1
|
Iwamoto-Stohl LK, Petelski AA, Meglicki M, Fu A, Khan S, Specht H, Huffman G, Derks J, Jorgensen V, Weatherbee BAT, Weberling A, Gantner CW, Mandelbaum RS, Paulson RJ, Lam L, Ahmady A, Vasquez ES, Slavov N, Zernicka-Goetz M. Proteome asymmetry in mouse and human embryos before fate specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609777. [PMID: 39253500 PMCID: PMC11383291 DOI: 10.1101/2024.08.26.609777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pre-patterning of the embryo, driven by spatially localized factors, is a common feature across several non-mammalian species 1-4 . However, mammals display regulative development and thus it was thought that blastomeres of the embryo do not show such pre-patterning, contributing randomly to the three lineages of the blastocyst: the epiblast, primitive endoderm and trophectoderm that will generate the new organism, the yolk sac and placenta respectively 4-6 . Unexpectedly, early blastomeres of mouse and human embryos have been reported to have distinct developmental fates, potential and heterogeneous abundance of certain transcripts 7-12 . Nevertheless, the extent of the earliest intra-embryo differences remains unclear and controversial. Here, by utilizing multiplexed and label-free single-cell proteomics by mass-spectrometry 13 , we show that 2-cell mouse and human embryos contain an alpha and a beta blastomere as defined by differential abundance of hundreds of proteins exhibiting strong functional enrichment for protein synthesis, transport, and degradation. Such asymmetrically distributed proteins include Gps1 and Nedd8, depletion or overexpression of which in one blastomere of the 2-cell embryo impacts lineage segregation. These protein asymmetries increase at 4-cell stage. Intriguingly, halved mouse zygotes display asymmetric protein abundance that resembles alpha and beta blastomeres, suggesting differential proteome localization already within zygotes. We find that beta blastomeres give rise to a blastocyst with a higher proportion of epiblast cells than alpha blastomeres and that vegetal blastomeres, which are known to have a reduced developmental potential, are more likely to be alpha. Human 2-cell blastomeres also partition into two clusters sharing strong concordance with clusters found in mouse, in terms of differentially abundant proteins and functional enrichment. To our knowledge, this is the first demonstration of intra-zygotic and inter-blastomere proteomic asymmetry in mammals that has a role in lineage segregation.
Collapse
|
2
|
Porokh V, Kyjovská D, Martonová M, Klenková T, Otevřel P, Kloudová S, Holubcová Z. Zygotic spindle orientation defines cleavage pattern and nuclear status of human embryos. Nat Commun 2024; 15:6369. [PMID: 39075061 PMCID: PMC11286845 DOI: 10.1038/s41467-024-50732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
The first embryonic division represents a starting point for the development of a new individual. In many species, tight control over the first embryonic division ensures its accuracy. However, the first division in humans is often erroneous and can impair embryo development. To delineate the spatiotemporal organization of the first mitotic division typical for normal human embryo development, we systematically analyzed a unique timelapse dataset of 300 IVF embryos that developed into healthy newborns. The zygotic division pattern of these best-quality embryos was compared to their siblings that failed to implant or arrested during cleavage stage. We show that division at the right angle to the juxtaposed pronuclei is preferential and supports faithful zygotic division. Alternative configurations of the first mitosis are associated with reduced clustering of nucleoli and multinucleation at the 2-cell stage, which are more common in women of advanced age. Collectively, these data imply that orientation of the first division predisposes human embryos to genetic (in)stability and may contribute to aneuploidy and age-related infertility.
Collapse
Affiliation(s)
- Volodymyr Porokh
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Drahomíra Kyjovská
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Martina Martonová
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Tereza Klenková
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Pavel Otevřel
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Soňa Kloudová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Zuzana Holubcová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic.
| |
Collapse
|
3
|
Zernicki-Glover S, Stanislawska N, Patel EM, Kavanagh YH, Meglicki M. Blastomere size in the human 2-cell embryo predicts the division order that leads to imbalanced lineage contribution to the future body. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001181. [PMID: 38841597 PMCID: PMC11151110 DOI: 10.17912/micropub.biology.001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 06/07/2024]
Abstract
Retrospective tracing of somatic mutations predicted that most cells in the human body could be traced back to a single cell of the 2-cell stage embryo. Accordingly, a recent prospective study of the developmental trajectory of blastomeres in human embryos confirmed that progeny of the first 2-cell stage blastomere to divide generates more epiblast cells (future body). How the 2-cell blastomeres differ is unknown. Here, we show that 2-cell stage blastomeres in human embryos are asymmetric; they differ in size and the bigger blastomere divides first to 4-cell stage. We propose that this asymmetry might originate differences in cell fate.
Collapse
Affiliation(s)
| | | | - Ekta M. Patel
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States
| | - Yu Hua Kavanagh
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, England, United Kingdom
| | - Maciej Meglicki
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, England, United Kingdom
| |
Collapse
|
4
|
Castro Colabianchi AM, González Pérez NG, Franchini LF, López SL. A maternal dorsoventral prepattern revealed by an asymmetric distribution of ventralizing molecules before fertilization in Xenopus laevis. Front Cell Dev Biol 2024; 12:1365705. [PMID: 38572484 PMCID: PMC10987785 DOI: 10.3389/fcell.2024.1365705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The establishment of the embryonic dorsoventral axis in Xenopus occurs when the radial symmetry around the egg's animal-vegetal axis is broken to give rise to the typical symmetry of Bilaterians. We have previously shown that the Notch1 protein is ventrally enriched during early embryogenesis in Xenopus laevis and zebrafish and exerts ventralizing activity through β-Catenin destabilization and the positive regulation of ventral center genes in X. laevis. These findings led us to further investigate when these asymmetries arise. In this work, we show that the asymmetrical distribution of Notch1 protein and mRNA precedes cortical rotation and even fertilization in X. laevis. Moreover, we found that in unfertilized eggs transcripts encoded by the ventralizing gene bmp4 are also asymmetrically distributed in the animal hemisphere and notch1 transcripts accumulate consistently on the same side of the eccentric maturation point. Strikingly, a Notch1 asymmetry orthogonal to the animal-vegetal axis appears during X. laevis oogenesis. Thus, we show for the first time a maternal bias in the distribution of molecules that are later involved in ventral patterning during embryonic axialization, strongly supporting the hypothesis of a dorsoventral prepattern or intrinsic bilaterality of Xenopus eggs before fertilization.
