1
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
2
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
3
|
Packard A, Klein WH, Costantini F. Ret signaling in ureteric bud epithelial cells controls cell movements, cell clustering and bud formation. Development 2021; 148:261695. [PMID: 33914865 DOI: 10.1242/dev.199386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022]
Abstract
Ret signaling promotes branching morphogenesis during kidney development, but the underlying cellular mechanisms remain unclear. While Ret-expressing progenitor cells proliferate at the ureteric bud tips, some of these cells exit the tips to generate the elongating collecting ducts, and in the process turn off Ret. Genetic ablation of Ret in tip cells promotes their exit, suggesting that Ret is required for cell rearrangements that maintain the tip compartments. Here, we examine the behaviors of ureteric bud cells that are genetically forced to maintain Ret expression. These cells move to the nascent tips, and remain there during many cycles of branching; this tip-seeking behavior may require positional signals from the mesenchyme, as it occurs in whole kidneys but not in epithelial ureteric bud organoids. In organoids, cells forced to express Ret display a striking self-organizing behavior, attracting each other to form dense clusters within the epithelium, which then evaginate to form new buds. The ability of forced Ret expression to promote these events suggests that similar Ret-dependent cell behaviors play an important role in normal branching morphogenesis.
Collapse
Affiliation(s)
- Adam Packard
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - William H Klein
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA.,Department of Systems Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Gong X, Guo X, Huang R, Liao H, Zhang Q, Yan J, Luo L, Zhang Q, Qiu A, Sun Y, Liang X. Expression of ILK in renal stroma is essential for multiple aspects of renal development. Am J Physiol Renal Physiol 2018; 315:F374-F385. [PMID: 29638158 DOI: 10.1152/ajprenal.00509.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney development involves reciprocal and inductive interactions between the ureteric bud (UB) and surrounding metanephric mesenchyme. Signals from renal stromal lineages are essential for differentiation and patterning of renal epithelial and mesenchymal cell types and renal vasculogenesis; however, underlying mechanisms remain not fully understood. Integrin-linked kinase (ILK), a key component of integrin signaling pathway, plays an important role in kidney development. However, the role of ILK in renal stroma remains unknown. Here, we ablated ILK in renal stromal lineages using a platelet-derived growth factor receptor B ( Pdgfrb) -Cre mouse line, and the resulting Ilk mutant mice presented postnatal growth retardation and died within 3 wk of age with severe renal developmental defects. Pdgfrb-Cre;Ilk mutant kidneys exhibited a significant decrease in UB branching and disrupted collecting duct formation. From E16.5 onward, renal interstitium was disorganized, forming medullary interstitial pseudocysts. Pdgfrb-Cre;Ilk mutants exhibited renal vasculature mispatterning and impaired glomerular vascular differentiation. Impaired glial cell-derived neurotrophic factor/Ret and bone morphogenetic protein 7 signaling pathways were observed in Pdgfrb-Cre;Ilk mutant kidneys. Furthermore, phosphoproteomic and Western blot analyses revealed a significant dysregulation of a number of key signaling pathways required for kidney morphogenesis, including PI3K/AKT and MAPK/ERK in Pdgfrb-Cre;Ilk mutants. Our results revealed a critical requirement for ILK in renal-stromal and vascular development, as well as a noncell autonomous role of ILK in UB branching morphogenesis.
Collapse
Affiliation(s)
- Xiaohui Gong
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Xiaoxia Guo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Ru Huang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Huimin Liao
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Jie Yan
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Lina Luo
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Qitong Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Andong Qiu
- School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Yunfu Sun
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| | - Xingqun Liang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, School of Medicine, Tongji University , Shanghai , China
| |
Collapse
|
5
|
Mallipattu SK, He JC. The beneficial role of retinoids in glomerular disease. Front Med (Lausanne) 2015; 2:16. [PMID: 25853135 PMCID: PMC4370041 DOI: 10.3389/fmed.2015.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/08/2015] [Indexed: 12/12/2022] Open
Abstract
The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including focal segmental glomerular sclerosis and HIV-associated nephropathy. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA), which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s) by which RA restores podocyte differentiation markers and ameliorates glomerular disease.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University , New York, NY , USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Renal Section, James J. Peters VA Medical Center , New York, NY , USA
| |
Collapse
|
6
|
Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev 2015; 82:151-66. [PMID: 25783232 DOI: 10.1002/mrd.22462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Division of Center of Immunity, Inflammation and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
7
|
Davis TK, Hoshi M, Jain S. To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol 2014; 29:597-608. [PMID: 24022366 PMCID: PMC3952039 DOI: 10.1007/s00467-013-2606-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 01/05/2023]
Abstract
Congenital anomalies of the kidneys or lower urinary tract (CAKUT) encompass a spectrum of anomalies that result from aberrations in spatio-temporal regulation of genetic, epigenetic, environmental, and molecular signals at key stages of urinary tract development. The Rearranged in Transfection (RET) tyrosine kinase signaling system is a major pathway required for normal development of the kidneys, ureters, peripheral and enteric nervous systems. In the kidneys, RET is activated by interaction with the ligand glial cell line-derived neurotrophic factor (GDNF) and coreceptor GFRα1. This activated complex regulates a number of downstream signaling cascades (PLCγ, MAPK, and PI3K) that control proliferation, migration, renewal, and apoptosis. Disruption of these events is thought to underlie diseases arising from aberrant RET signaling. RET mutations are found in 5-30 % of CAKUT patients and a number of Ret mouse mutants show a spectrum of kidney and lower urinary tract defects reminiscent of CAKUT in humans. The remarkable similarities between mouse and human kidney development and in defects due to RET mutations has led to using RET signaling as a paradigm for determining the fundamental principles in patterning of the upper and lower urinary tract and for understanding CAKUT pathogenesis. In this review, we provide an overview of studies in vivo that delineate expression and the functional importance of RET signaling complex during different stages of development of the upper and lower urinary tracts. We discuss how RET signaling balances activating and inhibitory signals emanating from its docking tyrosines and its interaction with upstream and downstream regulators to precisely modulate different aspects of Wolffian duct patterning and branching morphogenesis. We outline the diversity of cellular mechanisms regulated by RET, disruption of which causes malformations ranging from renal agenesis to multicystic dysplastic kidneys in the upper tract and vesicoureteral reflux or ureteropelvic junction obstruction in the lower tract.
Collapse
Affiliation(s)
- T. Keefe Davis
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Masato Hoshi
- Department of Internal Medicine (Renal division), Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sanjay Jain
- Department of Internal Medicine (Renal division), Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA,Correspondance:Sanjay Jain, MD, PhD, Address: Renal Division, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., Box 8126, St. Louis, MO 63110, USA, Tel.: +1-314-454-8728, Fax: +1-314-454-7735,
| |
Collapse
|
8
|
Vesicoureteric reflux and reflux nephropathy: from mouse models to childhood disease. Pediatr Nephrol 2014; 29:757-66. [PMID: 24500705 DOI: 10.1007/s00467-014-2761-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Vesicoureteric reflux (VUR) is a common congenital urinary tract defect that predisposes children to recurrent kidney infections. Kidney infections can result in renal scarring or reflux nephropathy defined by the presence of chronic tubulo-interstitial inflammation and fibrosis that is a frequent cause of end-stage renal failure. The discovery of mouse models with VUR and with reflux nephropathy has provided new opportunities to understand the pathogenesis of these conditions and may provide insight on the genes and the associated phenotypes that need to be examined in human studies.
Collapse
|
9
|
Fabris A, Anglani F, Lupo A, Gambaro G. Medullary sponge kidney: state of the art. Nephrol Dial Transplant 2012; 28:1111-9. [PMID: 23229933 DOI: 10.1093/ndt/gfs505] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Medullary sponge kidney (MSK) is a kidney malformation that generally manifests with nephrocalcinosis and recurrent renal stones; other signs may be renal acidification and concentration defects, and pre-calyceal duct ectasias. MSK is generally considered a sporadic disorder, but an apparently autosomal dominant inheritance has also been observed. As MSK reveals abnormalities in both the lower and the upper nephron and is often associated with urinary tract developmental anomalies, its pathogenesis should probably be sought in one of the numerous steps characterizing renal morphogenesis. Given the key role of the GDNF-RET interaction in kidney and urinary tract development and nephrogenesis, anomalies in these molecules are reasonable candidates for explaining a disorder such as MSK. As a matter of fact, we detected two, hitherto unknown, rare variants of the GDNF gene in MSK patients. We surmise that a defective distal acidification has a central role in MSK and is followed by a chain of events including defective bone mineralization, hypercalciuria, hypocitraturia and stone formation.
