1
|
Liang Y, Carrillo-Baltodano AM, Martín-Durán JM. Emerging trends in the study of spiralian larvae. Evol Dev 2024; 26:e12459. [PMID: 37787615 DOI: 10.1111/ede.12459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.
Collapse
Affiliation(s)
- Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Huan P, Liu B. The gastropod Lottia peitaihoensis as a model to study the body patterning of trochophore larvae. Evol Dev 2024; 26:e12456. [PMID: 37667429 DOI: 10.1111/ede.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
The body patterning of trochophore larvae is important for understanding spiralian evolution and the origin of the bilateral body plan. However, considerable variations are observed among spiralian lineages, which have adopted varied strategies to develop trochophore larvae or even omit a trochophore stage. Some spiralians, such as patellogastropod mollusks, are suggested to exhibit ancestral traits by producing equal-cleaving fertilized eggs and possessing "typical" trochophore larvae. In recent years, we developed a potential model system using the patellogastropod Lottia peitaihoensis (= Lottia goshimai). Here, we introduce how the species were selected and establish sources and techniques, including gene knockdown, ectopic gene expression, and genome editing. Investigations on this species reveal essential aspects of trochophore body patterning, including organizer signaling, molecular and cellular processes connecting the various developmental functions of the organizer, the specification and behaviors of the endomesoderm and ectomesoderm, and the characteristic dorsoventral decoupling of Hox expression. These findings enrich the knowledge of trochophore body patterning and have important implications regarding the evolution of spiralians as well as bilateral body plans.
Collapse
Affiliation(s)
- Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wandelt JE, Nakamoto A, Goulding MQ, Nagy LM. Embryonic organizer specification in the mud snail Ilyanassa obsoleta depends on intercellular signaling. Development 2023; 150:dev202027. [PMID: 37902104 PMCID: PMC10730015 DOI: 10.1242/dev.202027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
In early embryos of the caenogastropod snail Ilyanassa obsoleta, cytoplasmic segregation of a polar lobe is required for establishment of the D quadrant founder cell, empowering its great-granddaughter macromere 3D to act as a single-celled organizer that induces ectodermal pattern along the secondary body axis of the embryo. We present evidence that polar lobe inheritance is not sufficient to specify 3D potential, but rather makes the D macromere lineage responsive to some intercellular signal(s) required for normal expression of 3D-specific phenotypes. Experimental removal of multiple micromeres resulted in loss of organizer-linked MAPK activation, complete and specific defects of organizer-dependent larval organs, and progressive cell cycle retardation, leading to equalization of the normally accelerated division schedule of 3D (relative to the third-order macromeres of the A, B and C quadrants). Ablation of the second-quartet micromere 2d greatly potentiated the effects of first micromere quartet ablation. Our findings link organizer activation in I. obsoleta to the putative ancestral spiralian mechanism in which a signal from micromeres leads to specification of 3D among four initially equivalent macromeres.
Collapse
Affiliation(s)
- Jessica E. Wandelt
- School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ayaki Nakamoto
- Faculty of Pharmaceutical Sciences, Aomori University, Koubata 2-3-1, Aomori 030-0943, Japan
| | | | - Lisa M. Nagy
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Tan S, Huan P, Liu B. Functional evidence that FGFR regulates MAPK signaling in organizer specification in the gastropod mollusk Lottia peitaihoensis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:455-466. [PMID: 38045550 PMCID: PMC10689715 DOI: 10.1007/s42995-023-00194-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
The D-quadrant organizer sets up the dorsal-ventral (DV) axis and regulates mesodermal development of spiralians. Studies have revealed an important role of mitogen-activated protein kinase (MAPK) signaling in organizer function, but the related molecules have not been fully revealed. The association between fibroblast growth factor receptor (FGFR) and MAPK signaling in regulating organizer specification has been established in the annelid Owenia fusiformis. Now, comparable studies in other spiralian phyla are required to decipher whether this organizer-inducing function of FGFR is prevalent in Spiralia. Here, we indicate that treatment with the FGFR inhibitor SU5402 resulted in deficiency of organizer specification in the mollusk Lottia peitaihoensis. Subsequently, the bone morphogenetic protein (BMP) signaling gradient and DV patterning were disrupted, suggesting the roles of FGFR in regulating organizer function. Changes in multiple aspects of organizer function (the morphology of vegetal blastomeres, BMP signaling gradient, expression of DV patterning markers, etc.) indicate that these developmental functions have different sensitivities to FGFR/MAPK signaling. Our results reveal a functional role of FGFR in organizer specification as well as DV patterning of Lottia embryos, which expands our knowledge of spiralian organizers. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00194-x.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
5
|
Seudre O, Carrillo-Baltodano AM, Liang Y, Martín-Durán JM. ERK1/2 is an ancestral organising signal in spiral cleavage. Nat Commun 2022; 13:2286. [PMID: 35484126 PMCID: PMC9050690 DOI: 10.1038/s41467-022-30004-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Animal development is classified as conditional or autonomous based on whether cell fates are specified through inductive signals or maternal determinants, respectively. Yet how these two major developmental modes evolved remains unclear. During spiral cleavage-a stereotypic embryogenesis ancestral to 15 invertebrate groups, including molluscs and annelids-most lineages specify cell fates conditionally, while some define the primary axial fates autonomously. To identify the mechanisms driving this change, we study Owenia fusiformis, an early-branching, conditional annelid. In Owenia, ERK1/2-mediated FGF receptor signalling specifies the endomesodermal progenitor. This cell likely acts as an organiser, inducing mesodermal and posterodorsal fates in neighbouring cells and repressing anteriorising signals. The organising role of ERK1/2 in Owenia is shared with molluscs, but not with autonomous annelids. Together, these findings suggest that conditional specification of an ERK1/2+ embryonic organiser is ancestral in spiral cleavage and was repeatedly lost in annelid lineages with autonomous development.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences. Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
6
|
Slipper snail tales: How Crepidula fornicata and Crepidula atrasolea became model molluscs. Curr Top Dev Biol 2022; 147:375-399. [PMID: 35337456 DOI: 10.1016/bs.ctdb.2021.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the great abundance and diversity of molluscs, only a few have attained "model research organism" status. One of those species is the slipper snail Crepidula fornicata. Its embryos were first used for classical lineage tracing studies in the late 19th century, and over a 100 years later they were "re-discovered" by our labs and used for modern fate mapping, gene perturbation, in vivo imaging, transcriptomics, and the first application of CRISPR/Cas9-mediated genome editing among the Spiralia/Lophotrochozoa. Simultaneously, other labs made extensive examinations of taxonomy, phylogeny, ecology, life-history, mode of development, larval feeding behavior, and responses to the environment in members of the family Calyptraeidae, which includes the genus Crepidula. Recently, we developed tools, resources, and husbandry protocols for another, direct-developing species, Crepidula atrasolea. This species is an ideal "lab rat" among molluscs. Together these species will be valuable for probing the cellular and molecular mechanisms underlying molluscan biology and evolution.
