1
|
Zhang Y, Li Y, Han H, Wang X, Gao S, Zhao Q, Bieerdebieke H, Xu L, Zang Q, Wang H, Bai P, Lin K. Identification of miRNAs Involved in Olfactory Regulation in Antennae of Beet Webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Life (Basel) 2024; 14:1705. [PMID: 39768411 PMCID: PMC11677245 DOI: 10.3390/life14121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The beet webworm, Loxostege sticticalis, is a typical migratory pest. Although miRNAs participate in many physiological functions, little is known about the functions of miRNAs in olfactory regulation. In this study, 1120 (869 known and 251 novel) miRNAs were identified in the antennae of L. sticticalis by using high-throughput sequencing technology. Among the known miRNAs, 189 from 49 families were insect-specific, indicating that these miRNAs might play unique roles in insects. Furthermore, based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found that 3647 and 1393 miRNAs were associated with localization and the regulation of localization, respectively, and 80 miRNAs were enriched in the neuroactive ligand-receptor interaction pathway. These miRNAs might be involved in the olfactory system of L. sticticalis. Notably, qRT-PCR showed that most of the tested miRNAs presented similar expression patterns compared with the RNA-seq data and that miR-87-3, novel-miR-78, and novel-miR-142 were significantly differentially expressed in the antennae of males and females. In addition, 21 miRNAs were predicted to target 23 olfactory genes, including 10 odorant-binding proteins (OBPs), 3 chemosensory proteins (CSPs), 4 odorant receptors (ORs), 1 ionotropic receptor (IR), and 5 gustatory receptors (GRs). The olfactory-related miRNAs exhibited low-abundance transcripts, except undef-miR-55 and undef-miR-523, and gender-biased expression was not observed for olfactory-related miRNAs. Our findings provide an overview of the potential miRNAs involved in olfactory regulation, which may provide important information on the function of miRNAs in the insect olfactory system.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Yanyan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (Y.L.); (H.H.)
| | - Haibin Han
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (Y.L.); (H.H.)
| | - Xiaoling Wang
- Xilin Gol League Agricultural and Animal Husbandry Technology Promotion Center, Xilinhot 026000, China;
| | - Shujing Gao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Qing Zhao
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Halima Bieerdebieke
- The Center for Grassland Biological Disaster Prevention of Xinjiang Uygur Autonomous Region, Urumqi 830049, China;
| | - Linbo Xu
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Qicong Zang
- Heilongjiang Province Grassland Station, Harbin 150069, China;
| | - Hui Wang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| | - Penghua Bai
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Kejian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (Y.Z.); (S.G.); (Q.Z.); (L.X.); (H.W.)
| |
Collapse
|
2
|
Schwartz MB, Prudnikova MM, Andreenkov OV, Volkova EI, Zhimulev IF, Antonenko OV, Demakov SA. Transcription factor DREF regulates expression of the microRNA gene bantam in Drosophila melanogaster. Vavilovskii Zhurnal Genet Selektsii 2024; 28:131-137. [PMID: 38680180 PMCID: PMC11043500 DOI: 10.18699/vjgb-24-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 05/01/2024] Open
Abstract
The bantam gene encodes a vital microRNA and has a complex expression pattern in various tissues at different stages of Drosophila development. This microRNA is involved in the control of normal development of the ocular and wing imaginal discs, the central nervous system, and also in maintaining the undifferentiated state of stem cells in the ovaries of adult females. At the cellular level, bantam stimulates cell proliferation and prevents apoptosis. The bantam gene is a target of several conserved signaling cascades, in particular, Hippo. At the moment, at least ten proteins are known to directly regulate the expression of this gene in different tissues of Drosophila. In this study, we found that the bantam regulatory region contains motifs characteristic of binding sites for DREF, a transcription factor that regulates the expression of Hippo cascade genes. Using transgenic lines containing a full-length bantam lethality-rescuing deletion fragment and a fragment with a disrupted DREF binding site, we show that these motifs are functionally significant because their disruption at the bantam locus reduces expression levels in the larvae and ovaries of homozygous flies, which correlates with reduced vitality and fertility. The effect of DREF binding to the promoter region of the bantam gene on its expression level suggests an additional level of complexity in the regulation of expression of this microRNA. A decrease in the number of eggs laid and a shortening of the reproductive period in females when the DREF binding site in the regulatory region of the bantam gene is disrupted suggests that, through bantam, DREF is also involved in the regulation of Drosophila oogenesis.