Collapse
Affiliation(s)
- Aitana M. Castro Colabianchi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Nicolás G. González Pérez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| | - Lucía F. Franchini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI) “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia L. López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología / 1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Laboratorio de Embriología Molecular “Prof. Dr. Andrés E. Carrasco”, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis” (IBCN), Buenos Aires, Argentina
| |
Collapse
|
5
|
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends Genet 2024; 40:39-51. [PMID: 37949723 DOI: 10.1016/j.tig.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ten D Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
6
|
Lamba A, Zernicka-Goetz M. The role of polarization and early heterogeneities in the mammalian first cell fate decision. Curr Top Dev Biol 2023; 154:169-196. [PMID: 37100517 DOI: 10.1016/bs.ctdb.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The first cell fate decision is the process by which cells of an embryo take on distinct lineage identities for the first time, representing the beginning of patterning during development. In mammals, this process separates an embryonic inner cell mass lineage (future new organism) from an extra-embryonic trophectoderm lineage (future placenta), and in the mouse, this is classically attributed to the consequences of apical-basal polarity. The mouse embryo acquires this polarity at the 8-cell stage, indicated by cap-like protein domains on the apical surface of each cell; those cells which retain polarity over subsequent divisions are specified as trophectoderm, and the rest as inner cell mass. Recent research has advanced our knowledge of this process - this review will discuss mechanisms behind the establishment of polarity and distribution of the apical domain, different factors affecting the first cell fate decision including heterogeneities between cells of the very early embryo, and the conservation of developmental mechanisms across species, including human.
Collapse
Affiliation(s)
- Adiyant Lamba
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
7
|
Zhu M, Shahbazi M, Martin A, Zhang C, Sozen B, Borsos M, Mandelbaum RS, Paulson RJ, Mole MA, Esbert M, Titus S, Scott RT, Campbell A, Fishel S, Gradinaru V, Zhao H, Wu K, Chen ZJ, Seli E, de Los Santos MJ, Zernicka Goetz M. Human embryo polarization requires PLC signaling to mediate trophectoderm specification. eLife 2021; 10:65068. [PMID: 34569938 PMCID: PMC8514238 DOI: 10.7554/elife.65068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8-16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the eight-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos.
Collapse
Affiliation(s)
- Meng Zhu
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom.,Blavatnik Institute, Harvard Medical School, Department of Genetics, Boston, United States
| | - Marta Shahbazi
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom.,MRC Laboratory of Molecular Biology. Francis Crick Avenue, Biomedical Campus., Cambridge, United Kingdom
| | - Angel Martin
- IVIRMA Valencia, IVI Foundation, Valencia, Spain
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Berna Sozen
- Developmental Plasticity and Self-Organization Group, California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States.,Yale School of Medicine, Department of Genetics, New Haven, CT, United States
| | - Mate Borsos
- California Institute of Technology, Division of Biology and Biological Engineering,, Pasadena, United States
| | - Rachel S Mandelbaum
- USC Fertility, University of Southern California, Keck School of Medicine, Los Angeles, United Kingdom
| | - Richard J Paulson
- USC Fertility, University of Southern California, Keck School of Medicine, Los Angeles, United Kingdom
| | - Matteo A Mole
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom
| | - Marga Esbert
- IVIRMA New Jersey, Basking Ridge, NJ, United States
| | - Shiny Titus
- IVIRMA New Jersey, Basking Ridge, NJ, United States
| | | | - Alison Campbell
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham, United Kingdom
| | - Simon Fishel
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham, United Kingdom.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Viviana Gradinaru
- MRC Laboratory of Molecular Biology. Francis Crick Avenue, Biomedical Campus., Cambridge, United Kingdom
| | - Han Zhao
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Emre Seli
- IVIRMA New Jersey, Basking Ridge, NJ, United States.,Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, United States
| | | | - Magdalena Zernicka Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom.,Developmental Plasticity and Self-Organization Group, California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| |
Collapse
|
8
|
Microfabricated Device for High-Resolution Imaging of Preimplantation Embryos. Methods Mol Biol 2020. [PMID: 32944900 DOI: 10.1007/978-1-0716-0958-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mouse preimplantation embryo is an excellent system for studying how mammalian cells organize dynamically into increasingly complex structures. Accessible to experimental and genetic manipulations, its normal or perturbed development can be scrutinized ex vivo by real-time imaging from fertilization to late blastocyst stage. High-resolution imaging of multiple embryos at the same time can be compromised by embryos displacement during imaging. We have developed an inexpensive and easy-to-produce imaging device that facilitates greatly the imaging of preimplantation embryo. In this chapter, we describe the different steps of production and storage of the imaging device as well as its use for live imaging of mouse preimplantation embryos expressing fluorescent reporters from genetically modified alleles or after in vitro transcribed mRNA transfer by microinjection or electroporation.
Collapse
|
9
|
Molè MA, Weberling A, Zernicka-Goetz M. Comparative analysis of human and mouse development: From zygote to pre-gastrulation. Curr Top Dev Biol 2019; 136:113-138. [PMID: 31959285 DOI: 10.1016/bs.ctdb.2019.10.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of the mammalian embryo begins with formation of the totipotent zygote during fertilization. This initial cell is able to give rise to every embryonic tissue of the developing organism as well as all extra-embryonic lineages, such as the placenta and the yolk sac, which are essential for the initial patterning and support growth of the fetus until birth. As the embryo transits from pre- to post-implantation, major structural and transcriptional changes occur within the embryonic lineage to set up the basis for the subsequent phase of gastrulation. Fine-tuned coordination of cell division, morphogenesis and differentiation is essential to ultimately promote assembly of the future fetus. Here, we review the current knowledge of mammalian development of both mouse and human focusing on morphogenetic processes leading to the onset of gastrulation, when the embryonic anterior-posterior axis becomes established and the three germ layers start to be specified.
Collapse
|
10
|
Hupalowska A, Jedrusik A, Zhu M, Bedford MT, Glover DM, Zernicka-Goetz M. CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development. Cell 2019; 175:1902-1916.e13. [PMID: 30550788 PMCID: PMC6292842 DOI: 10.1016/j.cell.2018.11.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/29/2018] [Accepted: 11/16/2018] [Indexed: 01/20/2023]
Abstract
Nuclear architecture has never been carefully examined during early mammalian development at the stages leading to establishment of the embryonic and extra-embryonic lineages. Heterogeneous activity of the methyltransferase CARM1 during these stages results in differential methylation of histone H3R26 to modulate establishment of these two lineages. Here we show that CARM1 accumulates in nuclear granules at the 2- to 4-cell stage transition in the mouse embryo, with the majority corresponding to paraspeckles. The paraspeckle component Neat1 and its partner p54nrb are required for CARM1's association with paraspeckles and for H3R26 methylation. Conversely, CARM1 also influences paraspeckle organization. Depletion of Neat1 or p54nrb results in arrest at the 16- to 32-cell stage, with elevated expression of transcription factor Cdx2, promoting differentiation into the extra-embryonic lineage. This developmental arrest occurs at an earlier stage than following CARM1 depletion, indicating that paraspeckles act upstream of CARM1 but also have additional earlier roles in fate choice.
