1
|
Bayer LV, Milano SN, Bratu DP. The mRNA dynamics underpinning translational control mechanisms of Drosophila melanogaster oogenesis. Biochem Soc Trans 2024; 52:2087-2099. [PMID: 39263986 DOI: 10.1042/bst20231293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development. Initial studies on translational control necessitated fixed tissue, but the last 30 years have sparked innovative live-cell studies in several cell types to deliver a far more nuanced picture of how mRNA-protein dynamics exert translational control. In this review, we weave together the events that underpin mRNA processes and showcase the pivotal studies that revealed how a multitude of protein factors engage with a transcript. We highlight a mRNA's ability to act as a 'super scaffold' to facilitate molecular condensate formation and further moderate translational control. We focus on the Drosophila melanogaster germline due to the extensive post-transcriptional regulation occurring during early oogenesis. The complexity of the spatio-temporal expression of maternal transcripts in egg chambers allows for the exploration of a wide range of mechanisms that are crucial to the life cycle of mRNAs.
Collapse
Affiliation(s)
- Livia V Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Samantha N Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Program in Molecular, Cellular and Developmental Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Diana P Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Program in Molecular, Cellular and Developmental Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Mameli E, Samantsidis GR, Viswanatha R, Kwon H, Hall DR, Butnaru M, Hu Y, Mohr SE, Perrimon N, Smith RC. A genome-wide CRISPR screen in Anopheles mosquito cells identifies essential genes and required components of clodronate liposome function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614595. [PMID: 39386635 PMCID: PMC11463579 DOI: 10.1101/2024.09.24.614595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Anopheles mosquitoes are the sole vector of human malaria, the most burdensome vector-borne disease worldwide. Strategies aimed at reducing mosquito populations and limiting their ability to transmit disease show the most promise for disease control. Therefore, gaining an improved understanding of mosquito biology, and specifically that of the immune response, can aid efforts to develop new approaches that limit malaria transmission. Here, we use a genome-wide CRISPR screening approach for the first time in mosquito cells to identify essential genes in Anopheles and identify genes for which knockout confers resistance to clodronate liposomes, which have been widely used in mammals and arthropods to ablate immune cells. In the essential gene screen, we identified a set of 1280 Anopheles genes that are highly enriched for genes involved in fundamental cell processes. For the clodronate liposome screen, we identified several candidate resistance factors and confirm their roles in the uptake and processing of clodronate liposomes through in vivo validation in Anopheles gambiae, providing new mechanistic detail of phagolysosome formation and clodronate liposome function. In summary, we demonstrate the application of a genome-wide CRISPR knockout platform in a major malaria vector and the identification of genes that are important for fitness and immune-related processes.
Collapse
Affiliation(s)
- Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - George-Rafael Samantsidis
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - David R. Hall
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- HHMI, Harvard Medical School, Boston, MA, 02115, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Zhang M, Xing J, Zhao S, Lu M, Liu Y, Lin L, Gao W, Chen L, Li W, Shang J, Zhou J, Yin X, Zhu X. Exosomal YB-1 facilitates ovarian restoration by MALAT1/miR-211-5p/FOXO 3 axis. Cell Biol Toxicol 2024; 40:29. [PMID: 38700571 PMCID: PMC11068691 DOI: 10.1007/s10565-024-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H2O2 and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO3 levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO3 axis regulation, providing a possible therapeutic target for patients with POF.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jie Xing
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shijie Zhao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Department of Obstetrics and Gynecology, The Fourth Hospital of Changsha, Changsha, People's Republic of China
| | - Minjun Lu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Yueqin Liu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wujiang Gao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Lu Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenxin Li
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Junyu Shang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jiamin Zhou
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China.
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Fang J, Lerit DA. Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly. Development 2022; 149:275606. [DOI: 10.1242/dev.200426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/25/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT
As the microtubule-organizing centers of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin-like protein (PLP) directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and microtubule-organizing center function. Here, we investigate the post-transcriptional regulation of Plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the Plp 3′-untranslated region and examine the role of the CPEB ortholog Oo18 RNA-binding protein (Orb) in Plp mRNA regulation. Our data show that Orb interacts biochemically with Plp mRNA to promote polyadenylation and PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and its function in PCM scaffolding are compromised in orb mutant embryos, resulting in genomic instability and embryonic lethality. Moreover, we find that PLP overexpression restores centrosome scaffolding and rescues the cell division defects caused by orb depletion. Our data suggest that Orb modulates PLP expression at the level of Plp mRNA polyadenylation and demonstrates that the post-transcriptional regulation of core, conserved centrosomal mRNAs is crucial for centrosome function.