Collapse
Affiliation(s)
- Antonia Fabris
- Division of Nephrology, Department of Medicine, University Hospital of Verona, Verona, Italy
| | | | | | | |
Collapse
|
10
|
Sims-Lucas S, Di Giovanni V, Schaefer C, Cusack B, Eswarakumar VP, Bates CM. Ureteric morphogenesis requires Fgfr1 and Fgfr2/Frs2α signaling in the metanephric mesenchyme. J Am Soc Nephrol 2012; 23:607-17. [PMID: 22282599 DOI: 10.1681/asn.2011020165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Conditional deletion of fibroblast growth factor receptors (Fgfrs) 1 and 2 in the metanephric mesenchyme (MM) of mice leads to a virtual absence of MM and unbranched ureteric buds that are occasionally duplex. Deletion of Fgfr2 in the MM leads to kidneys with cranially displaced ureteric buds along the Wolffian duct or duplex ureters. Mice with point mutations in Fgfr2's binding site for the docking protein Frs2α (Fgfr2(LR/LR)), however, have normal kidneys; the roles of the Fgfr2/Frs2α signaling axis in MM development and regulating the ureteric bud induction site are incompletely understood. Here, we generated mice with both Fgfr1 deleted in the MM and Fgfr2(LR/LR) point mutations (Fgfr1(Mes-/-)Fgfrf2(LR/LR)). Unlike mice lacking both Fgfr1 and Fgfr2 in the MM, these mice had no obvious MM defects but had cranially displaced or duplex ureteric buds, probably as a result of decreased Bmp4 expression. Fgfr1(Mes-/-)Fgfr2(LR/LR) mice also had subsequent defects in ureteric morphogenesis, including dilated, hyperproliferative tips and decreased branching. Ultimately, they developed progressive renal cystic dysplasia associated with abnormally oriented cell division. Furthermore, mutants had increased and ectopic expression of Ret and its downstream targets in ureteric trunks, and exhibited upregulation of Ret/Etv4/5 signaling effectors, including Met, Myb, Cxcr4, and Crlf1. These defects were associated with reduced expression of Bmp4 in mesenchymal cells near mutant ureteric bud tips. Taken together, these results demonstrate that Fgfr2/Frs2α signaling in the MM promotes Bmp4 expression, which represses Ret levels and signaling in the ureteric bud to ensure normal ureteric morphogenesis.
Collapse
Affiliation(s)
- Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15201, USA
| | | | | | | | | | | |
Collapse
|
11
|
Murawski IJ, Watt CL, Gupta IR. Vesico-ureteric reflux: using mouse models to understand a common congenital urinary tract defect. Pediatr Nephrol 2011; 26:1513-22. [PMID: 21424527 DOI: 10.1007/s00467-011-1821-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/22/2010] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
Vesico-ureteric reflux (VUR) is a common congenital urinary tract defect in which urine flows retrogradely from the bladder to the kidneys because of an abnormally formed uretero-vesical junction. It is associated with recurrent urinary tract infections, renal hypo/dysplasia, reflux nephropathy, hypertension, and end-stage renal disease. In humans, VUR is genetically and phenotypically heterogeneous, encompassing diverse renal and urinary tract phenotypes. To understand the significance of these phenotypes, we and others have used the mouse as a model organism and this has led to the identification of new candidate genes. Through careful phenotypic analysis of these models, a new understanding of the genetics and biology of VUR is now underway.
Collapse
Affiliation(s)
- Inga J Murawski
- Department of Human Genetics, Montreal Children's Hospital, McGill University, 2300 Tupper Street, Montreal, QC, H3Z 2Z3, Canada
| | | | | |
Collapse
|
12
|
Bell SM, Zhang L, Mendell A, Xu Y, Haitchi HM, Lessard JL, Whitsett JA. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev Biol 2011; 358:79-90. [PMID: 21803035 DOI: 10.1016/j.ydbio.2011.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The Shh(GfpCre) transgene was used to delete the Klf5(floxed) alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra was unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute of Cincinnati Children's Hospital Medical Center, Division of Neonatology-Perinatal-Pulmonary Biology, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M. Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2. PLoS One 2011; 6:e21529. [PMID: 21731775 PMCID: PMC3123351 DOI: 10.1371/journal.pone.0021529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/31/2011] [Indexed: 12/19/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice. Pax2+/−;Emx2+/− mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of Pax2+/−;Emx2+/− embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings may help understand VUR and CAKUT in humans.
Collapse
Affiliation(s)
- Sami K. Boualia
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Yaned Gaitan
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Inga Murawski
- Department of Pediatrics and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Robert Nadon
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Indra R. Gupta
- Department of Pediatrics and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Kiefer SM, Robbins L, Stumpff KM, Lin C, Ma L, Rauchman M. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development. Development 2010; 137:3099-106. [PMID: 20702564 DOI: 10.1242/dev.037812] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the beta-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering beta-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized beta-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.
Collapse
Affiliation(s)
- Susan M Kiefer
- John Cochran Veterans Affairs Medical Center, St Louis, MO 63106, USA
| | | | | | | | | | | |
Collapse
|
16
|
Miranda ERD, De Marco L, Soares MMS. Splicing variants impact in thyroid normal physiology and pathological conditions. ACTA ACUST UNITED AC 2010; 53:709-15. [PMID: 19893912 DOI: 10.1590/s0004-27302009000600003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/20/2009] [Indexed: 11/22/2022]
Abstract
RNA splicing is an essential, precisely regulated process that occurs after gene transcription and before mRNA translation, in which introns may be removed and exons, retained. Variability in splicing patterns is a major source of protein diversity from the genome and function to generate a tremendously diverse proteome from a relatively small number of genes. Changes in splice site choice can determine different effects on the encoded protein. Small changes in peptide sequence can alter ligand binding, enzymatic activity, allosteric regulation, or protein localization. Errors in splicing regulation have been implicated in a number of different disease states. This study reviewed the mechanisms of splicing and their repercussion in endocrinology, emphasizing its importance in some thyroid physiological and pathological conditions.
Collapse
|
17
|
Sims-Lucas S, Young RJ, Martinez G, Taylor D, Grimmond SM, Teasdale R, Little MH, Bertram JF, Caruana G. Redirection of renal mesenchyme to stromal and chondrocytic fates in the presence of TGF-β2. Differentiation 2010; 79:272-84. [DOI: 10.1016/j.diff.2010.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 01/14/2010] [Accepted: 01/31/2010] [Indexed: 02/04/2023]
|
18
|
Saifudeen Z, Dipp S, Stefkova J, Yao X, Lookabaugh S, El-Dahr SS. p53 regulates metanephric development. J Am Soc Nephrol 2009; 20:2328-37. [PMID: 19729440 DOI: 10.1681/asn.2008121224] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
p53 is best known as a tumor suppressor that regulates cell-cycle, differentiation, and apoptosis pathways, but its potential role in embryonic development and organogenesis remains controversial. Here, p53(-/-) embryos bred on C57Bl6 background exhibited a spectrum of congenital abnormalities of the kidney and urinary tract, including ureteric bud (UB) ectopia, double ureters/collecting systems, delayed primary branching of the UB, and hypoplastic metanephroi. We observed ectopic UB outgrowth from the Wolffian duct (WD) in one third of p53(-/-) embryos. The prevalence of duplex was higher in embryos than in neonates, and ex vivo organ culture suggested that ectopic ureters can regress over time, leaving behind a dysplastic pole ("segmental dysgenesis"). Transgenic expression of dominant negative p53 or conditional inactivation of p53 in the UB but not in the metanephric mesenchyme lineage recapitulated the duplex phenotype. Mechanistically, p53 inactivation in the WD associated with enhanced sensitivity to glial cell line-derived neurotrophic factor (GDNF)-induced ectopic budding and potentiated phosphatidylinositol-3 kinase activation by GDNF in UB cells. Unlike several other models of UB ectopia, hypersensitivity of p53(-/-) WD to GDNF is not accompanied by reduced Sprouty-1 or anterior expansion of the GDNF domain. In summary, our data lend support for a restrictive role for p53 activity in UB outgrowth from the WD.