Collapse
|
7
|
Zakas C. Streblospio benedicti: A genetic model for understanding the evolution of development and life-history. Curr Top Dev Biol 2022; 147:497-521. [PMID: 35337460 DOI: 10.1016/bs.ctdb.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating developmental evolution usually requires comparing differences across related species to infer how phenotypic change results from embryological modifications. However, when comparing organisms from different environments, ecologies, and evolutionary histories there can be many confounding factors to finding a genetic basis for developmental differences. In the marine annelid Streblospio benedicti, there are two distinct types of offspring with independent developmental pathways that converge on the same adult phenotype. To my knowledge, S. benedicti is the only known species that has heritable (additive) genetic variation in developmental traits that results in alternative life-history strategies. Females produce either hundreds of small, swimming and feeding larvae, or dozens of large, nonfeeding larvae. The larvae differ in their morphology, ecology, and dispersal potential. This developmental dimorphism makes S. benedicti a unique and useful model for understanding how genetic changes result in developmental modifications that ultimately lead to overall life-history differences. Because the offspring phenotypes of S. benedicti are heritable, we can use forward genetics within a single evolutionary lineage to disentangle how development evolves, and which genes and regulatory mechanisms are involved.
Collapse
Affiliation(s)
- Christina Zakas
- North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
8
|
Liu X, Huan P, Liu B. Nonmuscle Myosin II is Required for Larval Shell Formation in a Patellogastropod. Front Cell Dev Biol 2022; 10:813741. [PMID: 35186928 PMCID: PMC8851382 DOI: 10.3389/fcell.2022.813741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying larval shell development in mollusks remain largely elusive. We previously found evident filamentous actin (F-actin) aggregations in the developing shell field of the patellogastropod Lottia goshimai, indicating roles of actomyosin networks in the process. In the present study, we functionally characterized nonmuscle myosin II (NM II), the key molecule in actomyosin networks, in the larval shell development of L. goshimai. Immunostaining revealed general colocalization of phosphorylated NM II and F-actin in the shell field. When inhibiting the phosphorylation of NM II using the specific inhibitor blebbistatin in one- or 2-h periods during shell field morphogenesis (6–8 h post-fertilization, hpf), the larval shell plate was completely lost in the veliger larva (24 hpf). Scanning electron microscopy revealed that the nascent larval shell plate could not be developed in the manipulated larvae (10 hpf). Further investigations revealed that key events in shell field morphogenesis were inhibited by blebbistatin pulses, including invagination of the shell field and cell shape changes and cell rearrangements during shell field morphogenesis. These factors caused the changed morphology of the shell field, despite the roughly retained “rosette” organization. To explore whether the specification of related cells was affected by blebbistatin treatments, we investigated the expression of four potential shell formation genes (bmp2/4, gata2/3, hox1 and engrailed). The four genes did not show evident changes in expression level, indicating unaffected cell specification in the shell field, while the gene expression patterns showed variations according to the altered morphology of the shell field. Together, our results reveal that NM II contributes to the morphogenesis of the shell field and is crucial for the formation of the larval shell plate in L. goshimai. These results add to the knowledge of the mechanisms of molluskan shell development.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Baozhong Liu,
| |
Collapse
|
9
|
Tan S, Huan P, Liu B. Molluscan dorsal-ventral patterning relying on BMP2/4 and Chordin provides insights into spiralian development and evolution. Mol Biol Evol 2021; 39:6424002. [PMID: 34751376 PMCID: PMC8789067 DOI: 10.1093/molbev/msab322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal–ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
10
|
Andrikou C, Hejnol A. FGF signaling acts on different levels of mesoderm development within Spiralia. Development 2021; 148:264929. [PMID: 33999997 PMCID: PMC8180254 DOI: 10.1242/dev.196089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/08/2021] [Indexed: 01/23/2023]
Abstract
FGF signaling is involved in mesoderm induction in members of deuterostomes (e.g. tunicates, hemichordates), but not in flies and nematodes, in which it has a role in mesoderm patterning and migration. However, we need comparable studies in other protostome taxa in order to decipher whether this mesoderm-inducing function of FGF extends beyond the lineage of deuterostomes. Here, we investigated the role of FGF signaling in mesoderm development in three species of lophophorates, a clade within the protostome group Spiralia. Our gene expression analyses show that the mesodermal molecular patterning is conserved between brachiopods and phoronids, but the spatial and temporal recruitment of transcription factors differs significantly. Moreover, the use of the inhibitor SU5402 demonstrates that FGF signaling is involved in different steps of mesoderm development, as well as in morphogenetic movements of gastrulation and axial elongation. Our findings suggest that the mesoderm-inducing role of FGF extends beyond the group of deuterostomes.
Collapse
Affiliation(s)
- Carmen Andrikou
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- University of Bergen, Department of Biological Sciences, Thormøhlensgate 55, 5006 Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
11
|
Yang W, Huan P, Liu B. Early shell field morphogenesis of a patellogastropod mollusk predominantly relies on cell movement and F-actin dynamics. BMC DEVELOPMENTAL BIOLOGY 2020; 20:18. [PMID: 32814562 PMCID: PMC7439683 DOI: 10.1186/s12861-020-00223-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/11/2020] [Indexed: 01/19/2023]
Abstract
Background The morphogenesis of the shell field is an essential step of molluscan shell formation, which exhibits both conserved features and interlineage variations. As one major gastropod lineage, the patellogastropods show different characters in its shell field morphogenesis compared to other gastropods (e.g., the pulmonate gastropod Lymnaea stagnalis), likely related to its epibolic gastrulation. The investigation on the shell field morphogenesis of patellogastropods would be useful to reveal the lineage-specific characters in the process and explore the deep conservation among different molluscan lineages. Results We investigated the early shell field morphogenesis in the patellogastropod Lottia goshimai using multiple techniques. Electron microscopy revealed distinct morphological characters for the central and peripheral cells of the characteristic rosette-like shell field. Gene expression analysis and F-actin staining suggested that the shell field morphogenesis in this species predominantly relied on cell movement and F-actin dynamics, while BrdU assay revealed that cell proliferation contributed little to the process. We found constant contacts between ectodermal and meso/endodermal tissues during the early stages of shell field morphogenesis, which did not support the induction of shell field by endodermal tissues in general, but a potential stage-specific induction was indicated. Conclusions Our results emphasize the roles of cell movement and F-actin dynamics during the morphogenesis of the shell field in Lo. goshimai, and suggest potential regulators such as diffusible factors and F-actin modulators. These findings reflect the differences in shell field morphogenesis of different gastropods, and add to the knowledge of molluscan larval shell formation.