Collapse
Affiliation(s)
- Anna Hupalowska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Agnieszka Jedrusik
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, The University of Texas, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
11
|
Boer LL, Schepens-Franke AN, Oostra RJ. Two is a Crowd: Two is a Crowd: On the Enigmatic Etiopathogenesis of Conjoined Twinning. Clin Anat 2019; 32:722-741. [PMID: 31001856 PMCID: PMC6849862 DOI: 10.1002/ca.23387] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
In this article, we provide a comprehensive overview of multiple facets in the puzzling genesis of symmetrical conjoined twins. The etiopathogenesis of conjoined twins remains matter for ongoing debate and is currently cited-in virtually every paper on conjoined twins-as partial fission or secondary fusion. Both theories could potentially be extrapolated from embryological adjustments exclusively seen in conjoined twins. Adoption of these, seemingly factual, theoretical proposals has (unconsciously) resulted in crystallized patterns of verbal and graphic representations concerning the enigmatic genesis of conjoined twins. Critical evaluation on their plausibility and solidity remains however largely absent. As it appears, both the fission and fusion theories cannot be applied to the full range of conjunction possibilities and thus remain matter for persistent inconclusiveness. We propose that initial duplication of axially located morphogenetic potent primordia could be the initiating factor in the genesis of ventrally, laterally, and caudally conjoined twins. The mutual position of two primordia results in neo-axial orientation and/or interaction aplasia. Both these embryological adjustments result in conjunction patterns that may seemingly appear as being caused by fission or fusion. However, as we will substantiate, neither fission nor fusion are the cause of most conjoined twinning types; rather what is interpreted as fission or fusion is actually the result of the twinning process itself. Furthermore, we will discuss the currently held views on the origin of conjoined twins and its commonly assumed etiological correlation with monozygotic twinning. Finally, considerations are presented which indicate that the dorsal conjunction group is etiologically and pathogenetically different from other symmetric conjoined twins. This leads us to propose that dorsally united twins could actually be caused by secondary fusion of two initially separate monozygotic twins. An additional reason for the ongoing etiopathogenetic debate on the genesis of conjoined twins is because different types of conjoined twins are classically placed in one overarching receptacle, which has hindered the quest for answers. Clin. Anat. 32:722-741, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucas L Boer
- Department of Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annelieke N Schepens-Franke
- Department of Anatomy and Museum for Anatomy and Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roelof Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Biase FH, Wu Q, Calandrelli R, Rivas-Astroza M, Zhou S, Chen Z, Zhong S. Rainbow-Seq: Combining Cell Lineage Tracing with Single-Cell RNA Sequencing in Preimplantation Embryos. iScience 2018; 7:16-29. [PMID: 30267678 PMCID: PMC6135740 DOI: 10.1016/j.isci.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
We developed the Rainbow-seq technology to trace cell division history and reveal single-cell transcriptomes. With distinct fluorescent protein genes as lineage markers, Rainbow-seq enables each single-cell RNA sequencing (RNA-seq) experiment to simultaneously decode the lineage marker genes and read single-cell transcriptomes. We triggered lineage tracking in each blastomere at the 2-cell stage, observed microscopically inequivalent contributions of the progeny to the two embryonic poles at the blastocyst stage, and analyzed every single cell at either 4- or 8-cell stage with deep paired-end sequencing of full-length transcripts. Although lineage difference was not marked unequivocally at a single-gene level, it became clear when the transcriptome was analyzed as a whole. Moreover, several groups of novel transcript isoforms with embedded repeat sequences exhibited lineage difference, suggesting a possible link between DNA demethylation and cell fate decision. Rainbow-seq bridged a critical gap between division history and single-cell RNA-seq assays.
Collapse
Affiliation(s)
- Fernando H Biase
- Department of Bioengineering, University of California San Diego, San Diego, CA 92130, USA
| | - Qiuyang Wu
- Department of Bioengineering, University of California San Diego, San Diego, CA 92130, USA; Department of Computer Science and Technology, Tongji University, Shanghai 201804, China
| | - Riccardo Calandrelli
- Department of Bioengineering, University of California San Diego, San Diego, CA 92130, USA
| | - Marcelo Rivas-Astroza
- Department of Bioengineering, University of California San Diego, San Diego, CA 92130, USA
| | - Shuigeng Zhou
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California San Diego, San Diego, CA 92130, USA.
| |
Collapse
|
13
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
14
|
Maartens A. An interview with Richard Gardner. Development 2018; 145:145/13/dev167858. [PMID: 29967122 DOI: 10.1242/dev.167858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Richard Gardner began his career as a PhD student with Bob Edwards and ran his own lab, focusing on patterning of the early mammalian embryo, at the University of Oxford from 1973 until his retirement in 2008. A Fellow of the Royal Society since 1979, he was knighted for services to Biological Sciences in 2005 and received an Honorary Doctorate from Cambridge University in 2012. This year he was awarded the British Society of Developmental Biology (BSDB) Waddington Medal for major contributions to developmental biology in the UK. We caught up with him at the society's Spring Meeting in Warwick and discussed how a book of birds set him on a path to science, how his research was complemented by decades of advising government on scientific policy and why picking the right mentor in research is so important.
Collapse
|
15
|
Chen Q, Shi J, Tao Y, Zernicka-Goetz M. Tracing the origin of heterogeneity and symmetry breaking in the early mammalian embryo. Nat Commun 2018; 9:1819. [PMID: 29739935 PMCID: PMC5940674 DOI: 10.1038/s41467-018-04155-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 04/06/2018] [Indexed: 01/02/2023] Open
Abstract
A fundamental question in developmental and stem cell biology concerns the origin and nature of signals that initiate asymmetry leading to pattern formation and self-organization. Instead of having prominent pre-patterning determinants as present in model organisms (worms, sea urchin, frog), we propose that the mammalian embryo takes advantage of more subtle cues such as compartmentalized intracellular reactions that generate micro-scale inhomogeneity, which is gradually amplified over several cellular generations to drive pattern formation while keeping developmental plasticity. It is therefore possible that by making use of compartmentalized information followed by its amplification, mammalian embryos would follow general principle of development found in other organisms in which the spatial cue is more robustly presented.