Collapse
Affiliation(s)
- Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, and the Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet 2008; 4:e1000316. [PMID: 19112489 PMCID: PMC2597718 DOI: 10.1371/journal.pgen.1000316] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 11/21/2008] [Indexed: 12/16/2022] Open
Abstract
Metanephric kidney induction critically depends on mesenchymal–epithelial interactions in the caudal region of the nephric (or Wolffian) duct. Central to this process, GDNF secreted from the metanephric mesenchyme induces ureter budding by activating the Ret receptor expressed in the nephric duct epithelium. A failure to regulate this pathway is believed to be responsible for a large proportion of the developmental anomalies affecting the urogenital system. Here, we show that the nephric duct-specific inactivation of the transcription factor gene Gata3 leads to massive ectopic ureter budding. This results in a spectrum of urogenital malformations including kidney adysplasia, duplex systems, and hydroureter, as well as vas deferens hyperplasia and uterine agenesis. The variability of developmental defects is reminiscent of the congenital anomalies of the kidney and urinary tract (CAKUT) observed in human. We show that Gata3 inactivation causes premature nephric duct cell differentiation and loss of Ret receptor gene expression. These changes ultimately affect nephric duct epithelium homeostasis, leading to ectopic budding of interspersed cells still expressing the Ret receptor. Importantly, the formation of these ectopic buds requires both GDNF/Ret and Fgf signaling activities. We further identify Gata3 as a central mediator of β-catenin function in the nephric duct and demonstrate that the β-catenin/Gata3 pathway prevents premature cell differentiation independently of its role in regulating Ret expression. Together, these results establish a genetic cascade in which Gata3 acts downstream of β-catenin, but upstream of Ret, to prevent ectopic ureter budding and premature cell differentiation in the nephric duct. In humans, kidney development originates during embryonic development by the sprouting of an epithelial bud—called the ureteric bud—from a simple epithelial structure—the nephric duct. The ureteric bud quickly grows and branches in a treelike fashion to form the kidney collecting duct system, while the emerging ureteric tips induce nephron differentiation. One of the most important steps during kidney development is the positioning of a single ureteric bud along the nephric duct, since mutations of genes implicated in this process lead to severe urogenital malformations. In this study, we identified the Gata3 protein as a crucial regulator of ureteric bud positioning by using genetically modified mice. Deleting the Gata3 gene in the mouse resulted in the development of multiple kidneys emerging at improper positions. We show that this defect was caused by a hypersensitivity of nephric duct cells in their response to local growth signals. Interestingly, this phenomenon was partly triggered by premature differentiation of a subset of nephric duct cells. Furthermore, we report a genetic pathway in which Wnt/β-catenin signaling activates the Gata3 gene, which in turn positively regulates the Ret gene. In summary, we introduce a mouse model system that can be used to study human birth defects affecting the urogenital system.
Collapse
Affiliation(s)
- David Grote
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Sami Kamel Boualia
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Abdallah Souabni
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Calli Merkel
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States in America
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States in America
| | - Xuan Chi
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States in America
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States in America
| | - Thomas Carroll
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States in America
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States in America
| | - Maxime Bouchard
- Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
20
|
Kondo S, Oakes MG, Sorenson CM. Rescue of renal hypoplasia and cystic dysplasia in Bcl-2 -/- mice expressing Bcl-2 in ureteric bud derived epithelia. Dev Dyn 2008; 237:2450-9. [PMID: 18729219 PMCID: PMC2909767 DOI: 10.1002/dvdy.21678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bcl-2 is the founding member of a family of proteins that influence apoptosis. Loss of bcl-2 results in renal hypoplasia/cystic dysplasia at birth. Here, we examined whether re-expression of bcl-2 throughout the ureteric bud and its derived epithelia would restore a normal renal phenotype in bcl-2 -/- mice. Re-expression of bcl-2 in the ureteric bud/collecting duct of bcl-2 -/- mice increased nephron numbers, diminished glomerular hypertrophy, and increased nephrogenic zone size. Unlike bcl-2 -/- mice which have gross renal cyst formation, few renal cysts were present in mice re-expressing bcl-2. We have previously shown increased apoptosis and proliferation, as well as aberrant protein tyrosine phosphatase 1B expression, accompanied cystic changes in bcl-2 -/- mice. These changes were not observed when bcl-2 was re-expressed in the ureteric bud/collecting duct system. Thus, expression of bcl-2 in the ureteric bud/collecting duct resulted in increased nephron numbers partially rescuing renal hypoplasia/cystic dysplasia in bcl-2 -/- mice.
Collapse
Affiliation(s)
| | - Mason G Oakes
- Dept of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Christine M Sorenson
- Dept of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
21
|
Gene discovery and vesicoureteric reflux. Pediatr Nephrol 2008; 23:1021-7. [PMID: 18253765 DOI: 10.1007/s00467-007-0704-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Vesicoureteric reflux (VUR) is a congenital urinary tract defect caused by abnormal insertion of the ureter within the bladder wall. This leads to a defective ureterovesical junction in which urine flows retrogradely from the bladder to the kidneys. Although VUR is associated with recurrent urinary tract infections, renal malformations, hypertension, and reflux nephropathy, its relationship to each of these clinical entities is poorly understood. Mutations in genes expressed by the developing kidney and urinary tract can cause VUR in mice, and some of these same genes have been identified in humans with VUR. By discovering the genes that are associated with VUR, new hypotheses will be generated such that, eventually, the relationship between VUR and its complications will be understood.
Collapse
|
22
|
Murawski IJ, Myburgh DB, Favor J, Gupta IR. Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/- mouse. Am J Physiol Renal Physiol 2007; 293:F1736-45. [PMID: 17881463 DOI: 10.1152/ajprenal.00221.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vesico-ureteric reflux (VUR) is a urinary tract abnormality that affects roughly one-third of patients with renal-coloboma syndrome, an autosomal dominant condition caused by a mutation in PAX2. Here, we report that a mouse model with an identical mutation, the Pax2 1Neu+/- mouse, has a 30% incidence of VUR. In VUR, urine flows retrogradely from the bladder to the ureter and is associated with urinary tract infections, hypertension, and renal failure. The propensity to reflux in the Pax2 1Neu+/- mouse is correlated with a shortened intravesical ureter that has lost its oblique angle of entry into the bladder wall compared with wild-type mice. Normally, the kidney and urinary tract develop from the ureteric bud, which grows from a predetermined position on the mesonephric duct. In Pax2 1Neu+/- mice, this position is shifted caudally while surrounding metanephric mesenchyme markers remain unaffected. Mutant offspring from crosses between Pax2 1Neu+/- and Hoxb7/GFP+/- mice have delayed union of the ureter with the bladder and delayed separation of the ureter from the mesonephric duct. These events are not caused by a change in apoptosis within the developing urinary tract. Our results provide the first evidence that VUR may arise from a delay in urinary tract maturation and an explanation for the clinical observation that VUR resolves over time in some affected children.
Collapse
Affiliation(s)
- Inga J Murawski
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
23
|
Tufro A, Teichman J, Banu N, Villegas G. Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways. Biochem Biophys Res Commun 2007; 358:410-6. [PMID: 17490619 DOI: 10.1016/j.bbrc.2007.04.146] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 11/25/2022]
Abstract
Vascular endothelial growth factor (VEGF-A) plays multiple roles in kidney development: stimulates cell proliferation, survival, tubulogenesis, and branching morphogenesis. However, the mechanism that mediates VEGF-A induced ureteric bud branching is unclear. Glial-derived neurotrophic factor (GDNF) signaling through tyrosine kinase c-RET is the major regulator of ureteric bud branching. Here we examined whether VEGF-A regulates RET signaling. We determined that ureteric bud-derived cells express the main VEGF-A signaling receptor, VEGFR2 and RET, by RT-PCR, immunoblotting, and immunocytochemistry. We show that the VEGF-A isoform VEGF(165) induces RET-tyr(1062) phosphorylation in addition to VEGFR2 autophosphorylation, that VEGF(165) and GDNF have additive effects on RET-tyr(1062) phosphorylation, and that VEGFR2 and RET co-immunoprecipitate. Functionally, VEGF(165) induces ureteric bud cell proliferation and branching morphogenesis. Similarly, in embryonic kidney explants VEGF(165) induces RET-tyr(1062) phosphorylation and upregulates GDNF. These findings provide evidence for a novel cooperative interaction between VEGFR2 and RET that mediates VEGF-A functions in ureteric bud cells.