Collapse
Affiliation(s)
- Weihong Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
12
|
Lanza AR, Seaver EC. Activin/Nodal signaling mediates dorsal-ventral axis formation before third quartet formation in embryos of the annelid Chaetopterus pergamentaceus. EvoDevo 2020; 11:17. [PMID: 32788949 PMCID: PMC7418201 DOI: 10.1186/s13227-020-00161-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The clade of protostome animals known as the Spiralia (e.g., mollusks, annelids, nemerteans and polyclad flatworms) shares a highly conserved program of early development. This includes shared arrangement of cells in the early-stage embryo and fates of descendant cells into embryonic quadrants. In spiralian embryos, a single cell in the D quadrant functions as an embryonic organizer to pattern the body axes. The precise timing of the organizing signal and its cellular identity varies among spiralians. Previous experiments in the annelid Chaetopterus pergamentaceus Cuvier, 1830 demonstrated that the D quadrant possesses an organizing role in body axes formation; however, the molecular signal and exact cellular identity of the organizer were unknown. RESULTS In this study, the timing of the signal and the specific signaling pathway that mediates organizing activity in C. pergamentaceus was investigated through short exposures to chemical inhibitors during early cleavage stages. Chemical interference of the Activin/Nodal pathway but not the BMP or MAPK pathways results in larvae that lack a detectable dorsal-ventral axis. Furthermore, these data show that the duration of organizing activity encompasses the 16 cell stage and is completed before the 32 cell stage. CONCLUSIONS The timing and molecular signaling pathway of the C. pergamentaceus organizer is comparable to that of another annelid, Capitella teleta, whose organizing signal is required through the 16 cell stage and localizes to micromere 2d. Since C. pergamentaceus is an early branching annelid, these data in conjunction with functional genomic investigations in C. teleta hint that the ancestral state of annelid dorsal-ventral axis patterning involved an organizing signal that occurs one to two cell divisions earlier than the organizing signal identified in mollusks, and that the signal is mediated by Activin/Nodal signaling. Our findings have significant evolutionary implications within the Spiralia, and furthermore suggest that global body patterning mechanisms may not be as conserved across bilaterians as was previously thought.
Collapse
Affiliation(s)
- Alexis R. Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA
| |
Collapse
|
13
|
Lyons DC, Perry KJ, Batzel G, Henry JQ. BMP signaling plays a role in anterior-neural/head development, but not organizer activity, in the gastropod Crepidula fornicata. Dev Biol 2020; 463:135-157. [PMID: 32389712 PMCID: PMC7444637 DOI: 10.1016/j.ydbio.2020.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BMP signaling is involved in many aspects of metazoan development, with two of the most conserved functions being to pattern the dorsal-ventral axis and to specify neural versus epidermal fates. An active area of research within developmental biology asks how BMP signaling was modified over evolution to build disparate body plans. Animals belonging to the superclade Spiralia/Lophotrochozoa are excellent experimental subjects for studying the evolution of BMP signaling because a highly conserved, stereotyped early cleavage program precedes the emergence of distinct body plans. In this study we examine the role of BMP signaling in one representative, the slipper snail Crepidula fornicata. We find that mRNAs encoding BMP pathway components (including the BMP ligand decapentaplegic, and BMP antagonists chordin and noggin-like proteins) are not asymmetrically localized along the dorsal-ventral axis in the early embryo, as they are in other species. Furthermore, when BMP signaling is perturbed by adding ectopic recombinant BMP4 protein, or by treating embryos with the selective Activin receptor-like kinase-2 (ALK-2) inhibitor Dorsomorphin Homolog 1 (DMH1), we observe no obvious effects on dorsal-ventral patterning within the posterior (post-trochal) region of the embryo. Instead, we see effects on head development and the balance between neural and epidermal fates specifically within the anterior, pre-trochal tissue derived from the 1q1 lineage. Our experiments define a window of BMP signaling sensitivity that ends at approximately 44-48 hours post fertilization, which occurs well after organizer activity has ended and after the dorsal-ventral axis has been determined. When embryos were exposed to BMP4 protein during this window, we observed morphogenetic defects leading to the separation of the anterior, 1q lineage from the rest of the embryo. The 1q-derived organoid remained largely undifferentiated and was radialized, while the post-trochal portion of the embryo developed relatively normally and exhibited clear signs of dorsal-ventral patterning. When embryos were exposed to DMH1 during the same time interval, we observed defects in the head, including protrusion of the apical plate, enlarged cerebral ganglia and ectopic ocelli, but otherwise the larvae appeared normal. No defects in shell development were noted following DMH1 treatments. The varied roles of BMP signaling in the development of several other spiralians have recently been examined. We discuss our results in this context, and highlight the diversity of developmental mechanisms within spiral-cleaving animals.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Kimberly J Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Grant Batzel
- Scripps Institution of Oceanography, U.C. San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Abstract
Snails, earthworms and flatworms are remarkably different animals, but they all exhibit a very similar mode of early embryogenesis: spiral cleavage. This is one of the most widespread developmental programs in animals, probably ancestral to almost half of the animal phyla, and therefore its study is essential for understanding animal development and evolution. However, our knowledge of spiral cleavage is still in its infancy. Recent technical and conceptual advances, such as the establishment of genome editing and improved phylogenetic resolution, are paving the way for a fresher and deeper look into this fascinating early cleavage mode.
