams compared with lead-treated only. Based on these results, it seems that ascorbic acid may potentially be beneficial in treating lead-induced brain injury in the developing rat brain.
Collapse
Affiliation(s)
- Jung-Mi Han
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Heitz S, Lutz Y, Rodeau JL, Zanjani H, Gautheron V, Bombarde G, Richard F, Fuchs JP, Vogel MW, Mariani J, Bailly Y. BAX contributes to Doppel-induced apoptosis of prion-protein-deficient Purkinje cells. Dev Neurobiol 2007; 67:670-86. [PMID: 17443816 DOI: 10.1002/dneu.20366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Research efforts to deduce the function of the prion protein (PrPc) in knock-out mouse mutants have revealed that large deletions in the PrPc genome result in the ectopic neuronal expression of the prion-like protein Doppel (Dpl). In our analysis of one such line of mutant mice, Ngsk Prnp0/0 (NP0/0), we demonstrate that the ectopic expression of Dpl in brain neurons induces significant levels of cerebellar Purkinje cell (PC) death as early as six months after birth. To investigate the involvement of the mitochondrial proapoptotic factor BAX in the Dpl-induced apoptosis of PCs, we have analyzed the progression of PC death in aging NP0/0:Bax-/- double knockout mutants. Quantitative analysis of cell numbers showed that significantly more PCs survived in NP0/0:Bax-/- double mutants than in the NP0/0:Bax+/+ mutants. However, PC numbers were not restored to wildtype levels or to the increased number of PCs observed in Bax-/- mutants. The partial rescue of NP0/0 PCs suggests that the ectopic expression of Dpl induces both BAX-dependent and BAX-independent pathways of cell death. The activation of glial cells that is shown to be associated topographically with Dpl-induced PC death in the NP0/0:Bax+/+ mutants is abolished by the loss of Bax expression in the double mutant mice, suggesting that chronic inflammation is an indirect consequence of Dpl-induced PC death.
Collapse
Affiliation(s)
- S Heitz
- Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR7168-LC2), CNRS/Université Louis Pasteur, IFR 37 des Neurosciences de Strasbourg, and APHP, Hôpital Charles Foix, Ivry/Seine, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang MY, Sun W, Ochiai W, Nakashima K, Kim SY, Park CH, Kang JS, Shim JW, Jo AY, Kang CS, Lee YS, Kim JS, Lee SH. Bcl-XL/Bax proteins direct the fate of embryonic cortical precursor cells. Mol Cell Biol 2007; 27:4293-305. [PMID: 17438128 PMCID: PMC1900045 DOI: 10.1128/mcb.00031-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the developing mouse brain, the highest Bcl-X(L) expression is seen at the peak of neurogenesis, whereas the peak of Bax expression coincides with the astrogenic period. While such observations suggest an active role of the Bcl-2 family proteins in the generation of neurons and astrocytes, no definitive demonstration has been provided to date. Using combinations of gain- and loss-of-function assays in vivo and in vitro, we provide evidence for instructive roles of these proteins in neuronal and astrocytic fate specification. Specifically, in Bax knockout mice, astrocyte formation was decreased in the developing cortices. Overexpression of Bcl-X(L) and Bax in embryonic cortical precursors induced neural and astrocytic differentiation, respectively, while inhibitory RNAs led to the opposite results. Importantly, inhibition of caspase activity, dimerization, or mitochondrial localization of Bcl-X(L)/Bax proteins indicated that the differentiation effects of Bcl-X(L)/Bax are separable from their roles in cell survival and apoptosis. Lastly, we describe activation of intracellular signaling pathways and expression of basic helix-loop-helix transcriptional factors specific for the Bcl-2 protein-mediated differentiation.
Collapse
Affiliation(s)
- Mi-Yoon Chang
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, 17 Haengdang-Dong, Sungdong-Gu, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gustavsson M, Wilson MA, Mallard C, Rousset C, Johnston MV, Hagberg H. Global gene expression in the developing rat brain after hypoxic preconditioning: involvement of apoptotic mechanisms? Pediatr Res 2007; 61:444-50. [PMID: 17515869 DOI: 10.1203/pdr.0b013e3180332be4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to hypoxia before hypoxia-ischemia (HI) confers substantial protection referred to as preconditioning (PC). We hypothesized that PC induces critical changes of genes related to apoptotic cell death to render the brain more resistant. PC hypoxia (8% O2, 36 degrees C, 3 h) was induced in rats on postnatal day (PND) 6, and the rats were killed at 0, 2, 8, and 24 h. Total RNA was extracted from cerebral cortex and analyzed using Affymetrix rat genome 230 2.0 array. PC induced significant changes in 906 genes at 0 h, 927 at 2 h, 389 at 8 h, and 114 at 24 h. Ontology analysis revealed significant alterations in genes involved in cell communication, signal transduction, transcription, phosphorylation, and transport. Genes involved in cell death/apoptosis as well as those related to brain development (cell differentiation, neurogenesis, organogenesis, blood vessel development) were overrepresented. A detailed analysis demonstrated that 77 significantly regulated genes were involved in apoptosis, specifically related to the Bcl-2 family, JNK pathway, trophic factor pathways, inositol triphosphate (PI3) kinase/Akt pathway, extrinsic or intrinsic pathway, or the p53 pathway. The study supports that the epidermal growth factor receptor family, mitogen-activated protein kinase phosphatases, and Bcl-2-related proteins and the PI3 kinase/Akt pathway may have roles in providing resistance in the developing central nervous system (CNS).
Collapse
Affiliation(s)
- Malin Gustavsson
- Department of Physiology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|