Collapse
Affiliation(s)
- Alda Tufro
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
24
|
Narlis M, Grote D, Gaitan Y, Boualia SK, Bouchard M. Pax2andPax8Regulate Branching Morphogenesis and Nephron Differentiation in the Developing Kidney. J Am Soc Nephrol 2007; 18:1121-9. [PMID: 17314325 DOI: 10.1681/asn.2006070739] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pax genes are important regulators of kidney development. In the mouse, homozygous Pax2 inactivation results in renal agenesis, a phenotype that has largely precluded the analysis of Pax gene function during metanephric kidney development. To address this later function, kidney development was analyzed in embryos that were compound heterozygous for Pax2 and for Pax8, a closely related member of the Pax gene family. Both genes are coexpressed in differentiating nephrons and collecting ducts. At the morphological level, Pax2(+/-)Pax8(+/-) metanephric kidneys are severely hypodysplastic and characterized by a reduction in ureter tips and nephron number in comparison with wild-type or Pax2(+/-) kidneys. In developing nephrons, the molecular analysis of Pax2(+/-)Pax8(+/-) kidneys reveals a strong reduction in the expression levels of Lim1, a key regulator of nephron differentiation, accompanied by an increase in apoptosis. At a more mature stage, the reduction of Pax2/8 gene dosage severely affects distal tubule formation, revealing a role for Pax genes in the differentiation of specific nephron segments. At the ureter tips, the expression of Wnt11, a target of glial cell-derived neurotrophic factor-Ret signaling, is significantly reduced, whereas the expression levels of Ret and GDNF remain normal. Together, these results demonstrate a crucial role for Pax2 and Pax8 in nephron differentiation and branching morphogenesis of the metanephros.
Collapse
Affiliation(s)
- Melina Narlis
- McGill Cancer Centre and Biochemistry Department, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
25
|
Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 2006; 299:466-77. [PMID: 17022962 DOI: 10.1016/j.ydbio.2006.08.051] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/23/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
Branching of ureteric bud-derived epithelial tubes is a key morphogenetic process that shapes development of the kidney. Glial cell line-derived neurotrophic factor (GDNF) initiates ureteric bud formation and promotes subsequent branching morphogenesis. Exactly how GDNF coordinates branching morphogenesis is unclear. Here we show that the absence of the receptor tyrosine kinase antagonist Sprouty1 (Spry1) results in irregular branching morphogenesis characterized by both increased number and size of ureteric bud tips. Deletion of Spry1 specifically in the epithelium is associated with increased epithelial Wnt11 expression as well as increased mesenchymal Gdnf expression. We propose that Spry1 regulates a Gdnf/Ret/Wnt11-positive feedback loop that coordinates mesenchymal-epithelial dialogue during branching morphogenesis. Genetic experiments indicate that the positive (GDNF) and inhibitory (Sprouty1) signals have to be finely balanced throughout renal development to prevent hypoplasia or cystic hyperplasia. Epithelial cysts develop in Spry1-deficient kidneys that share several molecular characteristics with those observed in human disease, suggesting that Spry1 null mice may be useful animal models for cystic hyperplasia.
Collapse
Affiliation(s)
- M Albert Basson
- Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The ureteric bud (UB) is an outgrowth of the Wolffian duct, which undergoes a complex process of growth, branching, and remodeling, to eventually give rise to the entire urinary collecting system during kidney development. Understanding the mechanisms that control this process is a fascinating problem in basic developmental biology, and also has considerable medical significance. Over the past decade, there has been significant progress in our understanding of renal branching morphogenesis and its regulation, and this review focuses on several areas in which there have been recent advances. The first section deals with the normal process of UB branching morphogenesis, and methods that have been developed to better observe and describe it. The next section discusses a number of experimental methodologies, both established and novel, that make kidney development in the mouse a powerful and attractive experimental system. The third section discusses some of the cellular processes that are likely to underlie UB branching morphogenesis, as well as recent data on cell lineages within the growing UB. The fourth section summarizes our understanding of the roles of two groups of growth factors that appear to be particularly important for the regulation of UB outgrowth and branching: GDNF and FGFs, which stimulate this process via tyrosine kinase receptors, and members of the TGFbeta family, including BMP4 and Activin A, which generally inhibit UB formation and branching.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168th St. New York, NY 10032, USA.
| |
Collapse
|
27
|
Abstract
The high-mobility group AT-hook 2 (HMGA2) protein is a member of the high-mobility group family of the DNA-binding architectural factors and participates in the conformational regulation of active chromatin on its specific downstream target genes. HMGA2 is expressed in the undifferentiated mesenchyme and is undetectable in their differentiated counterparts, suggesting its functional importance in mesenchymal cellular proliferation and differentiation. Interestingly, it is a frequent target of chromosomal translocations in several types of human benign differentiated mesenchymal tumors, including lipomas, fibroadenomas of the breast, salivary gland adenomas, and endometrial polyps. The translocations lead to a variety of HMGA2 transcripts, which range from wild-type, truncated, and fusion mRNA species. However, it is not clear whether alteration of the HMGA2 transcript is required for its tumorigenic potential. To determine whether misexpression of HMGA2 in differentiated mesenchymal cells is sufficient to cause tumorigenesis, we produced transgenic mice that misexpressed full-length or truncated human HMGA2 transcript under the control of the differentiated mesenchymal cell (adipocyte)-specific promoter of the adipocyte P2 (Fabp4) gene. Expression of the full-length HMGA2 transgene was observed in a number of tissues, which produced neoplastic phenotype, including fibroadenomas of the breast and salivary gland adenomas. Furthermore, transgenic misexpression of the truncated version of HMGA2, containing only the three DNA-binding domains, produced similar phenotypes. These results show that misexpression of HMGA2 in a differentiated mesenchymal cell is sufficient to cause mesenchymal tumorigenesis and is independent of the nature of the HMGA2 transcript that results from chromosomal translocations observed in humans.
Collapse
Affiliation(s)
- M Raza Zaidi
- Graduate School of Biomedical Sciences and Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
28
|
Hasegawa SL, Moriguchi T, Rao A, Kuroha T, Engel JD, Lim KC. Dosage-dependent rescue of definitive nephrogenesis by a distant Gata3 enhancer. Dev Biol 2006; 301:568-77. [PMID: 17046739 PMCID: PMC1858647 DOI: 10.1016/j.ydbio.2006.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/26/2006] [Accepted: 09/16/2006] [Indexed: 01/19/2023]
Abstract
Human GATA3 haploinsufficiency leads to HDR (hypoparathyroidism, deafness and renal dysplasia) syndrome, demonstrating that the development of a specific subset of organs in which this transcription factor is expressed is exquisitely sensitive to gene dosage. We previously showed that murine GATA-3 is essential for definitive kidney development, and that a large YAC transgene faithfully recapitulated GATA-3 expression in the urogenital system. Here we describe the localization and activity of a kidney enhancer (KE) located 113 kbp 5' to the Gata3 structural gene. When the KE was employed to direct renal system-specific GATA-3 transcription, the extent of cell autonomous kidney rescue in Gata3-deficient mice correlated with graded allelic expression of transgenic GATA-3. These data demonstrate that a single distant, tissue-specific enhancer can direct GATA-3 gene expression to confer all embryonic patterning information that is required for successful execution of metanephrogenesis, and that the dosage of GATA-3 required has a threshold between 50% and 70% of diploid activity.
Collapse
Affiliation(s)
- Susan L. Hasegawa
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA
- Department of Pathology and Laboratory Medicine, Children’s Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614, USA
| | - Takashi Moriguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA
| | - Arvind Rao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA
| | - Takashi Kuroha
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA
- *To whom correspondence should be addressed: J. D. Engel, Department of Cell and Developmental Biology, University of Michigan Medical School, 3078 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, Telephone: (734) 615-7248, FAX: (734) 763-1166,
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USA
| |
Collapse
|
29
|
Abstract
Vesicoureteric reflux (VUR) is a congenital urinary tract defect caused by the failure of the ureter to insert correctly into the bladder. It occurs in up to 1% of the general population and is associated with recurrent urinary tract infections and renal failure. Despite treatment of affected children for the past 40 years, the incidence of end-stage renal disease secondary to VUR has not decreased. Twin and family studies reveal that VUR has a genetic basis. Some of the gene candidates that have been identified regulate the position of ureteric budding, a critical step in both kidney and urinary tract development. Analysis of data from humans and mice suggests that some of the renal damage associated with VUR is congenital and is due to a kidney malformation. Therefore, in these cases, the association of VUR and renal failure may be caused by a genetic defect affecting the formation of the kidney and the urinary tract.