Collapse
Affiliation(s)
- José M Martín-Durán
- Queen Mary, University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Ferdinand Marlétaz
- Molecular Genetics Unit, Okinawa Institute of Science & Technology, 1919-1, Tancha, Onna 904-0495, Japan
| |
Collapse
|
15
|
Girstmair J, Telford MJ. Reinvestigating the early embryogenesis in the flatworm Maritigrella crozieri highlights the unique spiral cleavage program found in polyclad flatworms. EvoDevo 2019; 10:12. [PMID: 31285819 PMCID: PMC6588950 DOI: 10.1186/s13227-019-0126-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/08/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Spiral cleavage is a conserved, early developmental mode found in several phyla of Lophotrochozoans resulting in highly diverse adult body plans. While the cleavage pattern has clearly been broadly conserved, it has also undergone many modifications in various taxa. The precise mechanisms of how different adaptations have altered the ancestral spiral cleavage pattern are an important ongoing evolutionary question, and adequately answering this question requires obtaining a broad developmental knowledge of different spirally cleaving taxa. In flatworms (Platyhelminthes), the spiral cleavage program has been lost or severely modified in most taxa. Polyclad flatworms, however, have retained the pattern up to the 32-cell stage. Here we study early embryogenesis of the cotylean polyclad flatworm Maritigrella crozieri to investigate how closely this species follows the canonical spiral cleavage pattern and to discover any potential deviations from it. RESULTS Using live imaging recordings and 3D reconstructions of embryos, we give a detailed picture of the events that occur during spiral cleavage in M. crozieri. We suggest, contrary to previous observations, that the four-cell stage is a product of unequal cleavages. We show that that the formation of third and fourth micromere quartets is accompanied by strong blebbing events; blebbing also accompanies the formation of micromere 4d. We find an important deviation from the canonical pattern of cleavages with clear evidence that micromere 4d follows an atypical cleavage pattern, so far exclusively found in polyclad flatworms. CONCLUSIONS Our findings highlight that early development in M. crozieri deviates in several important aspects from the canonical spiral cleavage pattern. We suggest that some of our observations extend to polyclad flatworms in general as they have been described in both suborders of the Polycladida, the Cotylea and Acotylea.
Collapse
Affiliation(s)
- Johannes Girstmair
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Maximilian J. Telford
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
16
|
Namigai† EKO, Shimeld SM. Live Imaging of Cleavage Variability and Vesicle Flow Dynamics in Dextral and Sinistral Spiralian Embryos. Zoolog Sci 2019; 36:5-16. [DOI: 10.2108/zs180088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/13/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Erica K. O. Namigai†
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| | - Sebastian M. Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, U. K
| |
Collapse
|
17
|
Fuentes R, Mullins MC, Fernández J. Formation and dynamics of cytoplasmic domains and their genetic regulation during the zebrafish oocyte-to-embryo transition. Mech Dev 2018; 154:259-269. [PMID: 30077623 DOI: 10.1016/j.mod.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
Abstract
Establishment and movement of cytoplasmic domains is of great importance for the emergence of cell polarity, germline segregation, embryonic axis specification and correct sorting of organelles and macromolecules into different embryonic cells. The zebrafish oocyte, egg and zygote are valuable material for the study of cytoplasmic domains formation and dynamics during development. In this review we examined how cytoplasmic domains form and are relocated during zebrafish early embryogenesis. Distinct cortical cytoplasmic domains (also referred to as ectoplasm domains) form first during early oogenesis by the localization of mRNAs to the vegetal or animal poles of the oocyte or radially throughout the cortex. Cytoplasmic segregation in the late oocyte relocates non-cortical cytoplasm (endoplasm) into the preblastodisc and yolk cell. The preblastodisc is a precursor to the blastodisc, which gives rise to the blastoderm and most the future embryo. After egg activation, the blastodisc enlarges by transport of cytoplasm from the yolk cell to the animal pole, along defined pathways or streamers that include a complex cytoskeletal meshwork and cytoplasmic movement at different speeds. A powerful actin ring, assembled at the margin of the blastodisc, appears to drive the massive streaming of cytoplasm. The fact that the mechanism(s) leading to the formation and relocation of cytoplasmic domains are affected in maternal-effect mutants indicates that these processes are under maternal control. Here, we also discuss why these mutants represent outstanding genetic entry points to investigate the genetic basis of cytoplasmic segregation. Functional studies, combined with the analysis of zebrafish mutants, generated by forward and reverse genetic strategies, are expected to decipher the molecular mechanism(s) by which the maternal factors regulate cytoplasmic movements during early vertebrate development.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan Fernández
- Department of Biology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Lanza AR, Seaver EC. An organizing role for the TGF-β signaling pathway in axes formation of the annelid Capitella teleta. Dev Biol 2018; 435:26-40. [DOI: 10.1016/j.ydbio.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 01/12/2023]
|
19
|
Henry JQ, Lyons DC, Perry KJ, Osborne C. Establishment and activity of the D quadrant organizer in the marine gastropod Crepidula fornicata. Dev Biol 2017; 431:282-296. [DOI: 10.1016/j.ydbio.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 09/02/2017] [Indexed: 10/18/2022]
|
20
|
Carrillo-Baltodano AM, Meyer NP. Decoupling brain from nerve cord development in the annelid Capitella teleta: Insights into the evolution of nervous systems. Dev Biol 2017; 431:134-144. [DOI: 10.1016/j.ydbio.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/17/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
21
|
Abstract
Spiralian development is characterized by stereotypic cell geometry and spindle orientation in early cleavage stage embryos, as well as conservation of ultimate fates of descendent clones. Diverse taxa such as molluscs, annelids, flatworms, and nemerteans exhibit spiralian development, but it is a mystery how such a conserved developmental program gives rise to such diverse body plans. This review highlights examples of variation during early development among spiralians, emphasizing recent experimental studies in the annelid Capitella teleta Blake, Grassle and Eckelbarger, 2009. Intracellular fate mapping studies in C. teleta reveal that many of its cells’ fates are shared among spiralians, but it also has a novel origin for trunk mesoderm (3c and 3d micromeres). Studies have identified an inductive signal in spiralians that has “organizing activity” and that influences cell fates in the surrounding embryo. Capitella teleta also has an organizing activity; however, surprisingly, it is localized to a different cell, it signals at a different developmental stage, and likely utilizes a distinct molecular signaling pathway compared with that in molluscs. A model is presented to provide a mechanistic explanation of evolutionary changes in the cellular identity of the organizer. Detailed experimental investigations in spiralian embryos demonstrate variation in developmental features that may influence the evolution of novel forms.