Collapse
Affiliation(s)
- M B Schwartz
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M M Prudnikova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Andreenkov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Volkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I F Zhimulev
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Antonenko
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Demakov
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Ko BS, Han MH, Kwon MJ, Cha DG, Ji Y, Park ES, Jeon MJ, Kim S, Lee K, Choi YH, Lee J, Torras-Llort M, Yoon KJ, Lee H, Kim JK, Lee SB. Baf-mediated transcriptional regulation of teashirt is essential for the development of neural progenitor cell lineages. Exp Mol Med 2024; 56:422-440. [PMID: 38374207 PMCID: PMC10907700 DOI: 10.1038/s12276-024-01169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 02/21/2024] Open
Abstract
Accumulating evidence hints heterochromatin anchoring to the inner nuclear membrane as an upstream regulatory process of gene expression. Given that the formation of neural progenitor cell lineages and the subsequent maintenance of postmitotic neuronal cell identity critically rely on transcriptional regulation, it seems possible that the development of neuronal cells is influenced by cell type-specific and/or context-dependent programmed regulation of heterochromatin anchoring. Here, we explored this possibility by genetically disrupting the evolutionarily conserved barrier-to-autointegration factor (Baf) in the Drosophila nervous system. Through single-cell RNA sequencing, we demonstrated that Baf knockdown induces prominent transcriptomic changes, particularly in type I neuroblasts. Among the differentially expressed genes, our genetic analyses identified teashirt (tsh), a transcription factor that interacts with beta-catenin, to be closely associated with Baf knockdown-induced phenotypes that were suppressed by the overexpression of tsh or beta-catenin. We also found that Baf and tsh colocalized in a region adjacent to heterochromatin in type I NBs. Notably, the subnuclear localization pattern remained unchanged when one of these two proteins was knocked down, indicating that both proteins contribute to the anchoring of heterochromatin to the inner nuclear membrane. Overall, this study reveals that the Baf-mediated transcriptional regulation of teashirt is a novel molecular mechanism that regulates the development of neural progenitor cell lineages.
Collapse
Affiliation(s)
- Byung Su Ko
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Myeong Hoon Han
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Min Jee Kwon
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Yuri Ji
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Min Jae Jeon
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyeongho Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jusung Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | | | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyosang Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
4
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Liu W, Liang W, Xiong XP, Li JL, Zhou R. A circular RNA Edis-Relish-castor axis regulates neuronal development in Drosophila. PLoS Genet 2022; 18:e1010433. [PMID: 36301831 PMCID: PMC9612563 DOI: 10.1371/journal.pgen.1010433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are a new group of noncoding/regulatory RNAs that are particularly abundant in the nervous system, however, their physiological functions are underexplored. Here we report that the brain-enriched circular RNA Edis (Ect4-derived immune suppressor) plays an essential role in neuronal development in Drosophila. We show that depletion of Edis in vivo causes defects in axonal projection patterns of mushroom body (MB) neurons in the brain, as well as impaired locomotor activity and shortened lifespan of adult flies. In addition, we find that the castor gene, which encodes a transcription factor involved in neurodevelopment, is upregulated in Edis knockdown neurons. Notably, castor overexpression phenocopies Edis knockdown, and reducing castor levels suppresses the neurodevelopmental phenotypes in Edis-depleted neurons. Furthermore, chromatin immunoprecipitation analysis reveals that the transcription factor Relish, which plays a key role in regulating innate immunity signaling, occupies a pair of sites at the castor promoter, and that both sites are required for optimal castor gene activation by either immune challenge or Edis depletion. Lastly, Relish mutation and/or depletion can rescue both the castor gene hyperactivation phenotype and neuronal defects in Edis knockdown animals. We conclude that the circular RNA Edis acts through Relish and castor to regulate neuronal development.