Collapse
Affiliation(s)
- Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Junchao Shi
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Yi Tao
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Magdalena Zernicka-Goetz
- Mammalian Development and Stem Cell Group, Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
16
|
The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception? Stem Cell Rev Rep 2017; 12:276-84. [PMID: 26892267 DOI: 10.1007/s12015-016-9648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essential contribution of multiple maternal factors to early mammalian development is rapidly altering the view that mammals have a unique pattern of development compared to other species. Currently, over 60 maternal-effect mutations have been described in mammalian systems, including critical determinants of pluripotency. This data, combined with the evidence for lineage bias and differential gene expression in early blastomeres, strongly suggests that mammalian development is to some extent mosaic from the four-cell stage onward.
Collapse
|
17
|
Holmes WR, Reyes de Mochel NS, Wang Q, Du H, Peng T, Chiang M, Cinquin O, Cho K, Nie Q. Gene Expression Noise Enhances Robust Organization of the Early Mammalian Blastocyst. PLoS Comput Biol 2017; 13:e1005320. [PMID: 28114387 PMCID: PMC5293272 DOI: 10.1371/journal.pcbi.1005320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/06/2017] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
A critical event in mammalian embryo development is construction of an inner cell mass surrounded by a trophoectoderm (a shell of cells that later form extraembryonic structures). We utilize multi-scale, stochastic modeling to investigate the design principles responsible for robust establishment of these structures. This investigation makes three predictions, each supported by our quantitative imaging. First, stochasticity in the expression of critical genes promotes cell plasticity and has a critical role in accurately organizing the developing mouse blastocyst. Second, asymmetry in the levels of noise variation (expression fluctuation) of Cdx2 and Oct4 provides a means to gain the benefits of noise-mediated plasticity while ameliorating the potentially detrimental effects of stochasticity. Finally, by controlling the timing and pace of cell fate specification, the embryo temporally modulates plasticity and creates a time window during which each cell can continually read its environment and adjusts its fate. These results suggest noise has a crucial role in maintaining cellular plasticity and organizing the blastocyst. A critical event in mammalian embryo development is construction of a mass of embryonic stem cells surrounded by a distinct shell that later forms the placenta along with other structures. Despite sustained investigation, multiple hypotheses for what is responsible for this organization persist and it remains unclear what is responsible for the robust organization (remarkable ability for embryos to pattern correctly) of these structures. Here, we utilize multi-scale, stochastic modeling along with fluorescence imaging to investigate the factors that contribute to the incredible robustness of this organizational process. Results point to two factors that contribute to this robustness: 1) the timing and pace of cell fate specification and 2) stochastic gene regulatory effects. The former creates a window of time during which each cell can continually read their environment and adjust their gene expressions (and consequently fate) in response to dynamic rearrangements of cells arising from cell divisions and motions. The latter improves cell plasticity, providing the capability for cells to adjust to changes in their local environment. Fluorescence imaging results demonstrate that the magnitude and structure of gene expression variations match those predicted to promote organizational robustness.
Collapse
Affiliation(s)
- William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville TN, United States of America
| | - Nabora Soledad Reyes de Mochel
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States of America
| | - Qixuan Wang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
| | - Huijing Du
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
| | - Tao Peng
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
| | - Michael Chiang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States of America
| | - Olivier Cinquin
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States of America
| | - Ken Cho
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States of America
- * E-mail: (QN); (KC)
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
- * E-mail: (QN); (KC)
| |
Collapse
|
18
|
Schatten H, Sun QY. Cytoskeletal Functions, Defects, and Dysfunctions Affecting Human Fertilization and Embryo Development. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology; University of Missouri; Columbia MO USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
19
|
Denker HW. Self-Organization of Stem Cell Colonies and of Early Mammalian Embryos: Recent Experiments Shed New Light on the Role of Autonomy vs. External Instructions in Basic Body Plan Development. Cells 2016; 5:E39. [PMID: 27792143 PMCID: PMC5187523 DOI: 10.3390/cells5040039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022] Open
Abstract
"Organoids", i.e., complex structures that can develop when pluripotent or multipotent stem cells are maintained in three-dimensional cultures, have become a new area of interest in stem cell research. Hopes have grown that when focussing experimentally on the mechanisms behind this type of in vitro morphogenesis, research aiming at tissue and organ replacements can be boosted. Processes leading to the formation of organoids in vitro are now often addressed as self-organization, a term referring to the formation of complex tissue architecture in groups of cells without depending on specific instruction provided by other cells or tissues. The present article focuses on recent reports using the term self-organization in the context of studies on embryogenesis, specifically addressing pattern formation processes in human blastocysts attaching in vitro, or in colonies of pluripotent stem cells ("gastruloids"). These morphogenetic processes are of particular interest because, during development in vivo, they lead to basic body plan formation and individuation. Since improved methodologies like those employed by the cited authors became available, early embryonic pattern formation/self-organization appears to evolve now as a research topic of its own. This review discusses concepts concerning the involved mechanisms, focussing on autonomy of basic body plan development vs. dependence on external signals, as possibly provided by implantation in the uterus, and it addresses biological differences between an early mammalian embryo, e.g., a morula, and a cluster of pluripotent stem cells. It is concluded that, apart from being of considerable biological interest, the described type of research needs to be contemplated carefully with regard to ethical implications when performed with human cells.
Collapse
Affiliation(s)
- Hans-Werner Denker
- Institut für Anatomie, Universität Duisburg-Essen, Universitätsklinikum, Hufelandstr. 55, 45122 Essen, Germany.
| |
Collapse
|
20
|
White MD, Angiolini JF, Alvarez YD, Kaur G, Zhao ZW, Mocskos E, Bruno L, Bissiere S, Levi V, Plachta N. Long-Lived Binding of Sox2 to DNA Predicts Cell Fate in the Four-Cell Mouse Embryo. Cell 2016; 165:75-87. [PMID: 27015308 DOI: 10.1016/j.cell.2016.02.032] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Transcription factor (TF) binding to DNA is fundamental for gene regulation. However, it remains unknown how the dynamics of TF-DNA interactions change during cell-fate determination in vivo. Here, we use photo-activatable FCS to quantify TF-DNA binding in single cells of developing mouse embryos. In blastocysts, the TFs Oct4 and Sox2, which control pluripotency, bind DNA more stably in pluripotent than in extraembryonic cells. By contrast, in the four-cell embryo, Sox2 engages in more long-lived interactions than does Oct4. Sox2 long-lived binding varies between blastomeres and is regulated by H3R26 methylation. Live-cell tracking demonstrates that those blastomeres with more long-lived binding contribute more pluripotent progeny, and reducing H3R26 methylation decreases long-lived binding, Sox2 target expression, and pluripotent cell numbers. Therefore, Sox2-DNA binding predicts mammalian cell fate as early as the four-cell stage. More generally, we reveal the dynamic repartitioning of TFs between DNA sites driven by physiological epigenetic changes. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Juan F Angiolini
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Yanina D Alvarez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Gurpreet Kaur
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ziqing W Zhao
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Esteban Mocskos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Luciana Bruno
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina
| | - Stephanie Bissiere
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Valeria Levi
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires C1428EHA, Argentina.