Collapse
Affiliation(s)
- Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080, USA
| |
Collapse
|
22
|
Lesoway MP, Collin R, Abouheif E. Early Activation of MAPK and Apoptosis in Nutritive Embryos of Calyptraeid Gastropods. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:449-461. [DOI: 10.1002/jez.b.22745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Maryna P. Lesoway
- Department of Biology McGill University Montreal Quebec Canada
- Smithsonian Tropical Research Institute Balboa Ancón Panamá
| | - Rachel Collin
- Smithsonian Tropical Research Institute Balboa Ancón Panamá
| | - Ehab Abouheif
- Department of Biology McGill University Montreal Quebec Canada
| |
Collapse
|
23
|
Kostyuchenko RP, Dondua AK. Peculiarities of isolated blastomere development of the polyhaete Alitta virens. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417030067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
25
|
Tan S, Huan P, Liu B. Expression patterns indicate that BMP2/4 and Chordin, not BMP5-8 and Gremlin, mediate dorsal-ventral patterning in the mollusk Crassostrea gigas. Dev Genes Evol 2017; 227:75-84. [PMID: 27987051 DOI: 10.1007/s00427-016-0570-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Though several bilaterian animals use a conserved BMP2/4-Chordin antagonism to pattern the dorsal-ventral (DV) axis, the only lophotrochozoan species in which early DV patterning has been studied to date, the leech Helobdella robusta, appears to employ BMP5-8 and Gremlin. These findings call into question the conservation of a common DV patterning mechanism among bilaterian animals. To explore whether the unusual DV patterning mechanism in H. robusta is also used in other lophotrochozoan species, we investigated the expression of orthologous genes in the early embryo of a bivalve mollusk, Crassostrea gigas. Searching of the genome and phylogenetic analysis revealed that C. gigas possesses single orthologs of BMP2/4, Chordin, and BMP5-8 and no Gremlin homolog. Whole mount in situ hybridization revealed mRNA localization of BMP2/4 and Chordin on the opposite sides of embryos, suggesting the potential involvement of a BMP2/4-Chordin antagonism in DV patterning in this species. Furthermore, universal BMP5-8 expression and the absence of a Gremlin homolog in the C. gigas genome called into question any major contribution by BMP5-8 and Gremlin to early DV patterning in this species. Additionally, we identified seven genes showing asymmetric expression along the DV axis, providing further insight into DV patterning in C. gigas. We present the first report of a Chordin gene in a lophotrochozoan species and of the opposite expression of BMP2/4 (dorsal) and Chordin (ventral) along the D/V axis of a lophotrochozoan embryo. The findings of this study further the knowledge of axis formation in lophotrochozoan species and provide insight into the evolution of the animal DV patterning mechanism.
Collapse
Affiliation(s)
- Sujian Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
26
|
The importance of evo-devo to an integrated understanding of molluscan biomineralisation. J Struct Biol 2016; 196:67-74. [DOI: 10.1016/j.jsb.2016.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 01/05/2023]
|
27
|
Henry JQ, Lyons DC. Molluscan models: Crepidula fornicata. Curr Opin Genet Dev 2016; 39:138-148. [PMID: 27526387 DOI: 10.1016/j.gde.2016.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Gastropod snails in the genus Crepidula have emerged as model systems for studying a metazoan super clade, the Spiralia. Recent work on one species in particular, Crepidula fornicata, has produced high-resolution cell lineage fate maps, details of morphogenetic events during gastrulation, key insights into the molecular underpinnings of early development, and the first demonstration of CRISPR/Cas9 genome editing in the Spiralia. Furthermore, invasive species of Crepidula are a significant ecological threat, while one of these, C. fornicata, is also being harvested for food. This review highlights progress towards developing these animals as models for evolutionary, developmental, and ecological studies. Such studies have contributed greatly to our understanding of biology in a major clade of bilaterians. This information may also help us to control and cultivate these snails.
Collapse
Affiliation(s)
- Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 South Goodwin Avenue, Urbana, IL 61801, United States.
| | - Deirdre C Lyons
- University of California, San Diego, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
28
|
Goulding MQ, Lambert JD. Mollusc models I. The snail Ilyanassa. Curr Opin Genet Dev 2016; 39:168-174. [PMID: 27497839 DOI: 10.1016/j.gde.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022]
Abstract
Ilyanassa obsoleta has been a model system for experimental embryology for over a century. Here we highlight new insight into early cell lineage specification in Ilyanassa. As in all molluscs and other spiralians, stereotyped cleavage patterns establish a homunculus of regional founder cells. Ongoing studies are beginning to dissect mechanisms of asymmetric cell division that specify these cells' fates. This is only part of the story: overlaid on intrinsic cell identities is a graded 'organizer' signal, and emerging evidence suggests wider roles for short-range intercellular signaling. Modern methods, combined with the intrinsic experimental advantages of Ilyanassa, offer attractive opportunities for studying basic developmental cell biology as well as its evolution over a wide range of phylogenetic scales.
Collapse
Affiliation(s)
- Morgan Q Goulding
- Division of Natural Science, Bethel University, McKenzie, TN 38201, United States.
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
29
|
Dpp/BMP2-4 Mediates Signaling from the D-Quadrant Organizer in a Spiralian Embryo. Curr Biol 2016; 26:2003-2010. [DOI: 10.1016/j.cub.2016.05.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 05/24/2016] [Indexed: 11/20/2022]
|
30
|
Seaver EC. Annelid models I: Capitella teleta. Curr Opin Genet Dev 2016; 39:35-41. [DOI: 10.1016/j.gde.2016.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
|
31
|
Kozin VV, Kostyuchenko RP. Evolutionary conservation and variability of the mesoderm development in spiralia: A peculiar pattern of nereid polychaetes. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016030079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Kozin VV, Filimonova DA, Kupriashova EE, Kostyuchenko RP. Mesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling. Mech Dev 2016; 140:1-11. [PMID: 27000638 DOI: 10.1016/j.mod.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Mesoderm represents the evolutionary youngest germ layer and forms numerous novel tissues in bilaterian animals. Despite the established conservation of the gene regulatory networks that drive mesoderm differentiation (e.g. myogenesis), mechanisms of mesoderm specification are highly variable in distant model species. Thus, broader phylogenetic sampling is required to reveal common features of mesoderm formation across bilaterians. Here we focus on a representative of Spiralia, the marine annelid Alitta virens, whose mesoderm development is still poorly investigated on the molecular level. We characterize three novel early mesodermal markers for A. virens - Twist, Mox, and Evx - which are differentially expressed within the mesodermal lineages. The Twist mRNA is ubiquitously distributed in the fertilized egg and exhibits specific expression in endomesodermal- and ectomesodermal-founder cells at gastrulation. Twist is expressed around the blastopore and later in a segmental metameric pattern. We consider this expression to be ancestral, and in support of the enterocoelic hypothesis of mesoderm evolution. We also revealed an early pattern of the MAPK activation in A. virens that is different from the previously reported pattern in spiralians. Inhibition of the MAPK pathway by U0126 disrupts the metameric Twist and Mox expression, indicating an early requirement of the MAPK cascade for proper morphogenesis of endomesodermal tissues.