Collapse
Affiliation(s)
- Wei Liu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Weihong Liang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Xiao-Peng Xiong
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Jian-Liang Li
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Rui Zhou
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
7
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Characterization and target gene analysis of microRNAs in the antennae of the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2021; 28:1033-1048. [PMID: 32496619 DOI: 10.1111/1744-7917.12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding single-strand RNA molecules encoded by endogenous genes, are about 21-24 nucleotides long and are involved in the post-transcriptional regulation of gene expression in plants and animals. Generally, the types and quantities of miRNAs in the different tissues of an organism are diverse, and these divergences may be related to their specific functions. Here we have identified 296 known miRNAs and 46 novel miRNAs in the antennae of the parasitoid wasp Microplitis mediator by high-throughput sequencing. Thirty-three miRNAs were predicted to target olfactory-associated genes, including odorant binding proteins (OBPs), chemosensory proteins, odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors. Among these, 17 miRNAs were significantly highly expressed in the antennae, four miRNAs were highly expressed both in the antennae and head or wings, while the remaining 12 miRNAs were mainly expressed in the head, thorax, abdomen, legs and wings. Notably, miR-9a-5p and miR-2525-3p were highly expressed in male antennae, whereas miR-1000-5p and novel-miR-13 were enriched in female antennae. The 17 miRNAs highly expressed in antennae are likely to be associated with olfaction, and were predicted to target one OBP (targeted by miR-3751-3p), one IR (targeted by miR-7-5p) and 14 ORs (targeted by 15 miRNAs including miR-6-3p, miR-9a-5p, miR-9b-5p, miR-29-5p, miR-71-5p, miR-275-3p, miR-1000-5p, miR-1000-3p, miR-2525-3p, miR-6012-3p, miR-9719-3p, novel-miR-10, novel-miR-13, novel-miR-14 and novel-miR-28). These candidate olfactory-associated miRNAs are all likely to be involved in chemoreception through the regulation of chemosensory gene expression in the antennae of M. mediator.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Maternally inherited intron coordinates primordial germ cell homeostasis during Drosophila embryogenesis. Cell Death Differ 2020; 28:1208-1221. [PMID: 33093656 DOI: 10.1038/s41418-020-00642-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Primordial germ cells (PGCs) give rise to the germline stem cells (GSCs) in the adult Drosophila gonads. Both PGCs and GSCs need to be tightly regulated to safeguard the survival of the entire species. During larval development, a non-cell autonomous homeostatic mechanism is in place to maintain PGC number in the gonads. Whether such germline homeostasis occurs during early embryogenesis before PGCs reach the gonads remains unclear. We have previously shown that the maternally deposited sisRNA sisR-2 can influence GSC number in the female progeny. Here we uncover the presence of a homeostatic mechanism regulating PGCs during embryogenesis. sisR-2 represses PGC number by promoting PGC death. Surprisingly, increasing maternal sisR-2 leads to an increase in PGC death, but no drop in PGC number was observed. This is due to ectopic division of PGCs via the de-repression of Cyclin B, which is governed by a genetic pathway involving sisR-2, bantam and brat. We propose a cell autonomous model whereby germline homeostasis is achieved by preserving PGC number during embryogenesis.
