1
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Brodie-Kommit J, Clark BS, Shi Q, Shiau F, Kim DW, Langel J, Sheely C, Ruzycki PA, Fries M, Javed A, Cayouette M, Schmidt T, Badea T, Glaser T, Zhao H, Singer J, Blackshaw S, Hattar S. Atoh7-independent specification of retinal ganglion cell identity. SCIENCE ADVANCES 2021; 7:7/11/eabe4983. [PMID: 33712461 PMCID: PMC7954457 DOI: 10.1126/sciadv.abe4983] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/29/2021] [Indexed: 06/11/2023]
Abstract
Retinal ganglion cells (RGCs) relay visual information from the eye to the brain. RGCs are the first cell type generated during retinal neurogenesis. Loss of function of the transcription factor Atoh7, expressed in multipotent early neurogenic retinal progenitors leads to a selective and essentially complete loss of RGCs. Therefore, Atoh7 is considered essential for conferring competence on progenitors to generate RGCs. Despite the importance of Atoh7 in RGC specification, we find that inhibiting apoptosis in Atoh7-deficient mice by loss of function of Bax only modestly reduces RGC numbers. Single-cell RNA sequencing of Atoh7;Bax-deficient retinas shows that RGC differentiation is delayed but that the gene expression profile of RGC precursors is grossly normal. Atoh7;Bax-deficient RGCs eventually mature, fire action potentials, and incorporate into retinal circuitry but exhibit severe axonal guidance defects. This study reveals an essential role for Atoh7 in RGC survival and demonstrates Atoh7-dependent and Atoh7-independent mechanisms for RGC specification.
Collapse
Affiliation(s)
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qing Shi
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Fion Shiau
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Dong Won Kim
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Langel
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Catherine Sheely
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Michel Fries
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, QC H3C 3J7, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, QC H3C 3J7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, QC H3C 3J7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0G4, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Tiffany Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tudor Badea
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Research and Development Institute, Transylvania University of Brasov, School of Medicine, Brasov, Romania
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, CA, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Singer
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Samer Hattar
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
4
|
Sabnis A, Mane P. Proliferative capacity of retinal progenitor cells in human fetal retina. J ANAT SOC INDIA 2021. [DOI: 10.4103/jasi.jasi_100_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation. Dev Cell 2019; 50:73-89.e6. [DOI: 10.1016/j.devcel.2019.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 12/31/2022]
|
6
|
Differentiation of Bone Marrow Mesenchymal Stem Cells into Neural Lineage Cells Induced by bFGF-Chitosan Controlled Release System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5086297. [PMID: 31032349 PMCID: PMC6457308 DOI: 10.1155/2019/5086297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
Bone marrow mesenchymal stem cells undergo differentiation to different lineages with different efficiencies when induced by different factors. We added a bFGF-chitosan controlled release system (bFGF-CCRS) as an inducer into conditioned medium to facilitate the oriented differentiation of BMSCs into neural lineage cells (eventually mature neurons); furthermore, we synchronized BMSCs to the G0/G1 phase via serum starvation to observe the effect of the inducer on the differentiation direction and efficiency. The nonsynchronized group, chitosan alone (not loaded with bFGF) group, soluble bFGF group, and conditioned medium group served as controls, and we observed the dynamic process of differentiation of BMSCs into neural lineage cells at different time points after the beginning of coculture. We analyzed the binding patterns of bFGF and chitosan and assayed the expression differences of key factors (FGFR1, ERK, and c-fos) and molecular switches (BTG2) that regulate the transformation from cell proliferation to differentiation. We also investigated the potential molecular mechanism of BMSC differentiation into neural lineage cells at a high percentage when induced by bFGF-CCRS.
Collapse
|
7
|
Collin J, Zerti D, Queen R, Santos-Ferreira T, Bauer R, Coxhead J, Hussain R, Steel D, Mellough C, Ader M, Sernagor E, Armstrong L, Lako M. CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones. Stem Cells 2019; 37:609-622. [PMID: 30681766 PMCID: PMC6519156 DOI: 10.1002/stem.2974] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/05/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.