Collapse
Affiliation(s)
- Junnan Fang
- Emory University School of Medicine Department of Cell Biology , , Atlanta, GA 30322 , USA
| | - Dorothy A. Lerit
- Emory University School of Medicine Department of Cell Biology , , Atlanta, GA 30322 , USA
| |
Collapse
|
5
|
Song H, Zhang J, Liu B, Xu J, Cai B, Yang H, Straube J, Yu X, Ma T. Biological roles of RNA m 5C modification and its implications in Cancer immunotherapy. Biomark Res 2022; 10:15. [PMID: 35365216 PMCID: PMC8973801 DOI: 10.1186/s40364-022-00362-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 01/08/2023] Open
Abstract
Epigenetics including DNA and RNA modifications have always been the hotspot field of life sciences in the post-genome era. Since the first mapping of N6-methyladenosine (m6A) and the discovery of its widespread presence in mRNA, there are at least 160-170 RNA modifications have been discovered. These methylations occur in different RNA types, and their distribution is species-specific. 5-methylcytosine (m5C) has been found in mRNA, rRNA and tRNA of representative organisms from all kinds of species. As reversible epigenetic modifications, m5C modifications of RNA affect the fate of the modified RNA molecules and play important roles in various biological processes including RNA stability control, protein synthesis, and transcriptional regulation. Furthermore, accumulative evidence also implicates the role of RNA m5C in tumorigenesis. Here, we review the latest progresses in the biological roles of m5C modifications and how it is regulated by corresponding "writers", "readers" and "erasers" proteins, as well as the potential molecular mechanism in tumorigenesis and cancer immunotherapy.
Collapse
Affiliation(s)
- Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Biao Cai
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Hai Yang
- Division of Surgical Research, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Julia Straube
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
6
|
Drosophila YBX1 homolog YPS promotes ovarian germ line stem cell development by preferentially recognizing 5-methylcytosine RNAs. Proc Natl Acad Sci U S A 2020; 117:3603-3609. [PMID: 32015133 DOI: 10.1073/pnas.1910862117] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
5-Methylcytosine (m5C) is a RNA modification that exists in tRNAs and rRNAs and was recently found in mRNAs. Although it has been suggested to regulate diverse biological functions, whether m5C RNA modification influences adult stem cell development remains undetermined. In this study, we show that Ypsilon schachtel (YPS), a homolog of human Y box binding protein 1 (YBX1), promotes germ line stem cell (GSC) maintenance, proliferation, and differentiation in the Drosophila ovary by preferentially binding to m5C-containing RNAs. YPS is genetically demonstrated to function intrinsically for GSC maintenance, proliferation, and progeny differentiation in the Drosophila ovary, and human YBX1 can functionally replace YPS to support normal GSC development. Highly conserved cold-shock domains (CSDs) of YPS and YBX1 preferentially bind to m5C RNA in vitro. Moreover, YPS also preferentially binds to m5C-containing RNAs, including mRNAs, in germ cells. The crystal structure of the YBX1 CSD-RNA complex reveals that both hydrophobic stacking and hydrogen bonds are critical for m5C binding. Overexpression of RNA-binding-defective YPS and YBX1 proteins disrupts GSC development. Taken together, our findings show that m5C RNA modification plays an important role in adult stem cell development.
Collapse
|
7
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
8
|
Olesnicky EC, Antonacci S, Popitsch N, Lybecker MC, Titus MB, Valadez R, Derkach PG, Marean A, Miller K, Mathai SK, Killian DJ. Shep interacts with posttranscriptional regulators to control dendrite morphogenesis in sensory neurons. Dev Biol 2018; 444:116-128. [PMID: 30352216 DOI: 10.1016/j.ydbio.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
RNA binding proteins (RBPs) mediate posttranscriptional gene regulatory events throughout development. During neurogenesis, many RBPs are required for proper dendrite morphogenesis within Drosophila sensory neurons. Despite their fundamental role in neuronal morphogenesis, little is known about the molecular mechanisms in which most RBPs participate during neurogenesis. In Drosophila, alan shepard (shep) encodes a highly conserved RBP that regulates dendrite morphogenesis in sensory neurons. Moreover, the C. elegans ortholog sup-26 has also been implicated in sensory neuron dendrite morphogenesis. Nonetheless, the molecular mechanism by which Shep/SUP-26 regulate dendrite development is not understood. Here we show that Shep interacts with the RBPs Trailer Hitch (Tral), Ypsilon schachtel (Yps), Belle (Bel), and Poly(A)-Binding Protein (PABP), to direct dendrite morphogenesis in Drosophila sensory neurons. Moreover, we identify a conserved set of Shep/SUP-26 target RNAs that include regulators of cell signaling, posttranscriptional gene regulators, and known regulators of dendrite development.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States.
| | - Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Niko Popitsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, A-1090 Vienna, Austria
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Racquel Valadez
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Paul G Derkach
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Amber Marean
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Katherine Miller
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Samuel K Mathai
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| |
Collapse
|
9
|
Kleene KC. Gordon Dixon, protamines, and the atypical patterns of gene expression in spermatogenic cells. Syst Biol Reprod Med 2018; 64:417-423. [PMID: 30129372 DOI: 10.1080/19396368.2018.1505973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Gordon Dixon's pioneering work on the replacement of histones by protamines during spermatogenesis inspired research as recombinant DNA became widely used to analyze gene expression in mammalian spermatogenic cells. The impact of recombinant DNA began immediately with the identification of mouse protamine 1 as a haploid-expressed mRNA, resolving a decades-long controversy whether gene expression in haploid spermatogenic cells distorts transmission of alleles to progeny. Numerous insights into the biology of spermatogenesis followed as the sequences of many mRNAs revealed that the patterns of gene expression in spermatogenic cells are astonishingly different from those in other cells in the mammalian body. Studies of these phenomena have generated fundamental insights across reproductive, molecular and evolutionary biology. Abbreviations: PRM1: protamine 1; PRM2: protamine 2; TCE: translation control element.