Collapse
|
9
|
Ford DJ, Zraly CB, Perez JH, Dingwall AK. The Drosophila MLR COMPASS-like complex regulates bantam miRNA expression differentially in the context of cell fate. Dev Biol 2020; 468:41-53. [PMID: 32946789 DOI: 10.1016/j.ydbio.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
The conserved MLR COMPASS-like complexes are histone modifiers that are recruited by a variety of transcription factors to enhancer regions where they act as necessary epigenetic tools for enhancer establishment and function. A critical in vivo target of the Drosophila MLR complex is the bantam miRNA that regulates cell survival and functions in feedback regulation of cellular signaling pathways during development. We determine that loss of Drosophila MLR complex function in developing wing and eye imaginal discs results in growth and patterning defects that are sensitive to bantam levels. Consistent with an essential regulatory role in modulating bantam transcription, the MLR complex binds to tissue-specific bantam enhancers and contributes to fine-tuning expression levels during larval tissue development. In wing imaginal discs, the MLR complex attenuates bantam enhancer activity by negatively regulating expression; whereas, in differentiating eye discs, the complex exerts either positive or negative regulatory activity on bantam transcription depending on cell fate. Furthermore, while the MLR complex is not required to control bantam levels in undifferentiated eye cells anterior to the morphogenetic furrow, it serves to prepare critical enhancer control of bantam transcription for later regulation upon differentiation. Our investigation into the transcriptional regulation of a single target in a developmental context has provided novel insights as to how the MLR complex contributes to the precise timing of gene expression, and how the complex functions to help orchestrate the regulatory output of conserved signaling pathways during animal development.
Collapse
Affiliation(s)
- David J Ford
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Claudia B Zraly
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - John Hertenstein Perez
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Andrew K Dingwall
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA; Department of Pathology & Laboratory Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
10
|
Li G, Hidalgo A. Adult Neurogenesis in the Drosophila Brain: The Evidence and the Void. Int J Mol Sci 2020; 21:ijms21186653. [PMID: 32932867 PMCID: PMC7554932 DOI: 10.3390/ijms21186653] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Establishing the existence and extent of neurogenesis in the adult brain throughout the animals including humans, would transform our understanding of how the brain works, and how to tackle brain damage and disease. Obtaining convincing, indisputable experimental evidence has generally been challenging. Here, we revise the state of this question in the fruit-fly Drosophila. The developmental neuroblasts that make the central nervous system and brain are eliminated, either through apoptosis or cell cycle exit, before the adult fly ecloses. Despite this, there is growing evidence that cell proliferation can take place in the adult brain. This occurs preferentially at, but not restricted to, a critical period. Adult proliferating cells can give rise to both glial cells and neurons. Neuronal activity, injury and genetic manipulation in the adult can increase the incidence of both gliogenesis and neurogenesis, and cell number. Most likely, adult glio- and neuro-genesis promote structural brain plasticity and homeostasis. However, a definitive visualisation of mitosis in the adult brain is still lacking, and the elusive adult progenitor cells are yet to be identified. Resolving these voids is important for the fundamental understanding of any brain. Given its powerful genetics, Drosophila can expedite discovery into mammalian adult neurogenesis in the healthy and diseased brain.
Collapse
|
11
|
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2020; 47:D155-D162. [PMID: 30423142 PMCID: PMC6323917 DOI: 10.1093/nar/gky1141] [Citation(s) in RCA: 2714] [Impact Index Per Article: 542.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
miRBase catalogs, names and distributes microRNA gene sequences. The latest release of miRBase (v22) contains microRNA sequences from 271 organisms: 38 589 hairpin precursors and 48 860 mature microRNAs. We describe improvements to the database and website to provide more information about the quality of microRNA gene annotations, and the cellular functions of their products. We have collected 1493 small RNA deep sequencing datasets and mapped a total of 5.5 billion reads to microRNA sequences. The read mapping patterns provide strong support for the validity of between 20% and 65% of microRNA annotations in different well-studied animal genomes, and evidence for the removal of >200 sequences from the database. To improve the availability of microRNA functional information, we are disseminating Gene Ontology terms annotated against miRBase sequences. We have also used a text-mining approach to search for microRNA gene names in the full-text of open access articles. Over 500 000 sentences from 18 542 papers contain microRNA names. We score these sentences for functional information and link them with 12 519 microRNA entries. The sentences themselves, and word clouds built from them, provide effective summaries of the functional information about specific microRNAs. miRBase is publicly and freely available at http://mirbase.org/.