Collapse
Affiliation(s)
- Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Rachel Queen
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - Tiago Santos-Ferreira
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Roman Bauer
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - Rafiqul Hussain
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - David Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Carla Mellough
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Evelyne Sernagor
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
8
|
O'Sullivan C, Nickerson PEB, Krupke O, Christie J, Chen LL, Mesa-Peres M, Zhu M, Ryan B, Chow RL, Howard PL. ARS2 is required for retinal progenitor cell S-phase progression and Müller glial cell fate specification. Biochem Cell Biol 2019; 98:50-60. [PMID: 30673303 DOI: 10.1139/bcb-2018-0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During a developmental period that extends postnatally in the mouse, proliferating multipotent retinal progenitor cells produce one of 7 major cell types (rod, cone, bipolar, horizontal, amacrine, ganglion, and Müller glial cells) as they exit the cell cycle in consecutive waves. Cell production in the retina is tightly regulated by intrinsic, extrinsic, spatial, and temporal cues, and is coupled to the timing of cell cycle exit. Arsenic-resistance protein 2 (ARS2, also known as SRRT) is a component of the nuclear cap-binding complex involved in RNA Polymerase II transcription, and is required for cell cycle progression. We show that postnatal retinal progenitor cells (RPCs) require ARS2 for proper progression through S phase, and ARS2 disruption leads to early exit from the cell cycle. Furthermore, we observe an increase in the proportion of cells expressing a rod photoreceptor marker, and a loss of Müller glia marker expression, indicating a role for ARS2 in regulating cell fate specification or differentiation. Knockdown of Flice Associated Huge protein (FLASH), which interacts with ARS2 and is required for cell cycle progression and 3'-end processing of replication-dependent histone transcripts, phenocopies ARS2 knockdown. These data implicate ARS2-FLASH-mediated histone mRNA processing in regulating RPC cell cycle kinetics and neuroglial cell fate specification during postnatal retinal development.
Collapse
Affiliation(s)
- Connor O'Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | | | - Oliver Krupke
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jennifer Christie
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Li-Li Chen
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Monica Mesa-Peres
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Minyan Zhu
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Bridget Ryan
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Perry L Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
9
|
Pérez Saturnino A, Lust K, Wittbrodt J. Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth. Development 2018; 145:dev.169698. [PMID: 30337377 PMCID: PMC6240314 DOI: 10.1242/dev.169698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023]
Abstract
Patterning of a continuously growing naive field in the context of a life-long growing organ such as the teleost eye is of high functional relevance. Intrinsic and extrinsic signals have been proposed to regulate lineage specification in progenitors that exit the stem cell niche in the ciliary marginal zone (CMZ). The proper cell-type composition arising from those progenitors is a prerequisite for retinal function. Our findings in the teleost medaka (Oryzias latipes) uncover that the Notch-Atoh7 axis continuously patterns the CMZ. The complement of cell types originating from the two juxtaposed progenitors marked by Notch or Atoh7 activity contains all constituents of a retinal column. Modulation of Notch signalling specifically in Atoh7-expressing cells demonstrates the crucial role of this axis in generating the correct cell-type proportions. After transiently blocking Notch signalling, retinal patterning and differentiation is re-initiated de novo. Taken together, our data show that Notch activity in the CMZ continuously structures the growing retina by juxtaposing Notch and Atoh7 progenitors that give rise to distinct complementary lineages, revealing coupling of de novo patterning and cell-type specification in the respective lineages. Summary: Mutually exclusive activity of Notch and Atoh7 in the ciliary marginal zone gives rise to two distinct lineages resulting in specification of the full complement of cell types in medaka retina.
Collapse
Affiliation(s)
- Alicia Pérez Saturnino
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany.,Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg 69120, Germany
| | - Katharina Lust
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|
10
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
11
|
Abstract
Neural basic helix-loop helix (bHLH) transcription factors promote progenitor cell differentiation by activation of downstream target genes that coordinate neuronal differentiation. Here we characterize a neural bHLH target gene in Xenopus laevis, vexin (vxn; previously sbt1), that is homologous to human c8orf46 and is conserved across vertebrate species. C8orf46 has been implicated in cancer progression, but its function is unknown. Vxn is transiently expressed in differentiating progenitors in the developing central nervous system (CNS), and is required for neurogenesis in the neural plate and retina. Its function is conserved, since overexpression of either Xenopus or mouse vxn expands primary neurogenesis and promotes early retinal cell differentiation in cooperation with neural bHLH factors. Vxn protein is localized to the cell membrane and the nucleus, but functions in the nucleus to promote neural differentiation. Vxn inhibits cell proliferation, and works with the cyclin-dependent kinase inhibitor p27Xic1 (cdkn1b) to enhance neurogenesis and increase levels of the proneural protein Neurog2. We propose that vxn provides a key link between neural bHLH activity and execution of the neurogenic program.