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A(∗)STAR, 61 Biopolis Drive, Singapore 138673, Singapore.
| |
Collapse
|
21
|
Lim CY, Knowles BB, Solter D, Messerschmidt DM. Epigenetic Control of Early Mouse Development. Curr Top Dev Biol 2016; 120:311-60. [PMID: 27475856 DOI: 10.1016/bs.ctdb.2016.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the genes sequentially transcribed in the mammalian embryo prior to implantation have been identified, understanding of the molecular processes ensuring this transcription is still in development. The genomes of the sperm and egg are hypermethylated, hence transcriptionally silent. Their union, in the prepared environment of the egg, initiates their epigenetic genomic reprogramming into a totipotent zygote, in which the genome gradually becomes transcriptionally activated. During gametogenesis, sex-specific processes result in sperm and eggs with disparate epigenomes, both of which require drastic reprogramming to establish the totipotent genome of the zygote and the pluripotent inner cell mass of the blastocyst. Herein, we describe the factors, DNA and histone modifications, activation and repression of retrotransposons, and cytoplasmic localizations, known to influence the activation of the mammalian genome at the initiation of new life.
Collapse
Affiliation(s)
- C Y Lim
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - B B Knowles
- Emerita, The Jackson Laboratory, Bar Harbor, ME, United States; Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand
| | - D Solter
- Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, Thailand; Emeritus, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - D M Messerschmidt
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
22
|
Abstract
Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo.
Collapse
Affiliation(s)
- M D White
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - S Bissiere
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Y D Alvarez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - N Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
23
|
Chazaud C, Yamanaka Y. Lineage specification in the mouse preimplantation embryo. Development 2016; 143:1063-74. [DOI: 10.1242/dev.128314] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During mouse preimplantation embryo development, totipotent blastomeres generate the first three cell lineages of the embryo: trophectoderm, epiblast and primitive endoderm. In recent years, studies have shown that this process appears to be regulated by differences in cell-cell interactions, gene expression and the microenvironment of individual cells, rather than the active partitioning of maternal determinants. Precisely how these differences first emerge and how they dictate subsequent molecular and cellular behaviours are key questions in the field. As we review here, recent advances in live imaging, computational modelling and single-cell transcriptome analyses are providing new insights into these questions.
Collapse
Affiliation(s)
- Claire Chazaud
- Université Clermont Auvergne, Laboratoire GReD, Clermont-Ferrand F-63000, France
- Inserm, UMR1103, Clermont-Ferrand F-63001, France
- CNRS, UMR6293, Clermont-Ferrand F-63001, France
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, 1160 Pine Avenue West, rm419, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
24
|
Zheng Z, Li H, Zhang Q, Yang L, Qi H. Unequal distribution of 16S mtrRNA at the 2-cell stage regulates cell lineage allocations in mouse embryos. Reproduction 2016; 151:351-67. [DOI: 10.1530/rep-15-0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/13/2016] [Indexed: 12/30/2022]
Abstract
Cell lineage determination during early embryogenesis has profound effects on adult animal development. Pre-patterning of embryos, such as that of Drosophila and Caenorhabditis elegans, is driven by asymmetrically localized maternal or zygotic factors, including mRNA species and RNA binding proteins. However, it is not clear how mammalian early embryogenesis is regulated and what the early cell fate determinants are. Here we show that, in mouse, mitochondrial ribosomal RNAs (mtrRNAs) are differentially distributed between 2-cell sister blastomeres. This distribution pattern is not related to the overall quantity or activity of mitochondria which appears equal between 2-cell sister blastomeres. Like in lower species, 16S mtrRNA is found to localize in the cytoplasm outside of mitochondria in mouse 2-cell embryos. Alterations of 16S mtrRNA levels in one of the 2-cell sister blastomere via microinjection of either sense or anti-sense RNAs drive its progeny into different cell lineages in blastocyst. These results indicate that mtrRNAs are differentially distributed among embryonic cells at the beginning of embryogenesis in mouse and they are functionally involved in the regulation of cell lineage allocations in blastocyst, suggesting an underlying molecular mechanism that regulates pre-implantation embryogenesis in mouse.
Collapse
|
25
|
Hosseini SM, Moulavi F, Tanhaie-Vash N, Asgari V, Ghanaei HR, Abedi-Dorche M, Jafarzadeh N, Gourabi H, Shahverdi AH, Dizaj AV, Shirazi A, Nasr-Esfahani MH. The Principal Forces of Oocyte Polarity Are Evolutionary Conserved but May Not Affect the Contribution of the First Two Blastomeres to the Blastocyst Development in Mammals. PLoS One 2016; 11:e0148382. [PMID: 27030988 PMCID: PMC4816511 DOI: 10.1371/journal.pone.0148382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 11/26/2022] Open
Abstract
Oocyte polarity and embryonic patterning are well-established features of development in lower species. Whether a similar form of pre-patterning exists in mammals is currently under hot debate in mice. This study investigated this issue for the first time in ovine as a large mammal model. Microsurgical trisection of unfertilized MII-oocytes revealed that cortical cytoplasm around spindle (S) contained significant amounts of total maternal mRNAs and proteins compared to matched cytoplast hemispheres that were located either near (NS) or far (FS) -to-spindle. RT-qPCR provided striking examples of maternal mRNA localized to subcellular substructures S (NPM2, GMNN, H19, PCAF, DNMT3A, DNMT1, and STELLA), NS (SOX2, NANOG, POU5F1, and TET1), and FS (GCN) of MII oocyte. Immunoblotting revealed that specific maternal proteins DNMT3A and NANOG were asymmetrically enriched in MII-spindle-half of the oocytes. Topological analysis of sperm entry point (SEP) revealed that sperm preferentially entered via the MII-spindle-half of the oocytes. Even though, the topological position of first cleavage plane with regard to SEP was quite stochastic. Spatial comparison of lipid content revealed symmetrical distribution of lipids between 2-cell blastomeres. Lineage tracing using Dil, a fluorescent dye, revealed that while the progeny of leading blastomere of 2-cell embryos contributed to more cells in the developed blastocysts compared to lagging counterpart, the contributions of leading and lagging blastomeres to the embryonic-abembryonic parts of the developed blastocysts were almost unbiased. And finally, separated sister blastomeres of 2-cell embryos had an overall similar probability to arrest at any stage before the blastocyst (2-cell, 4-cell, 8-cell, and morula) or to achieve the blastocyst stage. It was concluded that the localization of maternal mRNAs and proteins at the spindle are evolutionarily conserved between mammals unfertilized ovine oocyte could be considered polar with respect to the spatial regionalization of maternal transcripts and proteins. Even though, the principal forces of this definitive oocyte polarity may not persist during embryonic cleavages.