Collapse
Affiliation(s)
- Ana Kozomara
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Maria Birgaoanu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Liu M, Huang J, Zhang G, Liu X, An J. Analysis of miRNAs in the Heads of Different Castes of the Bumblebee Bombus lantschouensis (Hymenoptera: Apidae). INSECTS 2019; 10:E349. [PMID: 31623265 PMCID: PMC6835379 DOI: 10.3390/insects10100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Bumblebees are important insect pollinators for many wildflowers and crops. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that regulate different biological functions in insects. In this study, the miRNAs in the heads of the three castes of the bumblebee Bombus lantschouensis were identified and characterized by small RNA deep sequencing. The significant differences in the expression of miRNAs and their target genes were analyzed. The results showed that the length of the small RNA reads from males, queens, and workers was distributed between 18 and 30 nt, with a peak at 22 nt. A total of 364 known and 89 novel miRNAs were identified from the heads of the three castes. The eight miRNAs with the highest expressed levels in males, queens, and workers were identical, although the order of these miRNAs based on expression differed. The male vs. queen, male vs. worker, and worker vs. queen comparisons identified nine, fourteen, and four miRNAs with significant differences in expression, respectively. The different castes were clustered based on the differentially expressed miRNAs (DE miRNAs), and the expression levels of the DE miRNAs obtained by RT-qPCR were consistent with the read counts obtained through Solexa sequencing. The putative target genes of these DE miRNAs were enriched in 29 Gene Ontology (GO) terms, and catalytic activity was the most enriched GO term, as demonstrated by its association with 2837 target genes in the male vs. queen comparison, 3535 target genes in the male vs. worker comparison, and 2185 target genes in the worker vs. queen comparison. This study highlights the characteristics of the miRNAs in the three B. lantschouensis castes and will aid further studies on the functions of miRNAs in bumblebees.
Collapse
Affiliation(s)
- Meijuan Liu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Guangshuo Zhang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaofeng Liu
- School of Life Science, Peking University, Beijing 100871, China.
| | - Jiandong An
- School of Life Science, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Sander M, Herranz H. MicroRNAs in Drosophila Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:157-173. [PMID: 31520354 DOI: 10.1007/978-3-030-23629-8_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MiRNAs are post-transcriptional regulators of gene expression which have been implicated in virtually all biological processes. MiRNAs are frequently dysregulated in human cancers. However, the functional consequences of aberrant miRNA levels are not well understood. Drosophila is emerging as an important in vivo tumor model, especially in the identification of novel cancer genes. Here, we review Drosophila studies which functionally dissect the roles of miRNAs in tumorigenesis. Ultimately, these advances help to understand the implications of miRNA dysregulation in human cancers.
Collapse
Affiliation(s)
- Moritz Sander
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Kane NS, Vora M, Padgett RW, Li Y. bantam microRNA is a negative regulator of the Drosophila decapentaplegic pathway. Fly (Austin) 2018; 12:105-117. [PMID: 30015555 PMCID: PMC6150632 DOI: 10.1080/19336934.2018.1499370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Decapentaplegic (Dpp), the Drosophila homolog of the vertebrate bone morphogenetic protein (BMP2/4), is crucial for patterning and growth in many developmental contexts. The Dpp pathway is regulated at many different levels to exquisitely control its activity. We show that bantam (ban), a microRNA, modulates Dpp signaling activity. Over expression of ban decreases phosphorylated Mothers against decapentaplegic (Mad) levels and negatively affects Dpp pathway transcriptional target genes, while null mutant clones of ban upregulate the pathway. We provide evidence that dpp upregulates ban in the wing imaginal disc, and attenuation of Dpp signaling results in a reduction of ban expression, showing that they function in a feedback loop. Furthermore, we show that this feedback loop is important for maintaining anterior-posterior compartment boundary stability in the wing disc through regulation of optomotor blind (omb), a known target of the pathway. Our results support a model that ban functions with dpp in a negative feedback loop.