Collapse
|
10
|
Cup regulates oskar mRNA stability during oogenesis. Dev Biol 2017; 421:77-85. [DOI: 10.1016/j.ydbio.2016.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
|
11
|
Localized Translation of gurken/TGF-α mRNA during Axis Specification Is Controlled by Access to Orb/CPEB on Processing Bodies. Cell Rep 2016; 14:2451-62. [PMID: 26947065 PMCID: PMC4823467 DOI: 10.1016/j.celrep.2016.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
In Drosophila oocytes, gurken/TGF-α mRNA is essential for establishing the future embryonic axes. gurken remains translationally silent during transport from its point of synthesis in nurse cells to its final destination in the oocyte, where it associates with the edge of processing bodies. Here we show that, in nurse cells, gurken is kept translationally silent by the lack of sufficient Orb/CPEB, its translational activator. Processing bodies in nurse cells have a similar protein complement and ultrastructure to those in the oocyte, but they markedly less Orb and do not associate with gurken mRNA. Ectopic expression of Orb in nurse cells at levels similar to the wild-type oocyte dorso-anterior corner at mid-oogenesis is sufficient to cause gurken mRNA to associate with processing bodies and translate prematurely. We propose that controlling the spatial distribution of translational activators is a fundamental mechanism for regulating localized translation. gurken mRNA is not silenced by known repressors during its transport In nurse cells, gurken mRNA is not associated with processing bodies In nurse cells, lack of sufficient Orb/CPEB silences gurken mRNA translation In oocytes, gurken mRNA is associated with Orb on processing bodies and translated
Collapse
|
12
|
Proteomics reveals major components of oogenesis in the reproductive tract of sugar-fed Anopheles aquasalis. Parasitol Res 2016; 115:1977-89. [DOI: 10.1007/s00436-016-4940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
|
13
|
Tatomer DC, Rizzardi LF, Curry KP, Witkowski AM, Marzluff WF, Duronio RJ. Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions. Nucleus 2015; 5:613-25. [PMID: 25493544 DOI: 10.4161/19491034.2014.990860] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.
Collapse
Key Words
- CTD, RNA polymerase II C-terminal domain
- Drosophila
- HCC, histone cleavage complex
- HDE, histone downstream element
- HLB, histone locus body
- Madm, MLF1-adaptor molecule
- PAP, poly (A) polymerase
- PAS, poly A signal
- RNA processing, Symplekin
- Rp49, ribosomal protein L32
- SL, stem loop
- SLBP, stem loop binding protein
- Sym, Symplekin
- cas, castor
- gene expression
- histone mRNA
- nuclear bodies
- sop, ribosomal protein S2
- yps, ypsilon schachtel
Collapse
Affiliation(s)
- Deirdre C Tatomer
- a Department of Biology ; University of North Carolina ; Chapel Hill , NC USA
| | | | | | | | | | | |
Collapse
|
14
|
Burn KM, Shimada Y, Ayers K, Vemuganti S, Lu F, Hudson AM, Cooley L. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers. Dev Biol 2015; 398:206-17. [PMID: 25481758 PMCID: PMC4340711 DOI: 10.1016/j.ydbio.2014.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 12/31/2022]
Abstract
Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers.
Collapse
Affiliation(s)
- K Mahala Burn
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yuko Shimada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Seinou-tou D301, Tennoudai 1-1-1, Tsukuba,, Ibaraki 305-8572, Japan
| | - Kathleen Ayers
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Soumya Vemuganti
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Feiyue Lu
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Lynn Cooley
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Prospect Street, New Haven, CT 06510, United States.
| |
Collapse
|
15
|
Arnold A, Rahman MM, Lee MC, Muehlhaeusser S, Katic I, Gaidatzis D, Hess D, Scheckel C, Wright JE, Stetak A, Boag PR, Ciosk R. Functional characterization of C. elegans Y-box-binding proteins reveals tissue-specific functions and a critical role in the formation of polysomes. Nucleic Acids Res 2014; 42:13353-69. [PMID: 25378320 PMCID: PMC4245946 DOI: 10.1093/nar/gku1077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cold shock domain is one of the most highly conserved motifs between bacteria and higher eukaryotes. Y-box-binding proteins represent a subfamily of cold shock domain proteins with pleiotropic functions, ranging from transcription in the nucleus to translation in the cytoplasm. These proteins have been investigated in all major model organisms except Caenorhabditis elegans. In this study, we set out to fill this gap and present a functional characterization of CEYs, the C. elegans Y-box-binding proteins. We find that, similar to other organisms, CEYs are essential for proper gametogenesis. However, we also report a novel function of these proteins in the formation of large polysomes in the soma. In the absence of the somatic CEYs, polysomes are dramatically reduced with a simultaneous increase in monosomes and disomes, which, unexpectedly, has no obvious impact on animal biology. Because transcripts that are enriched in polysomes in wild-type animals tend to be less abundant in the absence of CEYs, our findings suggest that large polysomes might depend on transcript stabilization mediated by CEY proteins.