Collapse
Affiliation(s)
- Vitaly V Kozin
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| | - Daria A Filimonova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina E Kupriashova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia.
| |
Collapse
|
33
|
Zukaite V, Cook RT, Walker AJ. Multiple roles for protein kinase C in gastropod embryogenesis. Cell Tissue Res 2015; 364:117-24. [DOI: 10.1007/s00441-015-2288-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/27/2015] [Indexed: 02/06/2023]
|
34
|
Fischer AHL, Mozzherin D, Eren AM, Lans KD, Wilson N, Cosentino C, Smith J. SeaBase: a multispecies transcriptomic resource and platform for gene network inference. Integr Comp Biol 2014; 54:250-63. [PMID: 24907201 DOI: 10.1093/icb/icu065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marine and aquatic animals are extraordinarily useful as models for identifying mechanisms of development and evolution, regeneration, resistance to cancer, longevity and symbiosis, among many other areas of research. This is due to the great diversity of these organisms and their wide-ranging capabilities. Genomics tools are essential for taking advantage of these "free lessons" of nature. However, genomics and transcriptomics are challenging in emerging model systems. Here, we present SeaBase, a tool for helping to meet these needs. Specifically, SeaBase provides a platform for sharing and searching transcriptome data. More importantly, SeaBase will support a growing number of tools for inferring gene network mechanisms. The first dataset available on SeaBase is a developmental transcriptomic profile of the sea anemone Nematostella vectensis (Anthozoa, Cnidaria). Additional datasets are currently being prepared and we are aiming to expand SeaBase to include user-supplied data for any number of marine and aquatic organisms, thereby supporting many potentially new models for gene network studies. SeaBase can be accessed online at: http://seabase.core.cli.mbl.edu.
Collapse
Affiliation(s)
- Antje H L Fischer
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy*Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Dmitry Mozzherin
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - A Murat Eren
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Kristen D Lans
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Nathan Wilson
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Joel Smith
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| |
Collapse
|
35
|
Pfeifer K, Schaub C, Domsch K, Dorresteijn A, Wolfstetter G. Maternal inheritance of twist and analysis of MAPK activation in embryos of the polychaete annelid Platynereis dumerilii. PLoS One 2014; 9:e96702. [PMID: 24792484 PMCID: PMC4008618 DOI: 10.1371/journal.pone.0096702] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to identify molecular mechanisms involved in the specification of the 4d (mesentoblast) lineage in Platynereis dumerilii. We employ RT-PCR and in situ hybridization against the Platynereis dumerilii twist homolog (Pdu-twist) to reveal mesodermal specification within this lineage. We show that Pdu-twist mRNA is already maternally distributed. After fertilization, ooplasmatic segregation leads to relocation of Pdu-twist transcripts into the somatoblast (2d) lineage and 4d, indicating that the maternal component of Pdu-twist might be an important prerequisite for further mesoderm specification but does not represent a defining characteristic of the mesentoblast. However, after the primordial germ cells have separated from the 4d lineage, zygotic transcription of Pdu-twist is exclusively observed in the myogenic progenitors, suggesting that mesodermal specification occurs after the 4d stage. Previous studies on spiral cleaving embryos revealed a spatio-temporal correlation between the 4d lineage and the activity of an embryonic organizer that is capable to induce the developmental fates of certain micromeres. This has raised the question if specification of the 4d lineage could be connected to the organizer activity. Therefore, we aimed to reveal the existence of such a proposed conserved organizer in Platynereis employing antibody staining against dpERK. In contrast to former observations in other spiralian embryos, activation of MAPK signaling during 2d and 4d formation cannot be detected which questions the existence of a conserved connection between organizer function and specification of the 4d lineage. However, our experiments unveil robust MAPK activation in the prospective nephroblasts as well as in the macromeres and some micromeres at the blastopore in gastrulating embryos. Inhibition of MAPK activation leads to larvae with a shortened body axis, defects in trunk muscle spreading and improper nervous system condensation, indicating a critical function for MAPK signaling for the reorganization of embryonic tissues during the gastrulation process.
Collapse
Affiliation(s)
- Kathrin Pfeifer
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Christoph Schaub
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Katrin Domsch
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Adriaan Dorresteijn
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Georg Wolfstetter
- Institut für Allgemeine und Spezielle Zoologie; Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gieβen, Gieβen, Germany
- * E-mail:
| |
Collapse
|
36
|
Schmerer MW, Null RW, Shankland M. Developmental transition to bilaterally symmetric cell divisions is regulated by Pax-mediated transcription in embryos of the leech Helobdella austinensis. Dev Biol 2013; 382:149-59. [PMID: 23891819 DOI: 10.1016/j.ydbio.2013.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/08/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
The leech embryo develops by spiral cleavage, and establishes the symmetry properties of its adult body plan through the bilaterally symmetric divisions of mesodermal proteloblast DM″ and ectodermal proteloblast DNOPQ‴. We here show that transcriptional inhibitors α-amanitin and actinomycin D specifically disrupt the symmetry and orientation of these two proteloblast cell divisions while having no apparent effect on the timing or geometry of other divisions. Transcriptional inhibition had a similar effect on both proteloblasts, i.e. cytokinesis was highly asymmetric and the cleavage plane roughly orthogonal to that seen during normal development. These findings suggest that zygotic gene product(s) are required, either directly or indirectly, for the correct placement of the proteloblast cleavage furrow. The same phenotypes were also observed following in vivo expression of dominant-negative Pax gene constructs. These dominant-negative phenotypes depended on protein/DNA interaction, and could be rescued by coexpression of full length Pax proteins. However, symmetric cleavage of the mesodermal proteloblast was rescued by full length constructs of either Hau-Paxβ1 or Hau-Pax2/5/8, while only Hau-Paxβ1 rescued the symmetry of ectodermal cleavage. We conclude that both proteloblasts need Pax-mediated transcription to adopt their normally symmetric cleavage patterns, but differ in terms of the specific Pax proteins required. The implication of these findings for the evolution of spiral cleavage is discussed.