Collapse
|
12
|
Ng Chi Kei J, Currie PD, Jusuf PR. Fate bias during neural regeneration adjusts dynamically without recapitulating developmental fate progression. Neural Dev 2017; 12:12. [PMID: 28705258 PMCID: PMC5508679 DOI: 10.1186/s13064-017-0089-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Regeneration of neurons in the central nervous system is poor in humans. In other vertebrates neural regeneration does occur efficiently and involves reactivation of developmental processes. Within the neural retina of zebrafish, Müller glia are the main stem cell source and are capable of generating progenitors to replace lost neurons after injury. However, it remains largely unknown to what extent Müller glia and neuron differentiation mirror development. METHODS Following neural ablation in the zebrafish retina, dividing cells were tracked using a prolonged labelling technique. We investigated to what extent extrinsic feedback influences fate choices in two injury models, and whether fate specification follows the histogenic order observed in development. RESULTS By comparing two injury paradigms that affect different subpopulations of neurons, we found a dynamic adaptability of fate choices during regeneration. Both injuries followed a similar time course of cell death, and activated Müller glia proliferation. However, these newly generated cells were initially biased towards replacing specifically the ablated cell types, and subsequently generating all cell types as the appropriate neuron proportions became re-established. This dynamic behaviour has implications for shaping regenerative processes and ensuring restoration of appropriate proportions of neuron types regardless of injury or cell type lost. CONCLUSIONS Our findings suggest that regenerative fate processes are more flexible than development processes. Compared to development fate specification we observed a disruption in stereotypical birth order of neurons during regeneration Understanding such feedback systems can allow us to direct regenerative fate specification in injury and diseases to regenerate specific neuron types in vivo.
Collapse
Affiliation(s)
- Jeremy Ng Chi Kei
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Peter David Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patricia Regina Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia. .,School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Ail D, Perron M. Retinal Degeneration and Regeneration-Lessons From Fishes and Amphibians. CURRENT PATHOBIOLOGY REPORTS 2017; 5:67-78. [PMID: 28255526 PMCID: PMC5309292 DOI: 10.1007/s40139-017-0127-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Retinal degenerative diseases have immense socio-economic impact. Studying animal models that recapitulate human eye pathologies aids in understanding the pathogenesis of diseases and allows for the discovery of novel therapeutic strategies. Some non-mammalian species are known to have remarkable regenerative abilities and may provide the basis to develop strategies to stimulate self-repair in patients suffering from these retinal diseases. RECENT FINDINGS Non-mammalian organisms, such as zebrafish and Xenopus, have become attractive model systems to study retinal diseases. Additionally, many fish and amphibian models of retinal cell ablation and cell lineage analysis have been developed to study regeneration. These investigations highlighted several cellular sources for retinal repair in different fish and amphibian species. Moreover, major differences in repair mechanisms have been reported in these animal models. SUMMARY This review aims to emphasize first on the importance of zebrafish and Xenopus models in studying the pathogenesis of retinal diseases and, second, on the different modes of regeneration processes in these model organisms.
Collapse
Affiliation(s)
- Divya Ail
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- Centre d’Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
14
|
Lepanto P, Davison C, Casanova G, Badano JL, Zolessi FR. Characterization of primary cilia during the differentiation of retinal ganglion cells in the zebrafish. Neural Dev 2016; 11:10. [PMID: 27053191 PMCID: PMC4823885 DOI: 10.1186/s13064-016-0064-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/29/2016] [Indexed: 01/05/2023] Open
Abstract
Background Retinal ganglion cell (RGC) differentiation in vivo is a highly stereotyped process, likely resulting from the interaction of cell type-specific transcription factors and tissue-derived signaling factors. The primary cilium, as a signaling hub in the cell, may have a role during this process but its presence and localization during RGC generation, and its contribution to the process of cell differentiation, have not been previously assessed in vivo. Methods In this work we analyzed the distribution of primary cilia in vivo using laser scanning confocal microscopy, as well as their main ultrastructural features by transmission electron microscopy, in the early stages of retinal histogenesis in the zebrafish, around the time of RGC generation and initial differentiation. In addition, we knocked-down ift88 and elipsa, two genes with an essential role in cilia generation and maintenance, a treatment that caused a general reduction in organelle size. The effect on retinal development and RGC differentiation was assessed by confocal microscopy of transgenic or immunolabeled embryos. Results Our results show that retinal neuroepithelial cells have an apically-localized primary cilium usually protruding from the apical membrane. We also found a small proportion of sub-apical cilia, before and during the neurogenic period. This organelle was also present in an apical position in neuroblasts during apical process retraction and dendritogenesis, although between these stages cilia appeared highly dynamic regarding both presence and position. Disruption of cilia caused a decrease in the proliferation of retinal progenitors and a reduction of neural retina volume. In addition, retinal histogenesis was globally delayed albeit RGC layer formation was preferentially reduced with respect to the amacrine and photoreceptor cell layers. Conclusions These results indicate that primary cilia exhibit a highly dynamic behavior during early retinal differentiation, and that they are required for the proliferation and survival of retinal progenitors, as well as for neuronal generation, particularly of RGCs. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0064-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Camila Davison
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.,Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Gabriela Casanova
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Jose L Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Flavio R Zolessi
- Cell Biology of Neural Development Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay. .,Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
| |
Collapse
|
15
|
Kei JNC, Dudczig S, Currie PD, Jusuf PR. Feedback from each retinal neuron population drives expression of subsequent fate determinant genes without influencing the cell cycle exit timing. J Comp Neurol 2016; 524:2553-66. [PMID: 26850379 DOI: 10.1002/cne.23976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/10/2022]
Abstract
During neurogenesis, progenitors balance proliferation and cell cycle exit together with expression of fate determinant genes to ensure that the correct number of each of these neuron types is generated. Although intrinsic gene expression acting cell autonomously within each progenitor drives these processes, the final number of neurons generated is also influenced by extrinsic cues, representing a potential avenue to direct neurogenesis in developmental disorders or regenerative settings without the requirement to change intrinsic gene expression. Thus, it is important to understand which of these stages of neurogenesis are amenable to such extrinsic influences. Additionally, all types of neurons are specified in a highly conserved histogenic order, although its significance is unknown. This study makes use of conserved patterns of neurogenesis in the relatively simple yet highly organized zebrafish retina model, in which such histogenic birth order is well characterized. We directly visualize and quantify birth dates and cell fate determinant expression in WT vs. environments lacking different neuronal populations. This study shows that extrinsic feedback from developing retinal neurons is important for the temporal expression of intrinsic fate determinants but not for the timing of birth dates. We found no changes in cell cycle exit timing but did find a significant delay in the expression of genes driving the generation only of later- but not earlier-born cells, suggesting that the robustness of this process depends on continuous feedback from earlier-formed cell types. Thus, extrinsic cues selectively influence cell fate determinant progression, which may explain the function of the retinal histogenic order observed. J. Comp. Neurol. 524:2553-2566, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jeremy Ng Chi Kei
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Stefanie Dudczig
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Patricia R Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
16
|
Wan Y, Almeida AD, Rulands S, Chalour N, Muresan L, Wu Y, Simons BD, He J, Harris WA. The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue. Development 2016; 143:1099-107. [PMID: 26893352 PMCID: PMC4852496 DOI: 10.1242/dev.133314] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 01/07/2023]
Abstract
Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime. Summary: A quantitative study of cell proliferation and fate choice in the zebrafish retina - a continuously growing neural tissue - reveals key features of late retinal neurogenesis.
Collapse
Affiliation(s)
- Yinan Wan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Alexandra D Almeida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Steffen Rulands
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Naima Chalour
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Yunmin Wu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jie He
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
17
|
Corso-Díaz X, Simpson EM. Nr2e1 regulates retinal lamination and the development of Müller glia, S-cones, and glycineric amacrine cells during retinogenesis. Mol Brain 2015; 8:37. [PMID: 26092486 PMCID: PMC4475312 DOI: 10.1186/s13041-015-0126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/23/2015] [Indexed: 12/25/2022] Open
Abstract