Collapse
Affiliation(s)
- Andreas Arnold
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Md Masuder Rahman
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Man Chun Lee
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Claudia Scheckel
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Jane E Wright
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Attila Stetak
- Department of Neuroscience, Biozentrum/Pharmazentrum, Basel 4046, Switzerland
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| |
Collapse
|
16
|
Moon W, Matsuzaki F. Aurora A kinase negatively regulates Rho-kinase by phosphorylation in vivo. Biochem Biophys Res Commun 2013; 435:610-5. [PMID: 23685146 DOI: 10.1016/j.bbrc.2013.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Aurora-A kinase (AurA) is a key regulator of cellular processes involving microtubules. It has also been implicated in actin-dependent events, but the mechanisms that underlie the processes are not fully understood. Here we provide genetic and biochemical evidence suggesting that AurA negatively regulates Drok, the only known Rho-kinase orthologue in Drosophila. AurA directly phosphorylates Drok in vitro, and the overexpression of the nonphosphorylatable forms of Drok in vivo causes similar, but much stronger effects than that of wild-type Drok. The defects induced by the nonphosphorylatable forms of Drok are compensated by reducing the function of myosin downstream. Thus, phosphorylation of Drok by AurA normally suppresses Drok activity. We propose that AurA directly regulates actin-dependent processes by phosphorylating Rho-kinase.
Collapse
Affiliation(s)
- Woongjoon Moon
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650 0047, Japan
| | | |
Collapse
|
17
|
Li J, Hobman TC, Simmonds AJ. Gawky (GW) is the Drosophila melanogaster GW182 homologue. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:127-45. [PMID: 23224968 DOI: 10.1007/978-1-4614-5107-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Li
- Department of Cell Biology, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
18
|
Sengupta MS, Boag PR. Germ granules and the control of mRNA translation. IUBMB Life 2012; 64:586-94. [DOI: 10.1002/iub.1039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/17/2012] [Indexed: 12/18/2022]
|
19
|
Abstract
Translational regulation plays an essential role in many phases of the Drosophila life cycle. During embryogenesis, specification of the developing body pattern requires co-ordination of the translation of oskar, gurken and nanos mRNAs with their subcellular localization. In addition, dosage compensation is controlled by Sex-lethal-mediated translational regulation while dFMR1 (the Drosophila homologue of the fragile X mental retardation protein) controls translation of various mRNAs which function in the nervous system. Here we describe some of the mechanisms that are utilized to regulate these various processes. Our review highlights the complexity that can be involved with multiple factors employing different mechanisms to control the translation of a single mRNA.
Collapse
Affiliation(s)
- James E Wilhelm
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | |
Collapse
|
20
|
Shimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Dev Biol 2011; 355:250-62. [PMID: 21570389 DOI: 10.1016/j.ydbio.2011.04.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 11/15/2022]
Abstract
The maturation of animal oocytes is highly sensitive to nutrient availability. During Drosophila oogenesis, a prominent metabolic checkpoint occurs at the onset of yolk uptake (vitellogenesis): under nutrient stress, egg chambers degenerate by apoptosis. To investigate additional responses to nutrient deprivation, we studied the intercellular transport of cytoplasmic components between nurse cells and the oocyte during previtellogenic stages. Using GFP protein-traps, we showed that Ypsilon Schachtel (Yps), a putative RNA binding protein, moved into the oocyte by both microtubule (MT)-dependent and -independent mechanisms, and was retained in the oocyte in a MT-dependent manner. These data suggest that oocyte enrichment is accomplished by a combination of MT-dependent polarized transport and MT-independent flow coupled with MT-dependent trapping within the oocyte. Under nutrient stress, Yps and other components of the oskar ribonucleoprotein complex accumulated in large processing bodies in nurse cells, accompanied by MT reorganization. This response was detected as early as 2h after starvation, suggesting that young egg chambers rapidly respond to nutrient stress. Moreover, both Yps aggregation and MT reorganization were reversed with re-feeding of females or the addition of exogenous insulin to cultured egg chambers. Our results suggest that egg chambers rapidly mount a stress response by altering intercellular transport upon starvation. This response implies a mechanism for preserving young egg chambers so that egg production can rapidly resume when nutrient availability improves.
Collapse
Affiliation(s)
- Yuko Shimada
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
21
|
Bazooka regulates microtubule organization and spatial restriction of germ plasm assembly in the Drosophila oocyte. Dev Biol 2010; 340:528-38. [PMID: 20152826 DOI: 10.1016/j.ydbio.2010.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 11/20/2022]
Abstract
Localization of the germ plasm to the posterior of the Drosophila oocyte is required for anteroposterior patterning and germ cell development during embryogenesis. While mechanisms governing the localization of individual germ plasm components have been elucidated, the process by which germ plasm assembly is restricted to the posterior pole is poorly understood. In this study, we identify a novel allele of bazooka (baz), the Drosophila homolog of Par-3, which has allowed the analysis of baz function throughout oogenesis. We demonstrate that baz is required for spatial restriction of the germ plasm and axis patterning, and we uncover multiple requirements for baz in regulating the organization of the oocyte microtubule cytoskeleton. Our results suggest that distinct cortical domains established by Par proteins polarize the oocyte through differential effects on microtubule organization. We further show that microtubule plus-end enrichment is sufficient to drive germ plasm assembly even at a distance from the oocyte cortex, suggesting that control of microtubule organization is critical not only for the localization of germ plasm components to the posterior of the oocyte but also for the restriction of germ plasm assembly to the posterior pole.