Collapse
Affiliation(s)
- Matthew W Schmerer
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
37
|
Amiel AR, Henry JQ, Seaver EC. An organizing activity is required for head patterning and cell fate specification in the polychaete annelid Capitella teleta: New insights into cell–cell signaling in Lophotrochozoa. Dev Biol 2013; 379:107-22. [DOI: 10.1016/j.ydbio.2013.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022]
|
38
|
Gharbiah M, Nakamoto A, Nagy LM. Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta. Dev Genes Evol 2013; 223:225-35. [PMID: 23592252 DOI: 10.1007/s00427-013-0440-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/05/2013] [Indexed: 11/29/2022]
Abstract
Two primary ciliary bands, the prototroch and metatroch, are required for locomotion and in the feeding larvae of many spiralians. The metatroch has been reported to have different cellular origins in the molluscs Crepidula fornicata and Ilyanassa obsoleta, as well as in the annelid Polygordius lacteus, consistent with multiple independent origins of the spiralian metatroch. Here, we describe in further detail the cell lineage of the ciliary bands in the gastropod mollusc I. obsoleta using intracellular lineage tracing and the expression of an acetylated tubulin antigen that serves as a marker for ciliated cells. We find that the I. obsoleta metatroch is formed primarily by third quartet derivatives as well as a small number of second quartet derivatives. These results differ from the described metatrochal lineage in the mollusc C. fornicata that derives solely from the second quartet or the metatrochal lineage in the annelid P. lacteus that derives solely from the third quartet. The present study adds to a growing body of literature concerning the evolution of the metatroch and the plasticity of cell fates in homologous micromeres in spiralian embryos.
Collapse
Affiliation(s)
- Maey Gharbiah
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
39
|
Fischer AH, Arendt D. Mesoteloblast-Like Mesodermal Stem Cells in the Polychaete AnnelidPlatynereis dumerilii(Nereididae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:94-104. [DOI: 10.1002/jez.b.22486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 01/22/2023]
Affiliation(s)
- Antje H.L. Fischer
- Developmental Biology Unit; European Molecular Biology Laboratory; Heidelberg; Germany
| | - Detlev Arendt
- Developmental Biology Unit; European Molecular Biology Laboratory; Heidelberg; Germany
| |
Collapse
|
40
|
Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development 2013; 140:1024-33. [PMID: 23344709 DOI: 10.1242/dev.083790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FGFs act in vertebrate mesoderm induction and also play key roles in early mesoderm formation in ascidians and amphioxus. However, in sea urchins initial characterizations of FGF function do not support a role in early mesoderm induction, making the ancestral roles of FGF signaling and mechanisms of mesoderm specification in deuterostomes unclear. In order to better characterize the evolution of mesoderm formation, we have examined the role of FGF signaling during mesoderm development in Saccoglossus kowalevskii, an experimentally tractable representative of hemichordates. We report the expression of an FGF ligand, fgf8/17/18, in ectoderm overlying sites of mesoderm specification within the archenteron endomesoderm. Embryological experiments demonstrate that mesoderm induction in the archenteron requires contact with ectoderm, and loss-of-function experiments indicate that both FGF ligand and receptor are necessary for mesoderm specification. fgf8/17/18 gain-of-function experiments establish that FGF8/17/18 is sufficient to induce mesoderm in adjacent endomesoderm. These experiments suggest that FGF signaling is necessary from the earliest stages of mesoderm specification and is required for all mesoderm development. Furthermore, they suggest that the archenteron is competent to form mesoderm or endoderm, and that FGF signaling from the ectoderm defines the location and amount of mesoderm. When considered in a comparative context, these data support a phylogenetically broad requirement for FGF8/17/18 signaling in mesoderm specification and suggest that FGF signaling played an ancestral role in deuterostome mesoderm formation.
Collapse
Affiliation(s)
- Stephen A Green
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
41
|
Kozin VV, Babakhanova RA, Kostyuchenko RP. Functional role for MAP kinase signaling in cell lineage and dorsoventral axis specification in the basal gastropod Testudinalia testudinalis (Patellogastropoda, Mollusca). Russ J Dev Biol 2013. [DOI: 10.1134/s1062360413010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Lyons DC, Perry KJ, Lesoway MP, Henry JQ. Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development. EvoDevo 2012; 3:21. [PMID: 22992254 PMCID: PMC3724503 DOI: 10.1186/2041-9139-3-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Animals with a spiral cleavage program, such as mollusks and annelids, make up the majority of the superphylum Lophotrochozoa. The great diversity of larval and adult body plans in this group emerges from this highly conserved developmental program. The 4d micromere is one of the most conserved aspects of spiralian development. Unlike the preceding pattern of spiral divisions, cleavages within the 4d teloblastic sublineages are bilateral, representing a critical transition towards constructing the bilaterian body plan. These cells give rise to the visceral mesoderm in virtually all spiralians examined and in many species they also contribute to the endodermal intestine. Hence, the 4d lineage is an ideal one for studying the evolution and diversification of the bipotential endomesodermal germ layer in protostomes at the level of individual cells. Little is known of how division patterns are controlled or how mesodermal and endodermal sublineages diverge in spiralians. Detailed modern fate maps for 4d exist in only a few species of clitellate annelids, specifically in glossiphoniid leeches and the sludge worm Tubifex. We investigated the 4d lineage in the gastropod Crepidula fornicata, an established model system for spiralian biology, and in a closely related direct-developing species, C. convexa. Results High-resolution cell lineage tracing techniques were used to study the 4d lineage of C. fornicata and C. convexa. We present a new nomenclature to name the progeny of 4d, and report the fate map for the sublineages up through the birth of the first five pairs of teloblast daughter cells (when 28 cells are present in the 4d sublineage), and describe each clone’s behavior during gastrulation and later stages as these undergo differentiation. We identify the precise origin of the intestine, two cells of the larval kidney complex, the larval retractor muscles and the presumptive germ cells, among others. Other tissues that arise later in the 4d lineage include the adult heart, internal foot tissues, and additional muscle and mesenchymal cells derived from later-born progeny of the left and right teloblasts. To test whether other cells can compensate for the loss of these tissues (that is, undergo regulation), specific cells were ablated in C. fornicata. Conclusions Our results present the first fate map of the 4d micromere sublineages in a mollusk. The fate map reveals that endodermal and mesodermal fates segregate much later than previously thought. We observed little evidence of regulation between sublineages, consistent with a lineage-driven cell specification process. Our results provide a framework for comparisons with other spiralians and lay the groundwork for investigation of the molecular mechanisms of endomesoderm formation, germ line segregation and bilateral differentiation in Crepidula.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Department of Cell and Developmental Biology, University of Illinois, 601 South Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Annelids (the segmented worms) have a long history in studies of animal developmental biology, particularly with regards to their cleavage patterns during early development and their neurobiology. With the relatively recent reorganisation of the phylogeny of the animal kingdom, and the distinction of the super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus for studying this phylum has arisen. As one of the major phyla within Lophotrochozoa, Annelida are playing an important role in deducing the developmental biology of the last common ancestor of the protostomes and deuterostomes, an animal from which >98% of all described animal species evolved.