Background Nr2e1 is a nuclear receptor crucial for neural stem cell proliferation and maintenance. In the retina, lack of Nr2e1 results in premature neurogenesis, aberrant blood vessel formation and dystrophy. However, the specific role of Nr2e1 in the development of different retinal cell types and its cell-autonomous and non-cell autonomous function(s) during eye development are poorly understood. Results Here, we studied the retinas of P7 and P21 Nr2e1frc/frc mice and Nr2e1+/+ ↔ Nr2e1frc/frc chimeras. We hypothesized that Nr2e1 differentially regulates the development of various retinal cell types, and thus the cellular composition of Nr2e1frc/frc retinas does not simply reflect an overrepresentation of cells born early and underrepresentation of cells born later as a consequence of premature neurogenesis. In agreement with our hypothesis, lack of Nr2e1 resulted in increased numbers of glycinergic amacrine cells with no apparent increase in other amacrine sub-types, normal numbers of Müller glia, the last cell-type to be generated, and increased numbers of Nr2e1frc/frc S-cones in chimeras. Furthermore, Nr2e1frc/frc Müller glia were mispositioned in the retina and misexpressed the ganglion cell-specific transcription factor Brn3a. Nr2e1frc/frc retinas also displayed lamination defects including an ectopic neuropil forming an additional inner plexiform layer. In chimeric mice, retinal thickness was rescued by 34 % of wild-type cells and Nr2e1frc/frc dystrophy-related phenotypes were no longer evident. However, the formation of an ectopic neuropil, misexpression of Brn3a in Müller glia, and abnormal cell numbers in the inner and outer nuclear layers at P7 were not rescued by wild-type cells. Conclusions Together, these results show that Nr2e1, in addition to having a role in preventing premature cell cycle exit, participates in several other developmental processes during retinogenesis including neurite organization in the inner retina and development of glycinergic amacrine cells, S-cones, and Müller glia. Nr2e1 also regulates various aspects of Müller glia differentiation cell-autonomously. However, Nr2e1 does not have a cell-autonomous role in preventing retinal dystrophy. Thus, Nr2e1 regulates processes involved in neurite development and terminal retinal cell differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0126-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, V5Z 4H4, BC, Canada.,Genetics Graduate Program, University of British Columbia, Vancouver, V6T 1Z2, BC, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, V5Z 4H4, BC, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, V6T 1Z2, BC, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, BC, Canada.
| |
Collapse
|
18
|
Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res 2015; 359:47-64. [PMID: 25172833 PMCID: PMC4284387 DOI: 10.1007/s00441-014-1981-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/28/2014] [Indexed: 12/20/2022]
Abstract
The impressive neuronal diversity found within the nervous system emerges from a limited pool of neural progenitor cells that proceed through different gene expression programs to acquire distinct cell fates. Here, we review recent evidence indicating that microRNAs (miRNAs) are critically involved in conferring neural cell identities during neural induction, neuronal differentiation and subtype specification. Several studies have shown that miRNAs act in concert with other gene regulatory factors and genetic switches to regulate the spatial and temporal expression profiles of important cell fate determinants. So far, most studies addressing the role of miRNAs during neurogenesis were conducted using animal models. With the advent of human pluripotent stem cells and the possibility to differentiate these into neural stem cells, we now have the opportunity to study miRNAs in a human context. More insight into the impact of miRNA-based regulation during neural fate choice could in the end be exploited to develop new strategies for the generation of distinct human neuronal cell types.
Collapse
Affiliation(s)
- Laura Stappert
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Beate Roese-Koerner
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology LIFE & BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Straße 25, Bonn, 53127 Germany
| |
Collapse
|
19
|
Hardwick LJA, Ali FR, Azzarelli R, Philpott A. Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 2014; 359:187-200. [PMID: 24859217 PMCID: PMC4284380 DOI: 10.1007/s00441-014-1895-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023]
Abstract
Formation of the central nervous system requires a period of extensive progenitor cell proliferation, accompanied or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system gives rise to differential growth and cellular diversity. The correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell cycle influences on both early lineage commitment and terminal cell fate decisions. Significant advances have been made in the last decade and have revealed multi-directional interactions between the molecular machinery regulating the processes of cell proliferation and neuronal differentiation. Here, we first introduce the modes of proliferation in neural progenitor cells and summarise evidence linking cell cycle length and neuronal differentiation. Second, we describe the manner in which components of the cell cycle machinery can have additional and, sometimes, cell-cycle-independent roles in directly regulating neurogenesis. Finally, we discuss the way that differentiation factors, such as proneural bHLH proteins, can promote either progenitor maintenance or differentiation according to the cellular environment. These intricate connections contribute to precise coordination and the ultimate division versus differentiation decision.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | | | | | | |
Collapse
|
20
|
El Yakoubi W, Borday C, Hamdache J, Parain K, Tran HT, Vleminckx K, Perron M, Locker M. Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis. Stem Cells 2013; 30:2784-95. [PMID: 22969013 PMCID: PMC3549485 DOI: 10.1002/stem.1231] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022]
Abstract