Collapse
|
22
|
Translational control during early development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:211-54. [PMID: 20374743 DOI: 10.1016/s1877-1173(09)90006-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translational control of specific messenger RNAs, which themselves are often asymmetrically localized within the cytoplasm of a cell, underlies many events in germline development, and in embryonic axis specification. This comprehensive, but by no means exhaustive, review attempts to present a picture of the present state of knowledge about mechanisms underlying mRNA localization and translational control of specific mRNAs that are mediated by trans-acting protein factors. While RNA localization and translational control are widespread in evolution and have been studied in many experimental systems, this article will focus mainly on three particularly well-characterized systems: Drosophila, Caenorhabditis elegans, and Xenopus. In keeping with the overall theme of this volume, instances in which translational control factors have been linked to human disease states will also be discussed.
Collapse
|
23
|
Dienstbier M, Boehl F, Li X, Bullock SL. Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes Dev 2009; 23:1546-58. [PMID: 19515976 DOI: 10.1101/gad.531009] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytoplasmic sorting of mRNAs by microtubule-based transport is widespread, yet very little is known at the molecular level about how specific transcripts are linked to motor complexes. In Drosophila, minus-end-directed transport of developmentally important transcripts by the dynein motor is mediated by seemingly divergent mRNA elements. Here we provide evidence that direct recognition of these mRNA localization signals is mediated by the Egalitarian (Egl) protein. Egl and the dynein cofactor Bicaudal-D (BicD) are the only proteins from embryonic extracts that are abundantly and specifically enriched on RNA localization signals from transcripts of gurken, hairy, K10, and the I factor retrotransposon. In vitro assays show that, despite lacking a canonical RNA-binding motif, Egl directly recognizes active localization elements. We also reveal a physical interaction between Egl and a conserved domain for cargo recruitment in BicD and present data suggesting that Egl participates selectively in BicD-mediated transport of mRNA in vivo. Our work leads to the first working model for a complete connection between minus-end-directed mRNA localization signals and microtubules and reveals molecular strategies that are likely to be of general relevance for cargo transport by dynein.
Collapse
Affiliation(s)
- Martin Dienstbier
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
24
|
Abstract
Sponge bodies, cytoplasmic structures containing post-transcriptional regulatory factors, are distributed throughout the nurse cells and oocytes of the Drosophila ovary and share components with P bodies of yeast and mammalian cells. We show that sponge body composition differs between nurse cells and the oocyte, and that the sponge bodies change composition rapidly after entry into the oocyte. We identify conditions that affect sponge body organization. At one extreme, components are distributed relatively uniformly or in small dispersed bodies. At the other extreme, components are present in large reticulated bodies. Both types of sponge bodies allow normal development, but show substantial differences in distribution of Staufen protein and oskar mRNA, whose localization within the oocyte is essential for axial patterning. Based on these and other results we propose a model for the relationship between P bodies and the various cytoplasmic bodies containing P body proteins in the Drosophila ovary.
Collapse
Affiliation(s)
- Mark J Snee
- Institute for Cellular and Molecular Biology, Section of Molecular, Cell, and Developmental Biology, The University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
25
|
Pisa V, Cozzolino M, Gargiulo S, Ottone C, Piccioni F, Monti M, Gigliotti S, Talamo F, Graziani F, Pucci P, Verrotti AC. The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis. Gene 2008; 432:67-74. [PMID: 19101615 DOI: 10.1016/j.gene.2008.11.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/10/2023]
Abstract
In metazoa, the spatio-temporal translation of diverse mRNAs is essential to guarantee proper oocyte maturation and early embryogenesis. The eukaryotic translation initiation factor 4E (eIF4E), which binds the 5' cap structure of eukaryotic mRNAs, associates with either stimulatory or inhibitory factors to modulate protein synthesis. In order to identify novel factors that might act at the translational level during Drosophila oogenesis, we have undertaken a functional proteomic approach and isolated the product of the Hsp83 gene, the evolutionarily conserved chaperone Hsp90, as a specific component of the cap-binding complex. Here we report that Hsp90 interacts in vitro with the translational repressor Cup. In addition, we show that Hsp83 and cup interact genetically, since lowering Hsp90 activity enhances the oogenesis alterations linked to diverse cup mutant alleles. Hsp90 and Cup co-localize in the cytoplasm of the developing germ-line cells within the germarium, thus suggesting a common function from the earliest stages of oogenesis. Taken together, our data start elucidating the role of Hsp90 during Drosophila female germ-line development and strengthen the idea that Cup has multiple essential functions during egg chamber development.