Collapse
Affiliation(s)
- I J Murawski
- Department of Pediatrics and Human Genetics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
30
|
Jain S, Encinas M, Johnson EM, Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 2006; 20:321-33. [PMID: 16452504 PMCID: PMC1361703 DOI: 10.1101/gad.1387206] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 12/14/2005] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms that lead to congenital anomalies of kidneys and the lower urinary tract (CAKUT) are poorly understood. To elucidate the molecular basis for signaling specificity of GDNF-mediated RET signaling in kidney development, we characterized mice that exclusively express either the human RET9 or RET51 isoform, or express these isoforms with individual mutations in docking tyrosines for PTB and SH2-domain-containing adaptors Src (Y981), PLCgamma (Y1015), and Shc (Y1062). Our results provide evidence for differential and isoform-specific roles of these docking sites in murine kidney development. Homozygous Ret(RET9) and Ret(RET51) mice were viable and show normally developed kidneys, indicating redundant roles of human RET isoforms in murine kidney development. In the context of the RET51 isoform, only mutation of the docking Tyr 1015 (Y1015F) resulted in severe renal anomalies. These included bilateral megaureters and multicystic kidneys that were caused by supernumerary ureteric buds that fail to separate from the wolffian duct as well as decreased branching morphogenesis. Similar kidney and ureter defects were observed in RET9(Y1015F) mice that contain the Y1015F mutation in the RET9 isoform. Interestingly, loss of RET9(Y1062)-mediated AKT/MAPK activation resulted in renal agenesis or kidney rudiments, whereas mutation of this residue in RET51 had no obvious effect on AKT/MAPK activity and renal development. These results reveal novel roles of key RET-dependent signaling pathways in embryonic kidney development and provide murine models and new insights into the molecular basis for CAKUT.
Collapse
Affiliation(s)
- Sanjay Jain
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
31
|
Yamamoto M, Cui L, Johkura K, Asanuma K, Okouchi Y, Ogiwara N, Sasaki K. Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells. Am J Physiol Renal Physiol 2006; 290:F52-60. [PMID: 16106040 DOI: 10.1152/ajprenal.00001.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ureteric bud epithelial cells and metanephric mesenchymal cells that comprise the metanephric kidney primordium are capable of producing nephrons and collecting ducts through reciprocal inductive interaction. Once these cells are induced from pluripotent embryonic stem (ES) cells, they have the potential to become powerful tools in the regeneration of kidney tissues. In this study, we investigated these renal primordial cells and structures in mouse ES cell outgrowths and their transplants. Gene expression essential for early kidney development was examined by RT-PCR in embryoid body (EB) outgrowths and their transplants in adult mice. Histochemical detection of kidney primordial structures and gene expression analysis coupled with laser microdissection were performed in transplant tissues. RT-PCR analysis detected gene expression of Pax-2, Lim-1, c-Ret, Emx2, Sall1, WT-1, Eya-1, GDNF, and Wnt-4 in the EB outgrowths from days 6–9 of expansion onward, and also in the teratoma tissues 14 and 28 days after transplantation. Histochemical analysis 14 days after transplantation showed that some ducts were positive for Pax-2, endo A cytokeratin, kidney-specific cadherin, and Dolichos biflorus agglutinin and that dichotomous branching of these ducts had occurred. These staining patterns and morphological features are intrinsic for mesonephric ducts and ureteric buds. In long-term survival of 28 days, Pax-2-immunoreactivity disappeared in some renal primordia-like structures, indicating their differentiation. Some ducts were accompanied by mesonephric nephron-like convoluted tubules. RT-PCR analysis of those structures collected by microdissection confirmed that they expressed kidney development-related genes. In conclusion, these data suggest the potential of ES cells to produce renal primordial duct structures and provides an insight into the regeneration of kidney tissues.
Collapse
Affiliation(s)
- Makoto Yamamoto
- Dept. of Anatomy and Organ Technology, Shinshu Univ. School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Loikkanen I, Lin Y, Railo A, Pajunen A, Vainio S. Polyamines are involved in murine kidney development controlling expression of c-ret, E-cadherin, and Pax2/8 genes. Differentiation 2005; 73:303-12. [PMID: 16138831 DOI: 10.1111/j.1432-0436.2005.00036.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Polyamines play an important role in cell growth and differentiation. We studied changes in morphogenesis and the expression of the developmental control genes in the embryonic mouse kidney in response to polyamine depletion, using a kidney organ culture approach and reducing the polyamine pools with alpha-difluoromethylornithine (DFMO), an irreversible suicide inhibitor of ornithine decarboxylase (ODC). We found that inhibition of ODC results in a systematic kidney organogenesis phenotype, in that the DFMO-treated kidney specimens were of smaller size, had less epithelial ureteric bud branches, and their mesenchymal-derived tubule formation was retarded. These dysmorphologies were shown to be associated with changes in cell proliferation. Whole-mount in situ experiments revealed that inhibition of ODC causes increases in epithelial c-ret and E-cadherin and a decrease in mesenchymal Pax-8 expression, whereas levels of epithelial Wnt-11, mesenchymal GDNF, FoxD1, and Pax-2 transcripts remain unchanged. We studied regulation of the Pax-2 gene by analyzing a mouse line in which lacZ was driven by an 8.5 kb Pax-2 enhancer in the epithelial ureteric bud, and found that Pax-2 expression, as indicated by lacZ expression, increased after DFMO treatment. Transient transfection experiments in HEK 293 cells with the minimal Pax-2 promoter showed enhanced transcription upon reduction of the polyamine pools. We propose that ODC and polyamines have an important role in kidney organogenesis, being involved in the regulation of the expression of genes implicated in epithelial-mesenchymal tissue interactions.
Collapse
Affiliation(s)
- Ildikó Loikkanen
- Department of Biochemistry, University of Oulu, PO Box 3000, FIN-90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
33
|
Kuure S, Sainio K, Vuolteenaho R, Ilves M, Wartiovaara K, Immonen T, Kvist J, Vainio S, Sariola H. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech Dev 2005; 122:765-80. [PMID: 15905075 DOI: 10.1016/j.mod.2005.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/23/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Glial-Cell-Line-Derived Neurotrophic Factor (GDNF) is the major mesenchyme-derived regulator of ureteric budding and branching during nephrogenesis. The ligand activates on the ureteric bud epithelium a receptor complex composed of Ret and GFRalpha1. The upstream regulators of the GDNF receptors are poorly known. A Notch ligand, Jagged1 (Jag1), co-localises with GDNF and its receptors during early kidney morphogenesis. In this study we utilized both in vitro and in vivo models to study the possible regulatory relationship of Ret and Notch pathways. Urogenital blocks were exposed to exogenous GDNF, which promotes supernumerary ureteric budding from the Wolffian duct. GDNF-induced ectopic buds expressed Jag1, which suggests that GDNF can, directly or indirectly, up-regulate Jag1 through Ret/GFRalpha1 signalling. We then studied the role of Jag1 in nephrogenesis by transgenic mice constitutively expressing human Jag1 in Wolffian duct and its derivatives under HoxB7 promoter. Jag1 transgenic mice showed a spectrum of renal defects ranging from aplasia to hypoplasia. Ret and GFRalpha1 are normally downregulated in the Wolffian duct, but they were persistently expressed in the entire transgenic duct. Simultaneously, GDNF expression remained unexpectedly low in the metanephric mesenchyme. In vitro, exogenous GDNF restored the budding and branching defects in transgenic urogenital blocks. Renal differentiation apparently failed because of perturbed stimulation of primary ureteric budding and subsequent branching. Thus, the data provide evidence for a novel crosstalk between Notch and Ret/GFRalpha1 signalling during early nephrogenesis.
Collapse
Affiliation(s)
- Satu Kuure
- Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wong A, Bogni S, Kotka P, de Graaff E, D'Agati V, Costantini F, Pachnis V. Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol Cell Biol 2005; 25:9661-73. [PMID: 16227613 PMCID: PMC1265823 DOI: 10.1128/mcb.25.21.9661-9673.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 06/18/2005] [Accepted: 07/02/2005] [Indexed: 11/20/2022] Open
Abstract
The receptor tyrosine kinase Ret plays a critical role in the development of the mammalian excretory and enteric nervous systems. Differential splicing of the primary Ret transcript results in the generation of two main isoforms, Ret9 and Ret51, whose C-terminal amino acid tails diverge after tyrosine (Y) 1062. Monoisoformic mice expressing only Ret9 develop normally and are healthy and fertile. In contrast, animals expressing only Ret51 have aganglionosis of the distal gut and hypoplastic kidneys. By generating monoisoformic mice in which Y1062 of Ret9 has been mutated to phenylalanine, we demonstrate that this amino acid has a critical role in Ret9 signaling that is necessary for the development of the kidneys and the enteric nervous system. These findings argue that the distinct activities of Ret9 and Ret51 result from the differential regulation of Y1062 by C-terminal flanking sequences. However, a mutation which places Y1062 of Ret51 in a Ret9 context improves only marginally the ability of Ret51 to support renal and enteric nervous system development. Finally, monoisoformic mice expressing a variant of Ret9 in which a C-terminal PDZ-binding motif was mutated develop normally and are healthy. Our studies identify Y1062 as a critical regulator of Ret9 signaling and suggest that Ret51-specific motifs are likely to inhibit the activity of this isoform.