The retina of fish and amphibian contains genuine neural stem cells located at the most peripheral edge of the ciliary marginal zone (CMZ). However, their cell-of-origin as well as the mechanisms that sustain their maintenance during development are presently unknown. We identified Hes4 (previously named XHairy2), a gene encoding a bHLH-O transcriptional repressor, as a stem cell-specific marker of the Xenopus CMZ that is positively regulated by the canonical Wnt pathway and negatively by Hedgehog signaling. We found that during retinogenesis, Hes4 labels a small territory, located first at the pigmented epithelium (RPE)/neural retina (NR) border and later in the retinal margin, that likely gives rise to adult retinal stem cells. We next addressed whether Hes4 might impart this cell subpopulation with retinal stem cell features: inhibited RPE or NR differentiation programs, continuous proliferation, and slow cell cycle speed. We could indeed show that Hes4 overexpression cell autonomously prevents retinal precursor cells from commitment toward retinal fates and maintains them in a proliferative state. Besides, our data highlight for the first time that Hes4 may also constitute a crucial regulator of cell cycle kinetics. Hes4 gain of function indeed significantly slows down cell division, mainly through the lengthening of G1 phase. As a whole, we propose that Hes4 maintains particular stemness features in a cellular cohort dedicated to constitute the adult retinal stem cell pool, by keeping it in an undifferentiated and slowly proliferative state along embryonic retinogenesis. Stem Cells 2012;30:2784–2795
Collapse
|
21
|
The structure and development of Xenopus laevis cornea. Exp Eye Res 2013; 116:109-28. [PMID: 23896054 DOI: 10.1016/j.exer.2013.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/25/2013] [Accepted: 07/17/2013] [Indexed: 12/13/2022]
Abstract
The African clawed frog, Xenopus laevis, is a widely used model organism for tissue development. We have followed the process of corneal development closely in Xenopus and examined the corneal ultrastructure at each stage during its formation. Xenopus cornea development starts at stage 25 from a simple embryonic epidermis overlying the developing optic vesicle. After detachment of the lens placode which takes place around stage 30, cranial neural crest cells start to invade the space between the lens and the embryonic epidermis to construct the corneal endothelium. At stage 41, a second wave of migratory cells containing presumptive keratocytes invades the matrix leading to the formation of inner cornea and outer cornea. Three-dimensional electron microscopic examination shows that a unique cell mass, the stroma attracting center, connects the two layers like the center pole of a tent. After stage 48, many secondary stromal keratocytes individually migrate to the center and form the stroma layer. At stage 60, the stroma space is largely filled by collagen lamellae and keratocytes, and the stroma attracting center disappears. At early metamorphosis, the embryonic epithelium gradually changes to the adult corneal epithelium, which is covered by microvilli. Around stage 62 the embryonic epithelium thickens and a massive cell death is observed in the epithelium, coinciding with eyelid opening. After metamorphosis, the frog cornea has attained the adult structure of three cellular layers, epithelium, stroma, and endothelium, and two acellular layers between the cellular layers, namely the Bowman's layer and Descemet's membrane. After initial completion, Xenopus cornea, in particular the stroma, continues to thicken and enlarge throughout the lifetime of the animal. In the adult, a p63 positive limbus-like wavy structure is observed at the peripheral edge of the cornea. Proliferation analysis shows that the basal corneal epithelial cells actively divide and there are a small number of proliferating cells among the stroma and endothelial cells. This study shows that the development and structure of Xenopus cornea is largely conserved with human although there are some unique processes in Xenopus.
Collapse
|
22
|
Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling. Development 2013; 140:2867-78. [PMID: 23739135 DOI: 10.1242/dev.088096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15(Ink4b). In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/β-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
23
|
Chiodini F, Matter-Sadzinski L, Rodrigues T, Skowronska-Krawczyk D, Brodier L, Schaad O, Bauer C, Ballivet M, Matter JM. A positive feedback loop between ATOH7 and a Notch effector regulates cell-cycle progression and neurogenesis in the retina. Cell Rep 2013; 3:796-807. [PMID: 23434507 DOI: 10.1016/j.celrep.2013.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/02/2013] [Accepted: 01/31/2013] [Indexed: 01/24/2023] Open
Abstract
The HES proteins are known Notch effectors and have long been recognized as important in inhibiting neuronal differentiation. However, the roles that they play in the specification of neuronal fate remain largely unknown. Here, we show that in the differentiating retinal epithelium, the proneural protein ATOH7 (ATH5) is required for the activation of the transcription of the Hes5.3 gene before the penultimate mitosis of progenitor cells. We further show that the HES5.3 protein slows down the cell-cycle progression of Atoh7-expressing cells, thereby establishing conditions for Atoh7 to reach a high level of expression in S phase and induce neuronal differentiation prior to the ultimate mitosis. Our study uncovers how a proneural protein recruits a protein known to be a component of the Notch signaling pathway in order to regulate the transition between an initial phase of selection among uncommitted progenitors and a later phase committing the selected progenitors to neuronal differentiation.