Collapse
Affiliation(s)
- Sayyed-Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fariba Moulavi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaie-Vash
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Vajihe Asgari
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamid-Reza Ghanaei
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Abedi-Dorche
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Naser Jafarzadeh
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Hossein Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395–4644, Tehran, Iran
| | - Abdol-Hossein Shahverdi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Medicine, ACECR, Tehran, Iran
| | - Ahmad Vosough Dizaj
- Department of Reproductive Imaging at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
- * E-mail: (AS); (MHNE)
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (AS); (MHNE)
| |
Collapse
|
26
|
Abstract
Whether or not early mammalian development results from preformation or epigenesis remains an unresolved issue. Evidence for or against either is weak, inconclusive, and often misinterpreted. Yet, one can parsimoniously conceptualize formation of the mouse blastocyst as a series of random, stochastic events stemming from initial and sequential small asymmetries in egg, zygote, and cleavage stages. Differential compartmentalized gene expression does not lead but follows the morphogenesis and cell fate allocation in the mammalian blastocyst.
Collapse
|
27
|
Abstract
After a spermatozoon enters an oocyte, maternal factors accumulated in the oocyte reprogram the genomes of the terminally differentiated oocyte and spermatozoon epigenetically and turn the zygote into a totipotent cell, with the capacity to differentiate into all types of somatic cells in a highly organized manner and generate the entire organism, a feature referred to as totipotency. Differentiation of the first lineage begins after three cleavages, when the early embryo compacts and becomes polarized, followed by segregation of the first lineages--the inner cell mass (ICM) and the trophectoderm (TE). To date, a full understanding of the molecular mechanisms that underlie the establishment of totipotency and the ICM/TE lineage segregation remains unclear. In this review, we discuss recent findings in the mechanism of transcriptional regulation networks and signaling pathways in the first lineage separation in the totipotent mouse embryo.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
28
|
Graham SJ, Zernicka-Goetz M. The Acquisition of Cell Fate in Mouse Development. Curr Top Dev Biol 2016; 117:671-95. [DOI: 10.1016/bs.ctdb.2015.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Strnad P, Gunther S, Reichmann J, Krzic U, Balazs B, de Medeiros G, Norlin N, Hiiragi T, Hufnagel L, Ellenberg J. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat Methods 2015; 13:139-42. [DOI: 10.1038/nmeth.3690] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/17/2015] [Indexed: 12/23/2022]
|
30
|
Leung CY, Zernicka-Goetz M. Mapping the journey from totipotency to lineage specification in the mouse embryo. Curr Opin Genet Dev 2015; 34:71-6. [PMID: 26343010 DOI: 10.1016/j.gde.2015.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Understanding the past is to understand the present. Mammalian life, with all its complexity comes from a humble beginning of a single fertilized egg cell. Achieving this requires an enormous diversification of cellular function, the majority of which is generated through a series of cellular decisions during embryogenesis. The first decisions are made as the embryo prepares for implantation, a process that will require specialization of extra-embryonic lineages while preserving an embryonic one. In this mini-review, we will focus on the mouse as a mammalian model and discuss recent advances in the decision making process of the early embryo.
Collapse
Affiliation(s)
- Chuen Yan Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
31
|
Bedzhov I, Graham SJL, Leung CY, Zernicka-Goetz M. Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0538. [PMID: 25349447 PMCID: PMC4216461 DOI: 10.1098/rstb.2013.0538] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A critical point in mammalian development is when the early embryo implants into its mother's uterus. This event has historically been difficult to study due to the fact that it occurs within the maternal tissue and therefore is hidden from view. In this review, we discuss how the mouse embryo is prepared for implantation and the molecular mechanisms involved in directing and coordinating this crucial event. Prior to implantation, the cells of the embryo are specified as precursors of future embryonic and extra-embryonic lineages. These preimplantation cell fate decisions rely on a combination of factors including cell polarity, position and cell–cell signalling and are influenced by the heterogeneity between early embryo cells. At the point of implantation, signalling events between the embryo and mother, and between the embryonic and extraembryonic compartments of the embryo itself, orchestrate a total reorganization of the embryo, coupled with a burst of cell proliferation. New developments in embryo culture and imaging techniques have recently revealed the growth and morphogenesis of the embryo at the time of implantation, leading to a new model for the blastocyst to egg cylinder transition. In this model, pluripotent cells that will give rise to the fetus self-organize into a polarized three-dimensional rosette-like structure that initiates egg cylinder formation.
Collapse
Affiliation(s)
- Ivan Bedzhov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J L Graham
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Chuen Yan Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
32
|
Lorthongpanich C, Issaragrisil S. Emerging Role of the Hippo Signaling Pathway in Position Sensing and Lineage Specification in Mammalian Preimplantation Embryos. Biol Reprod 2015; 92:143. [PMID: 25947059 DOI: 10.1095/biolreprod.114.127803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/29/2015] [Indexed: 12/29/2022] Open
Abstract
In preimplantation mouse embryos, the first lineage differentiation takes place in the 8- to 16-cell-stage embryo and results in formation of the trophectoderm (TE) and inner cell mass (ICM), which will give rise to the trophoblast of the placenta and the embryo proper, respectively. Although, it is widely accepted that positioning of a cell within the embryo influences lineage differentiation, the mechanism underlying differential lineage differentiation and how it involves cell position are largely unknown. Interestingly, novel cues from the Hippo pathway have been recently demonstrated in the preimplantation mouse embryo. Unlike the mechanisms reported from epithelium-cultured cells, the Hippo pathway was found to be responsible for translating positional information to lineage specification through a position-sensing mechanism. Disruption of Hippo pathway-component genes in early embryos results in failure of lineage specification and failure of postimplantation development. In this review, we discuss the unique role of the Hippo signaling pathway in early embryo development and its role in lineage specification. Understanding the activity and regulation of the Hippo pathway may offer new insights into other areas of developmental biology that evolve from understanding of this cell-fate specification in the early embryonic cell.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
33
|
Carneiro K, de Brito JM, Rossi MID. Development by three-dimensional approaches and four-dimensional imaging: to the knowledge frontier and beyond. ACTA ACUST UNITED AC 2015; 105:1-8. [PMID: 25789860 DOI: 10.1002/bdrc.21089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many advances have been taken on elucidating embryonic development and tissue homeostasis and repair by the use of experimental strategies that preserve the three-dimensional (3D) organization and allow quantitative analysis of images over time (four-dimensional). Ranging from the understanding about the relationship between blastomeres and the events that take place during gastrulation by the use of time-lapse imaging through 3D cultures that mimic organogenesis, the advances in this area are of critical value. The studies on embryonic development without disrupting the original architecture and the development of 3D organoid cultures pave a new avenue for unprecedented experimental advances that will positively impact the emergence of new treatments applying regenerative principles for both tissue repair and organ transplant.