Collapse
|
26
|
Marracci S, Casola C, Bucci S, Mancino G, Ragghianti M. Isolation and expression ofRlYB2, a germ cell‐specificY‐boxgene inRana. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/11250000701690616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Minshall N, Reiter MH, Weil D, Standart N. CPEB Interacts with an Ovary-specific eIF4E and 4E-T in Early Xenopus Oocytes. J Biol Chem 2007; 282:37389-401. [PMID: 17942399 DOI: 10.1074/jbc.m704629200] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
28
|
Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Geng C, Ueda R, Brand AH, Newbury SF, Wilhelm JE, Levine RB, Nakamura A, Parker R, Ramaswami M. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 2007; 52:997-1009. [PMID: 17178403 PMCID: PMC1955741 DOI: 10.1016/j.neuron.2006.10.028] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/21/2006] [Accepted: 10/24/2006] [Indexed: 12/19/2022]
Abstract
Local control of mRNA translation modulates neuronal development, synaptic plasticity, and memory formation. A poorly understood aspect of this control is the role and composition of ribonucleoprotein (RNP) particles that mediate transport and translation of neuronal RNAs. Here, we show that staufen- and FMRP-containing RNPs in Drosophila neurons contain proteins also present in somatic "P bodies," including the RNA-degradative enzymes Dcp1p and Xrn1p/Pacman and crucial components of miRNA (argonaute), NMD (Upf1p), and general translational repression (Dhh1p/Me31B) pathways. Drosophila Me31B is shown to participate (1) with an FMRP-associated, P body protein (Scd6p/trailer hitch) in FMRP-driven, argonaute-dependent translational repression in developing eye imaginal discs; (2) in dendritic elaboration of larval sensory neurons; and (3) in bantam miRNA-mediated translational repression in wing imaginal discs. These results argue for a conserved mechanism of translational control critical to neuronal function and open up new experimental avenues for understanding the regulation of mRNA function within neurons.
Collapse
Affiliation(s)
- Scott A. Barbee
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- ARL Division of Neurobiology, University of Arizona Tucson, Arizona 85721
| | - Patricia S. Estes
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- ARL Division of Neurobiology, University of Arizona Tucson, Arizona 85721
| | - Anne-Marie Cziko
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- ARL Division of Neurobiology, University of Arizona Tucson, Arizona 85721
| | - Jens Hillebrand
- Smurfit Institute of Genetics and TCIN Lloyd Building, Trinity College Dublin, Dublin-2, Ireland
| | - Rene A. Luedeman
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- ARL Division of Neurobiology, University of Arizona Tucson, Arizona 85721
| | - Jeff M. Coller
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- Howard Hughes Medical Institute, University of Arizona Tucson, Arizona 85721
| | - Nick Johnson
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- Howard Hughes Medical Institute, University of Arizona Tucson, Arizona 85721
| | - Iris C. Howlett
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- ARL Division of Neurobiology, University of Arizona Tucson, Arizona 85721
| | - Cuiyun Geng
- Institute for Cellular and Molecular Biology Section of Molecular Cell and Developmental Biology, The University of Texas at Austin 1 University Station Austin, Texas 78712
| | - Ryu Ueda
- Invertebrate Genetics Lab, Genetic Strains Research Center, National Institute of Genetics (NIG) 1111 Yata Mishima, Shizuoka 411-8540, Japan
| | - Andrea H. Brand
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Cambridge CB2 IQR, United Kingdom
| | - Sarah F. Newbury
- Institute of Cell and Molecular Biosciences, University of Newcastle, The Medical School Framlington Place, Newcastle-upon-Tyne, United Kingdom
| | - James E. Wilhelm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego La Jolla, California 92093
| | - Richard B. Levine
- ARL Division of Neurobiology, University of Arizona Tucson, Arizona 85721
| | - Akira Nakamura
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojimaminamimachi Chuo-ku, Kobe 650-0047 Japan
| | - Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- Howard Hughes Medical Institute, University of Arizona Tucson, Arizona 85721
- *Correspondence: (R.P.), . edu (M.R.)
| | - Mani Ramaswami
- Department of Molecular and Cellular Biology, University of Arizona Tucson, Arizona 85721
- ARL Division of Neurobiology, University of Arizona Tucson, Arizona 85721
- Smurfit Institute of Genetics and TCIN Lloyd Building, Trinity College Dublin, Dublin-2, Ireland
- *Correspondence: (R.P.), . edu (M.R.)
| |
Collapse
|
29
|
Lin MD, Fan SJ, Hsu WS, Chou TB. Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell 2006; 10:601-13. [PMID: 16678775 DOI: 10.1016/j.devcel.2006.02.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 02/04/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
In Drosophila, posterior deposition of oskar (osk) mRNA in oocytes is critical for both pole cell and abdomen formation. Exon junction complex components, translational regulation factors, and other proteins form an RNP complex that is essential for directing osk mRNA to the posterior of the oocyte. Until now, it has not been clear whether the mRNA degradation machinery is involved in regulating osk mRNA deposition. Here we show that Drosophila decapping protein 1, dDcp1, is a posterior group gene required for the transport of osk mRNA. In oocytes, dDcp1 is localized posteriorly in an osk mRNA position- and dosage-dependent manner. In nurse cells, dDcp1 colocalizes with dDcp2 and Me31B in discrete foci that may be related to processing bodies (P bodies), which are sites of active mRNA degradation. Thus, as well as being a general factor required for mRNA decay, dDcp1 is an essential component of the osk mRNP localization complex.