Collapse
Affiliation(s)
- Florence Chiodini
- Department of Biochemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xue XY, Harris WA. Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina. Dev Neurobiol 2012; 72:475-90. [PMID: 21465669 DOI: 10.1002/dneu.20887] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ciliary marginal zone (CMZ) of fish and frog retinas contains cells that proliferate throughout postembryonic development as the retina grows with increasing body size, indicating the presence of stem cells in this region. However, neither the location nor the molecular identity of retinal stem cells has been identified. Here, we show in Xenopus that c-myc and n-myc are sequentially expressed both during development and in the post-embryonic retina. The c-myc+/n-myc- cells near the extreme periphery of the CMZ cycle more slowly and preferentially retain DNA label compared to their more central cmyc+/n-myc+ neighbors which cycle rapidly and preferentially dilute DNA label. During retinal development c-myc is functionally required earlier than n-myc, and n-myc expression depends on earlier c-myc expression. The expression of c-myc but not n-myc in the CMZ depends on growth factor signaling. Our results suggest that c-myc+/n-myc- cells in the far peripheral CMZ are candidates for a niche-dependent population of retinal stem cells that give rise to more centrally located and rapidly dividing n-myc+ progenitors of more limited proliferative potential. Analysis of homologues of these genes in the zebrafish CMZ suggests that the transition from c-myc to n-myc expression might be conserved in other lower vertebrates whose retinas growth throughout life.
Collapse
Affiliation(s)
- Xiao Yan Xue
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
25
|
Parain K, Mazurier N, Bronchain O, Borday C, Cabochette P, Chesneau A, Colozza G, El Yakoubi W, Hamdache J, Locker M, Gilchrist MJ, Pollet N, Perron M. A large scale screen for neural stem cell markers in Xenopus retina. Dev Neurobiol 2012; 72:491-506. [PMID: 22275214 DOI: 10.1002/dneu.20973] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neural stem cell research suffers from a lack of molecular markers to specifically assess stem or progenitor cell properties. The organization of the Xenopus ciliary marginal zone (CMZ) in the retina allows the spatial distinction of these two cell types: stem cells are confined to the most peripheral region, while progenitors are more central. Despite this clear advantage, very few genes specifically expressed in retinal stem cells have been discovered so far in this model. To gain insight into the molecular signature of these cells, we performed a large-scale expression screen in the Xenopus CMZ, establishing it as a model system for stem cell gene profiling. Eighteen genes expressed specifically in the CMZ stem cell compartment were retrieved and are discussed here. These encode various types of proteins, including factors associated with proliferation, mitotic spindle organization, DNA/RNA processing, and cell adhesion. In addition, the publication of this work in a special issue on Xenopus prompted us to give a more general illustration of the value of large-scale screens in this model species. Thus, beyond neural stem cell specific genes, we give a broader highlight of our screen outcome, describing in particular other retinal cell markers that we found. Finally, we present how these can all be easily retrieved through a novel module we developed in the web-based annotation tool XenMARK, and illustrate the potential of this powerful searchable database in the context of the retina.
Collapse
Affiliation(s)
- Karine Parain
- Neurobiology and Development Laboratory, CNRS UPR 3294, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bilitou A, De Marco N, Bello AM, Garzia L, Carotenuto P, Kim M, Campanella C, Ohnuma SI, Zollo M. Spatial and temporal expressions of prune reveal a role in Müller gliogenesis during Xenopus retinal development. Gene 2012; 509:93-103. [DOI: 10.1016/j.gene.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 07/17/2012] [Accepted: 08/02/2012] [Indexed: 01/04/2023]
|
27
|
Luo J, Uribe RA, Hayton S, Calinescu AA, Gross JM, Hitchcock PF. Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina. Neural Dev 2012; 7:33. [PMID: 23111152 PMCID: PMC3531272 DOI: 10.1186/1749-8104-7-33] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023] Open
Abstract
Background Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. Results The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. Conclusions These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins.