Collapse
Affiliation(s)
- Adrianne Wong
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16:441-67. [PMID: 15982921 DOI: 10.1016/j.cytogfr.2005.05.010] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.
Collapse
Affiliation(s)
- Elena Arighi
- Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
36
|
Pispa J, Mustonen T, Mikkola ML, Kangas AT, Koppinen P, Lukinmaa PL, Jernvall J, Thesleff I. Tooth patterning and enamel formation can be manipulated by misexpression of TNF receptor Edar. Dev Dyn 2005; 231:432-40. [PMID: 15366021 DOI: 10.1002/dvdy.20138] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Signaling by Edar, a tumor necrosis factor receptor, is required for the development of ectodermal organs. Mutations in Edar or other molecules of the same signaling pathway cause ectodermal dysplasias in humans and mice. In these diseases, teeth are missing or malformed, and the development of hairs and several glands is hypoplastic. During tooth and hair development, Edar expression becomes patterned to ectodermal placodes and signaling centers. This localization has been suggested to be required for organogenesis. We have expressed Edar throughout the ectoderm using the keratin 14 promoter and show that this misexpression disrupts tooth patterning and differentiation. Tooth shape and cusp number are differentially affected, depending on the amount of transgene expression. In addition, tooth enamel formation is defective in a dose-dependent manner. We speculate that the tooth patterning defects are caused by ectopic Edar activity outside the signaling centers.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, D'Agati V, Costantini F. The role of GDNF in patterning the excretory system. Dev Biol 2005; 283:70-84. [PMID: 15890330 DOI: 10.1016/j.ydbio.2005.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/28/2005] [Accepted: 04/06/2005] [Indexed: 11/19/2022]
Abstract
Mesenchymal-epithelial interactions are an important source of information for pattern formation during organogenesis. In the developing excretory system, one of the secreted mesenchymal factors thought to play a critical role in patterning the growth and branching of the epithelial ureteric bud is GDNF. We have tested the requirement for GDNF as a paracrine chemoattractive factor by altering its site of expression during excretory system development. Normally, GDNF is secreted by the metanephric mesenchyme and acts via receptors on the Wolffian duct and ureteric bud epithelium. Misexpression of GDNF in the Wolffian duct and ureteric buds resulted in formation of multiple, ectopic buds, which branched independently of the metanephric mesenchyme. This confirmed the ability of GDNF to induce ureter outgrowth and epithelial branching in vivo. However, in mutant mice lacking endogenous GDNF, kidney development was rescued to a substantial degree by GDNF supplied only by the Wolffian duct and ureteric bud. These results indicate that mesenchymal GDNF is not required as a chemoattractive factor to pattern the growth of the ureteric bud within the developing kidney, and that any positional information provided by the mesenchymal expression of GDNF may provide for renal branching morphogenesis is redundant with other signals.
Collapse
Affiliation(s)
- Reena Shakya
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tse HKW, Leung MBW, Woolf AS, Menke AL, Hastie ND, Gosling JA, Pang CP, Shum ASW. Implication of Wt1 in the pathogenesis of nephrogenic failure in a mouse model of retinoic acid-induced caudal regression syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1295-307. [PMID: 15855632 PMCID: PMC1606386 DOI: 10.1016/s0002-9440(10)62349-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2005] [Indexed: 11/18/2022]
Abstract
Renal malformations are common human birth defects that sometimes occur in the context of the caudal regression syndrome. Here, we found that exposure of pregnant mice to all-trans retinoic acid, at a time when the metanephros has yet to form, causes a failure of kidney development along with caudal regression. Maternal treatment with Am580 (retinoic acid receptor alpha agonist) also induced similar patterns of kidney maldevelopment in the fetus. In metanephroi from retinoic acid-treated pregnancies, renal mesenchyme condensed around the ureteric bud but then failed to differentiate into nephrons, instead undergoing involution by fulminant apoptosis to produce a renal agenesis phenotype. Results of whole organ cultures in serum-free medium, and also tissue recombination experiments, showed that the nephrogenic defect was intrinsic to the kidney and that it resided in the metanephric mesenchyme and not the ureteric bud. Renal mesenchyme from control embryos expressed Wilms' tumor 1 (Wt1), but this transcription factor, which is indispensable for kidney development, failed to express in metanephroi of retinoic acid-exposed embryos. Wt1 expression and organogenesis were both restored, however, when metanephroi from retinoic acid-treated pregnancies were grown in serum-containing media. Our data illuminate the pathobiology of a severe, teratogen-induced kidney malformation.
Collapse
Affiliation(s)
- Herman K W Tse
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM. Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 2005; 276:403-15. [PMID: 15581874 PMCID: PMC4131686 DOI: 10.1016/j.ydbio.2004.09.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 08/20/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Fibroblast growth receptors (FGFRs) consist of four signaling family members. Mice with deletions of fgfr1 or fgfr2 are embryonic lethal prior to the onset of kidney development. To determine roles of FGFR1 and FGFR2 in the ureteric bud, we used a conditional targeting approach. First, we generated transgenic mice using the Hoxb7 promoter to drive cre recombinase and green fluorescent protein expression throughout ureteric bud tissue. We crossed Hoxb7creEGFP mice with mice carrying lox-p sites flanking critical regions of fgfr1 and/or fgfr2. Absence of fgfr1 from the ureteric bud (fgfr1(UB-/-)) results in no apparent renal abnormalities. In contrast, fgfr2(UB-/-) mice have very aberrant ureteric bud branching, thin ureteric bud stalks, and fewer ureteric bud tips. Fgfr2(UB-/-) ureteric bud tips also demonstrate inappropriate regions of apoptosis and reduced proliferation. The nephrogenic mesenchymal lineage in fgfr2(UB-/-) mice develops normal-appearing glomeruli and tubules, and only slightly fewer nephrons than controls. In contrast, fgfr2(UB-/-) kidneys have abnormally thickened subcapsular cortical stromal mesenchyme. Ultimately, fgfr2(UB-/-) adult kidneys are small and abnormally shaped or are hydronephrotic. Finally, there are no additional abnormalities in the fgfr1/2(UB-/-) kidneys versus the fgfr2(UB-/-) kidneys. In conclusion, FGFR2, but not FGFR1, appears crucial for ureteric bud branching morphogenesis and stromal mesenchyme patterning.
Collapse
Affiliation(s)
- Haotian Zhao
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Heather Kegg
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Sandy Grady
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Hoang-Trang Truong
- Department of Pediatrics, Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, United States
| | - Michael L. Robinson
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
| | - Michel Baum
- Department of Pediatrics, Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, United States
| | - Carlton M. Bates
- Center for Human and Molecular Genetics, Columbus Children’s Research Institute, Columbus, OH 43205, United States
- Department of Pediatrics, Division of Nephrology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, United States
- Corresponding author. Center for Human and Molecular Genetics, Columbus Children’s Research Institute, 700 Children’s Drive Columbus, Ohio 43205. Fax: +1 614 722 2817. (C.M. Bates)
| |
Collapse
|
40
|
Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 2005; 8:229-39. [PMID: 15691764 DOI: 10.1016/j.devcel.2004.12.004] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 12/01/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
Intercellular signaling molecules and their receptors, whose expression must be tightly regulated in time and space, coordinate organogenesis. Regulators of intracellular signaling pathways provide an additional level of control. Here we report that loss of the receptor tyrosine kinase (RTK) antagonist, Sprouty1 (Spry1), causes defects in kidney development in mice. Spry1(-/-) embryos have supernumerary ureteric buds, resulting in the development of multiple ureters and multiplex kidneys. These defects are due to increased sensitivity of the Wolffian duct to GDNF/RET signaling, and reducing Gdnf gene dosage correspondingly rescues the Spry1 null phenotype. We conclude that the function of Spry1 is to modulate GDNF/RET signaling in the Wolffian duct, ensuring that kidney induction is restricted to a single site. These results demonstrate the importance of negative feedback regulation of RTK signaling during kidney induction and suggest that failures in feedback control may underlie some human congenital kidney malformations.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Plaisier E, Ribes D, Ronco P, Rossert J. Identification of two candidate collecting duct cell-specific cis-acting elements in the Hoxb-7 promoter region. ACTA ACUST UNITED AC 2005; 1727:106-15. [PMID: 15716052 DOI: 10.1016/j.bbaexp.2004.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 12/06/2004] [Accepted: 12/09/2004] [Indexed: 11/25/2022]
Abstract
HOX genes encode highly conserved transcription factors responsible for developmental patterning and postnatal tissue homeostasis. Previous studies have shown that a 1.4-kb segment of the Hoxb-7 proximal promoter drives renal expression of reporter genes specifically in the ureteric bud and collecting ducts. In this study using stably transfected renal tubule cell lines, we have identified three short cis-acting sequences within this promoter segment that cooperate to induce high-level expression specifically in collecting duct cells. In addition to an inverted CCAAT box (-71/-67) that acts as an ubiquitous enhancer and binds the transcription factor CBF/NF-Y, two different cis-acting sequences, named CDSE-1 and CDSE-2 (for Collecting Duct Specific Element 1 and 2), allow collecting duct cell-specific promoter activation. CDSE-1 (-56/-34) is composed of two E-boxes separated by a 9-bp GC-rich sequence. Only the latter sequence enhances reporter gene expression specifically in collecting duct cells. CDSE-2 (-34/-13) contains sequence bears high homology with a segment of the Pax-2 promoter. CDSE-2 also conveys cell specificity but has no enhancer activity by itself.