Collapse
Affiliation(s)
- Nanci S Kane
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Mehul Vora
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Richard W Padgett
- a Waksman Institute, Department of Molecular Biology and Biochemistry , Cancer Institute of New Jersey, Rutgers University , Piscataway , NJ , USA
| | - Ying Li
- b Life Science Institute , Chongqing Medical University , Chongqing , China
| |
Collapse
|
15
|
Volin M, Zohar-Fux M, Gonen O, Porat-Kuperstein L, Toledano H. microRNAs selectively protect hub cells of the germline stem cell niche from apoptosis. J Cell Biol 2018; 217:3829-3838. [PMID: 30093492 PMCID: PMC6219711 DOI: 10.1083/jcb.201711098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/10/2017] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Genotoxic stress such as irradiation causes a temporary halt in tissue regeneration. The ability to regain regeneration depends on the type of cells that survived the assault. Previous studies showed that this propensity is usually held by the tissue-specific stem cells. However, stem cells cannot maintain their unique properties without the support of their surrounding niche cells. In this study, we show that exposure of Drosophila melanogaster to extremely high levels of irradiation temporarily arrests spermatogenesis and kills half of the stem cells. In marked contrast, the hub cells that constitute a major component of the niche remain completely intact. We further show that this atypical resistance to cell death relies on the expression of certain antiapoptotic microRNAs (miRNAs) that are selectively expressed in the hub and keep the cells inert to apoptotic stress signals. We propose that at the tissue level, protection of a specific group of niche cells from apoptosis underlies ongoing stem cell turnover and tissue regeneration.
Collapse
Affiliation(s)
- Marina Volin
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maayan Zohar-Fux
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Oren Gonen
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Felden B, Paillard L. When eukaryotes and prokaryotes look alike: the case of regulatory RNAs. FEMS Microbiol Rev 2017; 41:624-639. [PMID: 28981746 DOI: 10.1093/femsre/fux038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022] Open
Abstract
The discovery that all living entities express many RNAs beyond mRNAs, tRNAs and rRNAs has been a surprise in the past two decades. In fact, regulatory RNAs (regRNAs) are plentiful, and we report stunning parallels between their mechanisms and functions in prokaryotes and eukaryotes. For instance, prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats) defense systems are functional analogs to eukaryotic RNA interference processes that preserve the cell against foreign nucleic acid elements. Regulatory RNAs shape the genome in many ways: by controlling mobile element transposition in both domains, via regulation of plasmid counts in prokaryotes, or by directing epigenetic modifications of DNA and associated proteins in eukaryotes. RegRNAs control gene expression extensively at transcriptional and post-transcriptional levels, with crucial roles in fine-tuning cell environmental responses, including intercellular interactions. Although the lengths, structures and outcomes of the regRNAs in all life kingdoms are disparate, they act through similar patterns: by guiding effectors to target molecules or by sequestering macromolecules to hamper their functions. In addition, their biogenesis processes have a lot in common. This unifying vision of regRNAs in all living cells from bacteria to humans points to the possibility of fruitful exchanges between fundamental and applied research in both domains.
Collapse
Affiliation(s)
- Brice Felden
- Inserm U1230 Biochimie Pharmaceutique, Université de Rennes 1, 35043 Rennes, France.,Biosit, Université de Rennes 1, 35043 Rennes, France
| | - Luc Paillard
- Biosit, Université de Rennes 1, 35043 Rennes, France.,Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| |
Collapse
|
17
|
Chen JJ, Zhao B, Zhao J, Li S. Potential Roles of Exosomal MicroRNAs as Diagnostic Biomarkers and Therapeutic Application in Alzheimer's Disease. Neural Plast 2017; 2017:7027380. [PMID: 28770113 PMCID: PMC5523215 DOI: 10.1155/2017/7027380] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are bilipid layer-enclosed vesicles derived from endosomes and are released from neural cells. They contain a diversity of proteins, mRNAs, and microRNAs (miRNAs) that are delivered to neighboring cells and/or are transported to distant sites. miRNAs released from exosomes appear to be associated with multiple neurodegenerative conditions linking to Alzheimer's disease (AD) which is marked by hyperphosphorylated tau proteins and accumulation of Aβ plaques. Exciting findings reveal that miRNAs released from exosomes modulate the expression and function of amyloid precursor proteins (APP) and tau proteins. These open up the possibility that dysfunctional exosomal miRNAs may influence AD progression. In addition, it has been confirmed that the interaction between miRNAs released by exosomes and Toll-like receptors (TLR) initiates inflammation. In exosome support-deprived neurons, exosomal miRNAs may regulate neuroplasticity to relieve neurological damage. In this review, we summarize the literature on the function of exosomal miRNAs in AD pathology, the potential of these miRNAs as diagnostic biomarkers in AD, and the use of exosomes in the delivery of miRNAs which may lead to major advances in the field of macromolecular drug delivery.