Collapse
Affiliation(s)
- Katia Carneiro
- Biomedical Institute of Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
34
|
Soft tissue Langerhans cell histiocytosis with secondary bone involvement in extremities: evolution of lesions in two patients. Skeletal Radiol 2013; 42:1301-9. [PMID: 23609170 DOI: 10.1007/s00256-013-1611-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 02/02/2023]
Abstract
Langerhans cell histiocytosis (LCH) is an uncommon disorder of unknown etiology with a wide spectrum of biological behavior. The most common sites of involvement are bone, skin, and lung. While osseous LCH can result in secondary soft tissue involvement, primary soft tissue LCH in extremities with secondary bone involvement is rare, and little is known about its natural course. We report two adult patients with multi-organ system LCH who had primary soft tissue lesions with secondary involvement of adjoining bones in lower extremities, and illustrate the important role played by various imaging modalities in detection and monitoring of treatment response. We also document spontaneous clinical resolution of LCH lesions without therapy, and positive response of these lesions to chemotherapy.
Collapse
|
35
|
Arias AM, Nichols J, Schröter C. A molecular basis for developmental plasticity in early mammalian embryos. Development 2013; 140:3499-510. [DOI: 10.1242/dev.091959] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Early mammalian embryos exhibit remarkable plasticity, as highlighted by the ability of separated early blastomeres to produce a whole organism. Recent work in the mouse implicates a network of transcription factors in governing the establishment of the primary embryonic lineages. A combination of genetics and embryology has uncovered the organisation and function of the components of this network, revealing a gradual resolution from ubiquitous to lineage-specific expression through a combination of defined regulatory relationships, spatially organised signalling, and biases from mechanical inputs. Here, we summarise this information, link it to classical embryology and propose a molecular framework for the establishment and regulation of developmental plasticity.
Collapse
Affiliation(s)
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
36
|
Abstract
Cells of early mouse embryo were considered for a long time to acquire cell fate at random. Recent analyses argue against this simple model.
Collapse
|
37
|
A self-organization framework for symmetry breaking in the mammalian embryo. Nat Rev Mol Cell Biol 2013; 14:452-9. [PMID: 23778971 DOI: 10.1038/nrm3602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the appearance of asymmetry between cells in the early embryo and consequently the specification of distinct cell lineages during mammalian development remain elusive. Recent experimental advances have revealed unexpected dynamics of and new complexity in this process. These findings can be integrated in a new unified framework that regards the early mammalian embryo as a self-organizing system.
Collapse
|
38
|
Wong C, Chen A, Behr B, Shen S. Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod Biomed Online 2013; 26:120-9. [DOI: 10.1016/j.rbmo.2012.11.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/08/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022]
|
39
|
Lorthongpanich C, Doris TPY, Limviphuvadh V, Knowles BB, Solter D. Developmental fate and lineage commitment of singled mouse blastomeres. Development 2012; 139:3722-31. [PMID: 22991438 DOI: 10.1242/dev.086454] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.
Collapse
Affiliation(s)
- Chanchao Lorthongpanich
- Mammalian Development Laboratory, Institute of Medical Biology, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648.
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Loredana Papale
- Centro Riproduzione Assistita, V.le Odorico da Pordenone, 5, 95128 Catania, Italy.
| | | | | | | |
Collapse
|
41
|
Liu Z, Hai T, Dai X, Zhao X, Wang Y, Brochard V, Zhou S, Wan H, Zhang H, Wang L, Zhou Q, Beaujean N. Early patterning of cloned mouse embryos contributes to post-implantation development. Dev Biol 2012; 368:304-11. [PMID: 22659081 DOI: 10.1016/j.ydbio.2012.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
Abstract
Several research groups have suggested that the embryonic-abembryonic (Em-Ab) axis in the mouse can be predicted by the first cleavage plane of the early embryo. Currently, it is not known whether this early patterning occurs in cloned embryos produced by nuclear transfer and whether it affects development to term. In this work, the relationship between the first cleavage plane and the Em-Ab axis was determined by the labeling of one blastomere in cloned mouse embryos at the 2-cell stage, followed by ex-vivo tracking until the blastocyst stage. The results demonstrate that approximately half of the cloned blastocysts had an Em-Ab axis perpendicular to the initial cleavage plane of the 2-cell stage. These embryos were classified as "orthogonal" and the remainder as "deviant". Additionally, we report here that cloned embryos were significantly more often orthogonal than their naturally fertilized counterparts and overexpressed Sox2. Orthogonal cloned embryos demonstrated a higher rate of post-implantation embryonic development than deviant embryos, but cloned pups did not all survive. These results reveal that the angular relationship between the Em-Ab axis and the first cleavage plane can influence later development and they support the hypothesis that proper early patterning of mammalian embryos is required after nuclear transfer.
Collapse
Affiliation(s)
- Zichuan Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Niakan KK, Han J, Pedersen RA, Simon C, Pera RAR. Human pre-implantation embryo development. Development 2012; 139:829-41. [PMID: 22318624 DOI: 10.1242/dev.060426] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals.
Collapse
Affiliation(s)
- Kathy K Niakan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
43
|
Suwińska A. Preimplantation mouse embryo: developmental fate and potency of blastomeres. Results Probl Cell Differ 2012; 55:141-163. [PMID: 22918805 DOI: 10.1007/978-3-642-30406-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
During the past decade we have witnessed great progress in the understanding of cellular, molecular, and epigenetic aspects of preimplantation mouse development. However, some of the issues, especially those regarding the nature and regulation of mouse development, are still unresolved and controversial and raise heated discussion among mammalian embryologists. This chapter presents different standpoints and various research approaches aimed at examining the fate and potency of cells (blastomeres) of mouse preimplantation embryo. In dealing with this subject, it is important to recognize the difference between the fate of blastomere and the prospective potency of blastomere, with the first being its contribution to distinct tissues during normal development, and the second being a full range of its developmental capabilities, which can be unveiled only by experimental perturbation of the embryo. Studies of the developmental potential and the fate of blastomeres are of the utmost importance as they may lead to future clinical application in reproductive and regenerative medicine.