Collapse
|
42
|
Schuetz G, Rosário M, Grimm J, Boeckers TM, Gundelfinger ED, Birchmeier W. The neuronal scaffold protein Shank3 mediates signaling and biological function of the receptor tyrosine kinase Ret in epithelial cells. ACTA ACUST UNITED AC 2004; 167:945-52. [PMID: 15569713 PMCID: PMC2172453 DOI: 10.1083/jcb.200404108] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shank proteins, initially also described as ProSAP proteins, are scaffolding adaptors that have been previously shown to integrate neurotransmitter receptors into the cortical cytoskeleton at postsynaptic densities. We show here that Shank proteins are also crucial in receptor tyrosine kinase signaling. The PDZ domain–containing Shank3 protein was found to represent a novel interaction partner of the receptor tyrosine kinase Ret, which binds specifically to a PDZ-binding motif present in the Ret9 but not in the Ret51 isoform. Furthermore, we show that Ret9 but not Ret51 induces epithelial cells to form branched tubular structures in three-dimensional cultures in a Shank3-dependent manner. Ret9 but not Ret51 has been previously shown to be required for kidney development. Shank3 protein mediates sustained Erk–MAPK and PI3K signaling, which is crucial for tubule formation, through recruitment of the adaptor protein Grb2. These results demonstrate that the Shank3 adaptor protein can mediate cellular signaling, and provide a molecular mechanism for the biological divergence between the Ret9 and Ret51 isoform.
Collapse
Affiliation(s)
- Gunnar Schuetz
- MaxDelbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Degl'Innocenti D, Arighi E, Popsueva A, Sangregorio R, Alberti L, Rizzetti MG, Ferrario C, Sariola H, Pierotti MA, Borrello MG. Differential requirement of Tyr1062 multidocking site by RET isoforms to promote neural cell scattering and epithelial cell branching. Oncogene 2004; 23:7297-309. [PMID: 15326489 DOI: 10.1038/sj.onc.1207862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The receptor tyrosine kinase RET is alternatively spliced to yield two main isoforms, RET9 and RET51, which differ in their carboxyl terminal. Activated RET induces different biological responses such as morphological transformation, neurite outgrowth, proliferation, cell migration and branching. The two isoforms have been suggested to have separate intracellular signaling pathways and different roles in mouse development. Here we show that both isoforms are able to induce cell scattering of SK-N-MC neuroepithelioma cell line and branching tubule formation in MDCK cell line. However, the Y1062F mutation, which abrogates the transforming activity of both activated RET isoforms in NIH3T3 cells, does not abolish scattering and branching morphogenesis of RET51, whereas impairs these biological effects of RET9. The GDNF-induced biological effects of RET51 are inhibited by the simultaneous abrogation of both Tyr1062 and Tyr1096 docking sites. Thus, Tyr1096 may substitute the functions of Tyr1062. GRB2 is the only known adaptor protein binding to Tyr1096. Dominant-negative GRB2 expressed in MDCK cells together with RET9 or RET51 significantly reduces branching. Therefore, GRB2 is necessary for RET-mediated branching of MDCK cells.
Collapse
Affiliation(s)
- Debora Degl'Innocenti
- Department of Experimental Oncology, Research Unit #3, Istituto Nazionale Tumori, Via G. Venezian, 1 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meyer TN, Schwesinger C, Bush KT, Stuart RO, Rose DW, Shah MM, Vaughn DA, Steer DL, Nigam SK. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Dev Biol 2004; 275:44-67. [PMID: 15464572 DOI: 10.1016/j.ydbio.2004.07.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/10/2004] [Accepted: 07/21/2004] [Indexed: 11/17/2022]
Abstract
In search of guiding principles involved in the branching of epithelial tubes in the developing kidney, we analyzed branching of the ureteric bud (UB) in whole kidney culture as well as in isolated UB culture independent of mesenchyme but in the presence of mesenchymally derived soluble factors. Microinjection of the UB lumen (both in the isolated UB and in the whole kidney) with fluorescently labeled dextran sulfate demonstrated that branching occurred via smooth tubular epithelial outpouches with a lumen continuous with that of the original structure. Epithelial cells within these outpouches cells were wedge-shaped with actin, myosin-2 and ezrin localized to the luminal side, raising the possibility of a "purse-string" mechanism. Electron microscopy and decoration of heparan sulfates with biotinylated FGF2 revealed that the basolateral surface of the cells remained intact, without the type of cytoplasmic extensions (invadopodia) that are seen in three-dimensional MDCK, mIMCD, and UB cell culture models of branching tubulogenesis. Several growth factor receptors (i.e., FGFR1, FGFR2, c-Ret) and metalloproteases (i.e., MT1-MMP) were localized toward branching UB tips. A large survey of markers revealed the ER chaperone BiP to be highly expressed at UB tips, which, by electron microscopy, are enriched in rough endoplasmic reticulum and Golgi, supporting high activity in the synthesis of transmembrane and secretory proteins at UB tips. After early diffuse proliferation, proliferating and mitotic cells were mostly found within the branching ampullae, whereas apoptotic cells were mostly found in stalks. Gene array experiments, together with protein expression analysis by immunoblotting, revealed a differential spatiotemporal distribution of several proteins associated with epithelial maturation and polarization, including intercellular junctional proteins (e.g., ZO-1, claudin-3, E-cadherin) and the subapical cytoskeletal/microvillar protein ezrin. In addition, Ksp-cadherin was found at UB ampullary cells next to developing outpouches, suggesting a role in epithelial-mesenchymal interactions. These data from the isolated UB culture system support a model where UB branching occurs through outpouching possibly mediated by wedge-shaped cells created through an apical cytoskeletal purse-string mechanism. Additional potential mechanisms include (1) differential localization of growth factor receptors and metalloproteases at tips relative to stalks; (2) creation of a secretory epithelium, in part manifested by increased expression of the ER chaperone BiP, at tips relative to stalks; (3) after initial diffuse proliferation, coexistence of a balance of proliferation vs. apoptosis favoring tip growth with a very different balance in elongating stalks; and (4) differential maturation of the tight and adherens junctions as the structures develop. Because, without mesenchyme, both lateral and bifid branching occurs (including the ureter), the mesenchyme probably restricts lateral branching and provides guidance cues in vivo for directional branching and elongation as well as functioning to modulate tubular caliber and induce differentiation. Selective cadherin, claudin, and microvillar protein expression as the UB matures likely enables the formation of a tight, polarized differentiated epithelium. Although, in vivo, metanephric mesenchyme development occurs simultaneously with UB branching, these studies shed light on how (mesenchymally derived) soluble factors alone regulate spatial and temporal expression of morphogenetic molecules and processes (proliferation, apoptosis, etc.) postulated to be essential to the UB branching program as it forms an arborized structure with a continuous lumen.