Collapse
Affiliation(s)
- Jian-jiao Chen
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
- Department of General Surgery, Subei People's Hospital of Jiangsu Province, Yangzhou City, Jiangsu Province 225000, China
| | - Bin Zhao
- Technology Centre of Target-Based Nature Products for Prevention and Treatment of Aging-Related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Jie Zhao
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
- Technology Centre of Target-Based Nature Products for Prevention and Treatment of Aging-Related Neurodegeneration, Dalian Medical University, Dalian, Liaoning, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian City, Liaoning Province 116044, China
| |
Collapse
|
18
|
Study of bantam miRNA expression in brain tumour resulted due to loss of polarity modules in Drosophila melanogaster. J Genet 2017; 96:365-369. [DOI: 10.1007/s12041-017-0782-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Wu YC, Lee KS, Song Y, Gehrke S, Lu B. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain. PLoS Genet 2017; 13:e1006785. [PMID: 28520736 PMCID: PMC5453605 DOI: 10.1371/journal.pgen.1006785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/01/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.
Collapse
Affiliation(s)
- Yen-Chi Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kyu-Sun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yan Song
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
- School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Stephan Gehrke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
20
|
Banerjee A, Roy JK. Dicer-1 regulates proliferative potential of Drosophila larval neural stem cells through bantam miRNA based down-regulation of the G1/S inhibitor Dacapo. Dev Biol 2017; 423:57-65. [DOI: 10.1016/j.ydbio.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/19/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
|
21
|
Paglia S, Sollazzo M, Di Giacomo S, de Biase D, Pession A, Grifoni D. Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in Drosophila. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2690187. [PMID: 29445734 PMCID: PMC5763105 DOI: 10.1155/2017/2690187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 02/05/2023]
Abstract
Different regions in the mammalian adult brain contain immature precursors, reinforcing the concept that brain cancers, such as glioblastoma multiforme (GBM), may originate from cells endowed with stem-like properties. Alterations of the tumour suppressor gene PTEN are very common in primary GBMs. Very recently, PTEN loss was shown to undermine a specific molecular axis, whose failure is associated with the maintenance of the GBM stem cells in mammals. This axis is composed of PTEN, aPKC, and the polarity determinant Lethal giant larvae (Lgl): PTEN loss promotes aPKC activation through the PI3K pathway, which in turn leads to Lgl inhibition, ultimately preventing stem cell differentiation. To find the neural precursors responding to perturbations of this molecular axis, we targeted different neurogenic regions of the Drosophila brain. Here we show that PTEN mutation impacts aPKC and Lgl protein levels also in Drosophila. Moreover, we demonstrate that PI3K activation is not sufficient to trigger tumourigenesis, while aPKC promotes hyperplastic growth of the neuroepithelium and a noticeable expansion of the type II neuroblasts. Finally, we show that these neuroblasts form invasive tumours that persist and keep growing in the adult, leading the affected animals to untimely death, thus displaying frankly malignant behaviours.
Collapse
Affiliation(s)
- Simona Paglia
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Manuela Sollazzo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Di Giacomo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario de Biase
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Annalisa Pession
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Daniela Grifoni
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
22
|
Pinto-Teixeira F, Konstantinides N, Desplan C. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 2016; 590:2435-2453. [PMID: 27404003 DOI: 10.1002/1873-3468.12298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
Collapse
Affiliation(s)
- Filipe Pinto-Teixeira
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Nikolaos Konstantinides
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
23
|
Carthew RW, Agbu P, Giri R. MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol 2016; 65:29-37. [PMID: 27000418 DOI: 10.1016/j.semcdb.2016.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes.
Collapse
Affiliation(s)
- Richard W Carthew
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | - Pamela Agbu
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| | - Ritika Giri
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| |
Collapse
|