Collapse
Affiliation(s)
- Ming-Der Lin
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | | | | | | |
Collapse
|
30
|
Nashchekin D, Zhao J, Visa N, Daneholt B. A Novel Ded1-like RNA Helicase Interacts with the Y-box Protein ctYB-1 in Nuclear mRNP Particles and in Polysomes. J Biol Chem 2006; 281:14263-72. [PMID: 16556597 DOI: 10.1074/jbc.m600262200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized a novel mRNA-binding protein, designated hrp84, in the dipteran Chironomus tentans and identified it as a DEAD-box RNA helicase. The protein contains the typical helicase core domain, a glycine-rich C-terminal part and a putative nuclear export signal in the N terminus. The protein belongs to the Ded1 subgroup of DEAD-box helicases, which is highly conserved from yeast (Ded1p) to mammals (DDX3). In tissue culture cells, hrp84 is present both in the nucleus and cytoplasm and, as shown by in vivo UV cross-linking, is bound to mRNA in both compartments. Immunoprecipitation experiments revealed that hpr84 is associated with the C. tentans homologue (ctYB-1) of the vertebrate Y-box protein YB-1 both in the nucleus and cytoplasm, and the two proteins also appear together in polysomes. The interaction is likely to be direct as shown by in vitro binding of purified components. We conclude that the mRNA-bound hrp84.ctYB-1 complex is formed in the nucleus and is translocated with mRNA into the cytoplasm and further into polysomes. As both Ded1 and YB-1 are known to regulate the initiation of translation, we propose that the RNA helicase-Y-box protein complex affects the efficiency of mRNA translation, presumably by modulating the conformation of the mRNP template.
Collapse
Affiliation(s)
- Dmitri Nashchekin
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Tadros W, Lipshitz HD. Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn 2005; 232:593-608. [PMID: 15704150 DOI: 10.1002/dvdy.20297] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Early animal development is controlled by maternally encoded RNAs and proteins, which are loaded into the egg during oogenesis. Oocyte maturation and egg activation trigger changes in the translational status and the stability of specific maternal mRNAs. Whereas both maturation and activation have been studied in depth in amphibians and echinoderms, only recently have these processes begun to be dissected using the powerful genetic and molecular tools available in Drosophila. This review focuses on the mechanisms and functions of regulated maternal mRNA translation and stability in Drosophila--and compares these mechanisms with those elucidated in other animal models, particularly Xenopus--beginning late in oogenesis and continuing to the mid-blastula transition, when developmental control is transferred to zygotically synthesized transcripts.
Collapse
Affiliation(s)
- Wael Tadros
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children & Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
32
|
Vazquez-Pianzola P, Urlaub H, Rivera-Pomar R. Proteomic analysis of reaper 5' untranslated region-interacting factors isolated by tobramycin affinity-selection reveals a role for La antigen in reaper mRNA translation. Proteomics 2005; 5:1645-55. [PMID: 15789343 DOI: 10.1002/pmic.200401045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Translational control is a key step in gene expression regulation during apoptosis. To understand the mechanisms of mRNA translation of a pro-apoptotic gene, reaper (rpr), we adapted the tobramycin-aptamer technique described by Hartmuth et al. (Proc. Natl. Acad. Sci. USA 2002, 99, 16719-16724) for the analysis of proteins interacting with rpr 5' untranslated region (UTR). We assembled ribonucleoprotein complexes in vitro using translation extracts derived from Drosophila embryos and purified the RNA-protein complexes for mas spectrometry analysis. We identified the proteins bound to the 5' UTR of rpr. One of them, the La antigen, was validated by RNA-crosslinking experiments using recombinant protein and by the translation efficiency of reporter mRNAs in Drosophila cells after RNAinterference experiments. Our data provide evidence of the involvement of La antigen in the translation of rpr and set a protocol for purification of tagged-RNA-protein complexes from cytoplasmic extracts.
Collapse
Affiliation(s)
- Paula Vazquez-Pianzola
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
33
|
de Moor CH, Meijer H, Lissenden S. Mechanisms of translational control by the 3' UTR in development and differentiation. Semin Cell Dev Biol 2005; 16:49-58. [PMID: 15659339 DOI: 10.1016/j.semcdb.2004.11.007] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a major role in early development, differentiation and the cell cycle. In this review, we focus on the four main mechanisms of translational control by 3' untranslated regions: 1. Cytoplasmic polyadenylation and deadenylation; 2. Recruitment of 4E binding proteins; 3. Regulation of ribosomal subunit binding; 4. Post-initiation repression by microRNAs. Proteins with conserved functions in translational control during development include cytoplasmic polyadenylation element binding proteins (CPEB/Orb), Pumilio, Bruno, Fragile X mental retardation protein and RNA helicases. The translational regulation of the mRNAs encoding cyclin B1, Oskar, Nanos, Male specific lethal 2 (Msl-2), lipoxygenase and Lin-14 is discussed.
Collapse
Affiliation(s)
- Cornelia H de Moor
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
34
|
Tanaka KJ, Matsumoto K, Tsujimoto M, Nishikata T. CiYB1 is a major component of storage mRNPs in ascidian oocytes: implications in translational regulation of localized mRNAs. Dev Biol 2004; 272:217-30. [PMID: 15242802 DOI: 10.1016/j.ydbio.2004.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 04/19/2004] [Accepted: 04/20/2004] [Indexed: 11/21/2022]
Abstract
In ascidian eggs, the existence of several localized maternal cytoplasmic determinants has been proposed and the importance of localized mRNAs for tissue differentiation has been demonstrated. We previously identified the ascidian Y-box proteins (CiYB1, 2 and 3), homologues of which are known to be involved in the storage of maternal mRNA in oocytes of other organisms. In this study, we found that CiYB1 protein is abundant in the gonad, egg, and embryo. Purification of messenger ribonucleoprotein (mRNP) particles from the gonad revealed that CiYB1 was one of their major components. A significant change in the distribution of CiYB1 protein from stored mRNP particles in the gonad to the ribosome fraction in eggs and embryos was observed. This change correlates most likely with the shift of stored maternal mRNAs to polyribosomes. Moreover, we found that CiYB1 colocalized with Cipem and Ci-macho1 mRNAs, which are localized at the posterior end of the embryo at the cleavage stage. Cipem and Ci-macho1 mRNAs were co-immunoprecipitated with CiYB1 in the oocyte and embryo lysates. The formation of a complex between Cipem mRNA and CiYB1 protein resulted in translational repression in the in vitro translation system. Our results indicate that associating with CiYB1 protein contributes to the translational control of the localized mRNA in eggs and embryos.