Collapse
Affiliation(s)
- Tobias N Meyer
- Department of Medicine, School of Medicine, University of California, La Jolla, San Diego, CA 92093-0693, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
In recent years, gene inactivation in the mouse and other model systems has shed new light on the processes of inductive tissue interactions and morphogenesis. These studies have been especially fruitful for understanding the kidney, as this organ has been a classical model of organogenesis for more than 50 years and is thus well characterized in terms of morphology and inductive properties. One outcome of these molecular genetic experiments is that the coordination of kidney development appears to be in good part performed at the transcriptional level. Many of the gene mutations associated with kidney malformations and disease are indeed transcription factors regulating key tissue interaction events. This review primarily addresses the role of the most significant transcription factors in mouse nephrogenesis.
Collapse
Affiliation(s)
- Maxime Bouchard
- McGill Cancer Centre and Biochemistry Department, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
46
|
Yu OH, Murawski IJ, Myburgh DB, Gupta IR. Overexpression of RET leads to vesicoureteric reflux in mice. Am J Physiol Renal Physiol 2004; 287:F1123-30. [PMID: 15328070 DOI: 10.1152/ajprenal.00444.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RET, a tyrosine kinase receptor essential for kidney development, has recently been shown to be important for the formation of the urinary tract. When RET is overexpressed in the HoxB7/Ret transgenic mouse, kidneys are small and cystic, and in some of the mice, the ureters are grossly dilated. Here, we report that the observed ureteral dilatation is associated with the urinary tract abnormality vesicoureteric reflux (VUR), in which urine flows retrogradely from the bladder to the ureter. Reflux was determined in vitro by injecting methylene blue into the bladders of HoxB7/Ret and wild-type mice. At postnatal day 1, 30% of HoxB7/Ret mice had VUR compared with 4% of wild-type mice (P < 0.05). The length of the intravesical ureteral tunnel was shorter in HoxB7/Ret mice compared with wild-type mice, on both the right and the left sides (P < 0.05), suggesting a basis for the higher incidence of VUR in these mutants. At embryonic day 11, the ureteric bud was found to exit more caudally from the mesonephric duct in HoxB7/Ret mice, and this may predispose them to VUR (P < 0.05). Wild-type and HoxB7/Ret mice were tested for reflux at embryonic day 17, and both showed a high frequency of VUR (59 and 75%, respectively). These results suggest that VUR may occur transiently during normal urinary tract development before the ureter has completed its insertion into the bladder. In the HoxB7/Ret mouse, overexpression of RET appears to delay the maturation of the distal ureter, resulting in postnatal VUR. The HoxB7/Ret mouse is thus an important model in which to examine how vesicoureteric reflux arises during urinary tract development.
Collapse
Affiliation(s)
- O H Yu
- Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
47
|
Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC. Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 2003; 112:554-65. [PMID: 12925696 PMCID: PMC171384 DOI: 10.1172/jci16956] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aldosterone controls the final sodium reabsorption and potassium secretion in the kidney by regulating the activity of the epithelial sodium channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN). ASDN consists of the last portion of the distal convoluted tubule (late DCT), the connecting tubule (CNT), and the collecting duct (CD) (i.e., the cortical CD [CCD] and the medullary CD [MCD]). It has been proposed that the control of sodium transport in the CCD is essential for achieving sodium and potassium balance. We have tested this hypothesis by inactivating the alpha subunit of ENaC in the CD but leaving ENaC expression in the late DCT and CNT intact. Under salt restriction or under aldosterone infusion, whole-cell voltage clamp of principal cells of CCD showed no detectable ENaC activity, whereas large amiloride-sensitive currents were observed in control littermates. The animals survive well and are able to maintain sodium and potassium balance, even when challenged by salt restriction, water deprivation, or potassium loading. We conclude that the expression of ENaC in the CD is not a prerequisite for achieving sodium and potassium balance in mice. This stresses the importance of more proximal nephron segments (late DCT/CNT) to achieve sodium and potassium balance.
Collapse
Affiliation(s)
- Isabelle Rubera
- Institut de Pharmacologie et de Toxicologie, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Levinson R, Mendelsohn C. Stromal progenitors are important for patterning epithelial and mesenchymal cell types in the embryonic kidney. Semin Cell Dev Biol 2003; 14:225-31. [PMID: 14627121 DOI: 10.1016/s1084-9521(03)00025-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth and expansion of the embryonic kidney is driven in large part by continuous branching morphogenesis and nephron induction that occurs in a restricted domain beneath the renal capsule called the nephrogenic zone. Here, new ureteric bud branches and nephron aggregates form surrounded by a layer of cortical stromal cell progenitors. The boundaries and inductive activities of the nephrogenic zone are maintained as the kidney grows. As new ureteric bud branches and nephrogenic aggregates form, older generations of ureteric bud branches, renal vesicles and stromal progenitors are displaced from the nephrogenic zone and undergo further differentiation surrounded by medullary stroma, a different population of stromal cells. Recent studies suggest that cortical and medullary stromal progenitors may be an important source of signals that maintain outer and inner zones of differentiation in the embryonic kidney, and regulate distinct events important for differentiation of nephrons and the collecting duct system.
Collapse
Affiliation(s)
- Randy Levinson
- Department of Urology, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
49
|
Hu MC, Piscione TD, Rosenblum ND. Elevated SMAD1/beta-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice. Development 2003; 130:2753-66. [PMID: 12736218 DOI: 10.1242/dev.00478] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Renal dysplasia, the most frequent cause of childhood renal failure in humans, arises from perturbations in a complex series of morphogenetic events during embryonic renal development. The molecular pathogenesis of renal dysplasia is largely undefined. While investigating the role of a BMP-dependent pathway that inhibits branching morphogenesis in vitro, we generated a novel model of renal dysplasia in a transgenic (Tg) model of ALK3 receptor signaling. We report the renal phenotype, and our discovery of molecular interactions between effectors in the BMP and WNT signaling pathways in dysplastic kidney tissue. Expression of the constitutively active ALK3 receptor ALK3(QD), in two independent transgenic lines caused renal aplasia/severe dysgenesis in 1.5% and 8.4% of hemizygous and homozygous Tg mice, respectively, and renal medullary cystic dysplasia in 49% and 74% of hemizygous and homozygous Tg mice, respectively. The dysplastic phenotype, which included a decreased number of medullary collecting ducts, increased medullary mesenchyme, collecting duct cysts and decreased cortical thickness, was apparent by E18.5. We investigated the pathogenesis of dysplasia in these mice, and demonstrated a 30% decrease in branching morphogenesis at E13.5 before the appearance of histopathogical features of dysplasia, and the formation of beta-catenin/SMAD1/SMAD4 molecular complexes in dysplastic renal tissue. Increased transcriptional activity of a beta-catenin reporter gene in ALK3(QD);Tcf-gal mice demonstrated functional cooperativity between the ALK3 and beta-catenin-dependent signaling pathways in kidney tissue. Together with our results in the dysplastic mouse kidney, our findings that phospho-SMAD1 and beta-catenin are overexpressed in human fetal dysplastic renal tissue suggest that dysregulation of these signaling effectors is pathogenic in human renal dysplasia. Our work provides novel insights into the role that crucial developmental signaling pathways may play during the genesis of malformed renal tissue elements.
Collapse
Affiliation(s)
- Ming Chang Hu
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
50
|
Schnabel CA, Godin RE, Cleary ML. Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 2003; 254:262-76. [PMID: 12591246 DOI: 10.1016/s0012-1606(02)00038-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pbx1 encodes a TALE homeodomain transcription factor that regulates developmental gene expression in a variety of tissues. Loss-of-function studies have demonstrated a critical role for Pbx1 in cellular proliferation and patterning and suggest its involvement in numerous regulatory pathways. In this study, examination of metanephric development in Pbx1(-/-) embryos was conducted to further elucidate Pbx1-dependent processes during organogenesis. Prior to death at E15.5, Pbx1(-/-) embryos displayed kidneys that were reduced in size, axially mispositioned, and in more severe cases, exhibited unilateral agenesis. Analysis with molecular markers revealed the effective induction of tubulogenic mesenchyme; however, Pbx1(-/-) kidneys contained fewer nephrons and were characterized by expanded regions of mesenchymal condensates in the nephrogenic zone. Despite the restricted expression of Pbx1 in metanephric mesenchyme, developing nephrons, and stroma, decreased branching and elongation of the ureter were also observed. Moreover, heterologous recombination studies with explant cultures verified that Pbx1(-/-) renal defects arose exclusively from mesenchymal dysfunction. Taken together, these data establish a role for Pbx1 in mesenchymal-epithelial signaling and demonstrate that Pbx1 is an essential regulator of mesenchymal function during renal morphogenesis.
Collapse
Affiliation(s)
- Catherine A Schnabel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5342, USA
| | | | | |
Collapse
|