Collapse
Affiliation(s)
- Aneta Suwińska
- Department of Embryology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
44
|
Abstract
There is increasing evidence to show that 2-cell stage mouse blastomeres have differing developmental properties. Additionally, it has been suggested that such a difference might be due to their distribution of mRNA and/or protein asymmetry. However, to date, the exact genes that are involved in the orientation and order of blastomere division are not known. In this study, some differentially expressed transcripts were identified. Axin1, cell division cycle 25 homolog C (Cdc25c) and cyclin-dependent inhibitor 2D (Cdkn2d) were selected for validation by real-time polymerase chain reaction (PCR) based on published data. Our real-time PCR results demonstrated that Axin1, Cdc25c and Cdkn2d genes had different levels of expression among blastomeres of the mouse 2-cell embryo i.e. the level of Axin1 mRNA was significantly higher in one blastomere when compared with the other blastomeres of the 2-cell embryo (p < 0.05). The variation in Cdc25c (p < 0.05) and Cdkn2d (p < 0.01) mRNA expression followed a similar trend to that of Axin1. In addition, the highest levels of expression of these three genes were detected in the same blastomere in the 2-cell embryo. We confirmed that there was an asymmetrical distribution pattern for Axin1, Cdc25c and Cdkn2d transcripts in 2-cell embryos. In conclusion, this study demonstrated clearly that there is embryonic asymmetry at the 2-cell stage and that these differentially expressed genes may result in differentiation in expression in embryo development.
Collapse
|
45
|
Johnson M. Decisions, decisions: how are they made in the early embryo – and does it matter? Reprod Biomed Online 2011; 22:509-11. [DOI: 10.1016/j.rbmo.2011.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Littwin T, Denker HW. Segregation during cleavage in the mammalian embryo? A critical comparison of whole-mount/CLSM and section immunohistochemistry casts doubts on segregation of axis-relevant leptin domains in the rabbit. Histochem Cell Biol 2011; 135:553-70. [PMID: 21626127 DOI: 10.1007/s00418-011-0816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 11/30/2022]
Abstract
Segregation of certain cytoplasmic molecules during cleavage and blastocyst formation that was previously reported to occur in the human and the mouse (Antczak and Van Blerkom Mol Hum Reprod 3:1067-1086, 1997; Antczak and Van Blerkom Hum Reprod 14:429-447, 1999) has been reinvestigated in the rabbit model. Additional methodology was used and two approaches were compared: (1) whole-mount immunohistochemistry followed by confocal laser scanning microscopy (WM-IHC/CLSM) versus (2) IHC performed on histological sections of resin-embedded material (S-IHC). This study concentrates on leptin and cytoskeletal proteins (actin and cytokeratins). With S-IHC, leptin was localized predominantly on the surface of blastomeres which is facing the perivitelline space, and in the extracellular embryonic coats, without any polar asymmetry being detectable along (presumptive) embryonic axes. A polar distribution of leptin with a pattern that could be interpreted as predictive of the prospective embryonic-abembryonic axis was seen only with WM-IHC/CLSM, not with S-IHC, although the latter gave excellent resolution. With both techniques, no differences between blastomeres were detected with respect to actin and cytokeratin patterns, an increased expression of cytokeratin in trophoblast cells occurring no earlier than at blastocyst formation. Artifacts that can occur with the two methodological approaches are critically discussed, as is the possible significance of the findings for theories on the differentiation of trophoblast versus embryoblast and on axis formation in early mammalian development. It is concluded that these data call for cautioning when studying distribution patterns of diffusible molecules with WM-IHC/CLSM technology, whereas patterns obtained with S-IHC are more reliable. Specifically these data cast doubts on previous claims that leptin IHC would allow to monitor cytoplasmic domain segregation occurring during cleavage as an element of early embryonic pattern/axis formation.
Collapse
Affiliation(s)
- T Littwin
- Institut für Anatomie, Lehrstuhl für Anatomie und Entwicklungsbiologie, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | | |
Collapse
|
47
|
González S, Ibáñez E, Santaló J. Influence of early fate decisions at the two-cell stage on the derivation of mouse embryonic stem cell lines. Stem Cell Res 2011; 7:54-65. [PMID: 21531646 DOI: 10.1016/j.scr.2011.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 12/27/2022] Open
Abstract
The first event of differentiation in mammalian embryogenesis is the segregation of the inner cell mass and trophectoderm lineages in the blastocyst. Cellular and molecular events related to this process are still a controversial issue. During the years it was thought that first allocation of blastomeres before the blastocyst stage was done in the late eight-cell stage with the formation of inner and outer cells. Lately, many studies have pointed out that individual blastomeres at the four-cell stage differ in their developmental properties according to their position within the embryo. In this report, we wanted to elucidate whether these early decisions influence the production of mouse embryonic stem cell lines, so that a selective isolation of blastomeres at the four-cell stage to derive the lines could improve the efficiency of the derivation process. Results from blastomere tracking experiments support the idea of a different developmental potential of blastomeres within the four-cell stage embryo. However, we also show a high plasticity in the developmental pattern of blastomeres once isolated from the embryo, thus making all four-cell stage blastomeres equally competent to derive ESC lines.
Collapse
Affiliation(s)
- Sheyla González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
48
|
Abstract
In the mouse embryo, the first differences between cells that result in distinct lineages have long been thought to arise only as a consequence of differential cell positioning at relatively late preimplantation stages. Differences in Oct4 transcription factor kinetics between cells at the 4-8-cell stage are now shown to be predictive of future lineages, providing further evidence for much earlier initiation of cell fate decisions.
Collapse
|
49
|
Eberl JT, Brown BP. Brain Life and the Argument from Potential: Affirming the Ontological Status of Human Embryos and Fetuses. PHILOSOPHY AND MEDICINE 2011. [DOI: 10.1007/978-94-007-1602-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
González S, Ibáñez E, Santaló J. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods. J Assist Reprod Genet 2010; 27:671-82. [PMID: 20862536 PMCID: PMC2997953 DOI: 10.1007/s10815-010-9473-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/23/2010] [Indexed: 01/09/2023] Open
Abstract
PURPOSE the aim of the present study is to compare three previously described mouse embryonic stem cell derivation methods to evaluate the influence of culture conditions, number of isolated blastomeres and embryonic stage in the derivation process. METHODS three embryonic stem cell derivation methods: standard, pre-adhesion and defined culture medium method, were compared in the derivation from isolated blastomeres and whole embryos at 4- and 8-cell stages. RESULTS a total of 200 embryonic stem cell lines were obtained with an efficiency ranging from 1.9% to 72%. CONCLUSIONS using either isolated blastomeres or whole embryos, the highest rates of mouse embryonic stem cell establishment were achieved with the defined culture medium method and efficiencies increased as development progressed. Using isolated blastomeres, efficiencies increased in parallel to the proportion of the embryo volume used to start the derivation process.
Collapse
Affiliation(s)
- Sheyla González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|