Collapse
Affiliation(s)
- Kimio J Tanaka
- Laboratory of Cellular Biochemistry, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
35
|
Abstract
RNA localization and spatially restricted translational control can serve to deploy specific proteins to particular places within a cell. oskar (osk) RNA is a key initiatior of posterior patterning and germ cell specification in Drosophila, and its localization and translation are under elaborate control. In this issue, Wilhelm et al. (2003) show that the protein Cup both promotes osk localization and participates in repressing translation of unlocalized osk.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, 115 West University Parkway, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Nakamura A, Sato K, Hanyu-Nakamura K. Drosophila Cup Is an eIF4E Binding Protein that Associates with Bruno and Regulates oskar mRNA Translation in Oogenesis. Dev Cell 2004; 6:69-78. [PMID: 14723848 DOI: 10.1016/s1534-5807(03)00400-3] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Translational control is a critical process in the spatio-temporal restriction of protein production. In Drosophila oogenesis, translational repression of oskar (osk) RNA during its localization to the posterior pole of the oocyte is essential for embryonic patterning and germ cell formation. This repression is mediated by the osk 3' UTR binding protein Bruno (Bru), but the underlying mechanism has remained elusive. Here, we report that an ovarian protein, Cup, is required to repress precocious osk translation. Cup binds the 5'-cap binding translation initiation factor eIF4E through a sequence conserved among eIF4E binding proteins. A mutant Cup protein lacking this sequence fails to repress osk translation in vivo. Furthermore, Cup interacts with Bru in a yeast two-hybrid assay, and the Cup-eIF4E complex associates with Bru in an RNA-independent manner. These results suggest that translational repression of osk RNA is achieved through a 5'/3' interaction mediated by an eIF4E-Cup-Bru complex.
Collapse
Affiliation(s)
- Akira Nakamura
- Laboratory for Germline Development, Riken Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | | | |
Collapse
|
37
|
Abstract
The translational regulation of specific mRNAs is important for controlling gene expression. The past few years have seen a rapid expansion in the identification and characterization of mRNA regulatory elements and their binding proteins. For the majority of these examples, the mechanism by which translational regulation is achieved is not well understood. Nevertheless, detailed analyses of a few examples show that almost every event in the initiation pathway, from binding of the cap complex to the joining of the 60S ribosomal subunit, is subject to regulation.
Collapse
Affiliation(s)
- Gavin S Wilkie
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK
| | | | | |
Collapse
|
38
|
Salvetti A, Lena A, Rossi L, Deri P, Cecchettini A, Batistoni R, Gremigni V. Characterization of DeY1, a novel Y-box gene specifically expressed in differentiating male germ cells of planarians. Gene Expr Patterns 2002; 2:195-200. [PMID: 12617800 DOI: 10.1016/s1567-133x(02)00063-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Y-box proteins are conserved regulatory factors that play a key role in coordinating gene activity with protein synthesis by influencing both the transcription and translation of specific subsets of genes. We report the identification of a novel Y-box gene, DeY1, whose transcripts are found in the testes of sexual planarians. DeY1 is expressed in spermatogonia, spermatocytes and spermatids, while no expression is detected in spermatozoa. No DeY1 transcripts are found in the blastema during regeneration. The subcellular distribution of DeY1 protein was analyzed by electron microscope immunocytochemistry. Immunolabelling was found in the nucleus of spermatogonia, in both the nucleus and the cytoplasm of spermatocytes, and in the cytoplasm of spermatids.
Collapse
Affiliation(s)
- Alessandra Salvetti
- Dipartimento di Morfologia Umana e Biologia Applicata, Sezione di Biologia e Genetica, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Styhler S, Nakamura A, Lasko P. VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS. Dev Cell 2002; 3:865-76. [PMID: 12479811 DOI: 10.1016/s1534-5807(02)00361-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
VASA (VAS), a key protein in establishing the specialized translational activity of the Drosophila pole plasm, accumulates at the posterior pole of the developing oocyte. We identified a gene, gustavus (gus), that encodes a protein that interacts with VAS. A gus mutation blocks posterior localization of VAS, as does deletion of a segment of VAS containing the GUS binding site. Like VAS, GUS is present in cytoplasmic ribonucleoprotein particles. Heterozygotes for gus or a deletion including gus produce embryos with fewer pole cells and posterior patterning defects. Therefore, GUS is essential for the posterior localization of VAS. However, gus is not required for the posterior localization of oskar (osk). Apparent gus orthologs are present in mammalian genomes.
Collapse
Affiliation(s)
- Sylvia Styhler
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, Québec, Canada H3A 1B1
| | | | | |
Collapse
|