Collapse
Affiliation(s)
- David E. K. Ferrier
- The Scottish Oceans Institute, the Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK
| |
Collapse
|
44
|
Chan XY, Lambert JD. Patterning a spiralian embryo: A segregated RNA for a Tis11 ortholog is required in the 3a and 3b cells of the Ilyanassa embryo. Dev Biol 2011; 349:102-12. [DOI: 10.1016/j.ydbio.2010.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/10/2023]
|
45
|
Rabinowitz JS, Lambert JD. Spiralian quartet developmental potential is regulated by specific localization elements that mediate asymmetric RNA segregation. Development 2010; 137:4039-49. [PMID: 21041364 DOI: 10.1242/dev.055269] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Spiralian embryos are found in a large group of invertebrate phyla but are largely uncharacterized at a molecular level. These embryos are thought to be particularly reliant on autonomous cues for patterning, and thus represent potentially useful models for understanding asymmetric cell division. The series of asymmetric divisions that produce the micromere quartets are particularly important for patterning because they subdivide the animal-vegetal axis into tiers of cells with different developmental potentials. In the embryo of the snail Ilyanassa, the IoLR5 RNA is specifically segregated to the first quartet cells during the third cleavage. Here, we show that this RNA, and later the protein, are maintained in the 1q(121) cells and their descendents throughout development. Some IoLR5-expressing cells become internalized and join the developing cerebral ganglia. Knockdown of IoLR5 protein results in loss of the larval eyes, which normally develop in association with these ganglia. Segregation of this RNA to the first quartet cells does not occur if centrosomal localization is bypassed. We show that the specific inheritance of the RNA by the first quartet cells is driven by a discrete RNA sequence in the 3' UTR that is necessary and sufficient for localization and segregation, and that localization of another RNA to the first quartet is mediated by a similar element. These results demonstrate that micromere quartet identity, a hallmark of the ancient spiralian developmental program, is controlled in part by specific RNA localization motifs.
Collapse
|
46
|
|
47
|
Hejnol A. A twist in time--the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol 2010; 50:695-706. [PMID: 21558233 DOI: 10.1093/icb/icq103] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent progress in reconstructing animal relationships enables us to draw a better picture of the evolution of important characters such as organ systems and developmental processes. By mapping these characters onto the phylogenetic framework, we can detect changes that have occurred in them during evolution. The spiral mode of development is a complex of characters that is present in many lineages, such as nemerteans, annelids, mollusks, and polyclad platyhelminthes. However, some of these lineages show variations of this general program in which sub-characters are modified without changing the overlying pattern. Recent molecular phylogenies suggest that spiral cleavage was lost, or at least has deviated from its original pattern, in more lineages than was previously thought (e.g., in rotifers, gastrotrichs, bryozoans, brachiopods, and phoronids). Here, I summarize recent progress in reconstructing the spiralian tree of life and discuss its significance for our understanding of the spiral-cleavage character complex. I conclude that more detailed knowledge of the development of spiralian taxa is necessary to understand the mechanisms behind these changes, and to understand the evolutionary changes and adaptations of spiralian embryos.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, NO-5008, Bergen, Norway.
| |
Collapse
|
48
|
Gharbiah M, Cooley J, Leise EM, Nakamoto A, Rabinowitz JS, Lambert JD, Nagy LM. The snail Ilyanassa: a reemerging model for studies in development. Cold Spring Harb Protoc 2010; 2009:pdb.emo120. [PMID: 20147120 DOI: 10.1101/pdb.emo120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ilyanassa obsoleta is a marine gastropod that is a long-standing and very useful model for studies of embryonic development. It is especially important as a model for the spiralian development program, a distinctive mode of early development shared by a large group of animal phyla, but poorly understood. Ilyanassa adults are readily obtainable and easy to keep in the laboratory, and they produce large numbers of embryos throughout most of the year. The embryos are amenable to classic embryological manipulation techniques as well as a growing number of molecular approaches. In this article, we present an overview of aspects of its biology and use as a model organism.
Collapse
Affiliation(s)
- Maey Gharbiah
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Henry JJ, Collin R, Perry KJ. The slipper snail, Crepidula: an emerging lophotrochozoan model system. THE BIOLOGICAL BULLETIN 2010; 218:211-229. [PMID: 20570845 DOI: 10.1086/bblv218n3p211] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent developmental and genomic research focused on "slipper snails" in the genus Crepidula has positioned Crepidula fornicata as a de facto model system for lophotrochozoan development. Here we review recent developments, as well as earlier reports demonstrating the widespread use of this system in studies of development and life history. Recent studies have resulted in a well-resolved fate map of embryonic cell lineage, documented mechanisms for axis determination and D quadrant specification, preliminary gene expression patterns, and the successful application of loss- and gain-of-function assays. The recent development of expressed sequence tags and preliminary genomics work will promote the use of this system, particularly in the area of developmental biology. A wealth of comparative information on phylogenetic relationships, variation in mode of development within the family, and numerous studies on larval biology and metamorphosis, primarily in Crepidula fornicata, make these snails a powerful tool for studies of the evolution of the mechanisms of development in the Mollusca and Lophotrochozoa. By bringing a review of the current state of knowledge of Crepidula life histories and development together with some detailed experimental methods, we hope to encourage further use of this system in various fields of investigation.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
50
|
Abstract
At least five animal phyla exhibit spiralian development, which is characterized by striking similarities in the geometry of the early cleavage pattern and the fate map of the blastula, along with similarities in larval morphology. Recent advances in reconstructing the phylogeny of spiralians and their relatives suggest that the common ancestor of a large clade of protostome phyla known as the Lophotrochozoa had spiralian development. In this minireview, I describe characteristics of spiralian development and some recent insights into its mechanisms and evolution.
Collapse
Affiliation(s)
- J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14607, USA.
| |
Collapse
|