Collapse
Affiliation(s)
- Jing Luo
- Department of Ophthalmology and Visual Sciences, University of Michigan, W, K, Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105-0714, USA
| | | | | | | | | | | |
Collapse
|
28
|
Tury A, Mairet-Coello G, DiCicco-Bloom E. The multiple roles of the cyclin-dependent kinase inhibitory protein p57(KIP2) in cerebral cortical neurogenesis. Dev Neurobiol 2012; 72:821-42. [PMID: 22076965 DOI: 10.1002/dneu.20999] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitory proteins (CKIs), including p57(KIP2), p27(KIP1), and p21(CIP1), block the progression of the cell cycle by binding and inhibiting cyclin/CDK complexes of the G1 phase. In addition to this well-characterized function, p57(KIP2) and p27(KIP1) have been shown to participate in an increasing number of other important cellular processes including cell fate and differentiation, cell motility and migration, and cell death/survival, both in peripheral and central nervous systems. Increasing evidence over the past few years has characterized the functions of the newest CIP/KIP member p57(KIP2) in orchestrating cell proliferation, differentiation, and migration during neurogenesis. Here, we focus our discussion on the multiple roles played by p57(KIP2) during cortical development, making comparisons to p27(KIP1) as well as the INK4 family of CKIs.
Collapse
Affiliation(s)
- Anna Tury
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | |
Collapse
|
29
|
Pushing the envelope of retinal ganglion cell genesis: context dependent function of Math5 (Atoh7). Dev Biol 2012; 368:214-30. [PMID: 22609278 DOI: 10.1016/j.ydbio.2012.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/11/2022]
Abstract
The basic-helix-loop helix factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) development. However, only 10% of Math5-expressing cells adopt the RGC fate, and most become photoreceptors. In principle, Math5 may actively bias progenitors towards RGC fate or passively confer competence to respond to instructive factors. To distinguish these mechanisms, we misexpressed Math5 in a wide population of precursors using a Crx BAC or 2.4 kb promoter, and followed cell fates with Cre recombinase. In mice, the Crx cone-rod homeobox gene and Math5 are expressed shortly after cell cycle exit, in temporally distinct, but overlapping populations of neurogenic cells that give rise to 85% and 3% of the adult retina, respectively. The Crx>Math5 transgenes did not stimulate RGC fate or alter the timing of RGC births. Likewise, retroviral Math5 overexpression in retinal explants did not bias progenitors towards the RGC fate or induce cell cycle exit. The Crx>Math5 transgene did reduce the abundance of early-born (E15.5) photoreceptors two-fold, suggesting a limited cell fate shift. Nonetheless, retinal histology was grossly normal, despite widespread persistent Math5 expression. In an RGC-deficient (Math5 knockout) environment, Crx>Math5 partially rescued RGC and optic nerve development, but the temporal envelope of RGC births was not extended. The number of early-born RGCs (before E13) remained very low, and this was correlated with axon pathfinding defects and cell death. Together, these results suggest that Math5 is not sufficient to stimulate RGC fate. Our findings highlight the robust homeostatic mechanisms, and role of pioneering neurons in RGC development.
Collapse
|
30
|
Lelièvre EC, Lek M, Boije H, Houille-Vernes L, Brajeul V, Slembrouck A, Roger JE, Sahel JA, Matter JM, Sennlaub F, Hallböök F, Goureau O, Guillonneau X. Ptf1a/Rbpj complex inhibits ganglion cell fate and drives the specification of all horizontal cell subtypes in the chick retina. Dev Biol 2011; 358:296-308. [PMID: 21839069 DOI: 10.1016/j.ydbio.2011.07.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022]
Abstract
During development, progenitor cells of the retina give rise to six principal classes of neurons and the Müller glial cells found within the adult retina. The pancreas transcription factor 1 subunit a (Ptf1a) encodes a basic-helix-loop-helix transcription factor necessary for the specification of horizontal cells and the majority of amacrine cell subtypes in the mouse retina. The Ptf1a-regulated genes and the regulation of Ptf1a activity by transcription cofactors during retinogenesis have been poorly investigated. Using a retrovirus-mediated gene transfer approach, we reported that Ptf1a was sufficient to promote the fates of amacrine and horizontal cells from retinal progenitors and inhibit retinal ganglion cell and photoreceptor differentiation in the chick retina. Both GABAergic H1 and non-GABAergic H3 horizontal cells were induced following the forced expression of Ptf1a. We describe Ptf1a as a strong, negative regulator of Atoh7 expression. Furthermore, the Rbpj-interacting domains of Ptf1a protein were required for its effects on cell fate specification. Together, these data provide a novel insight into the molecular basis of Ptf1a activity on early cell specification in the chick retina.
Collapse
Affiliation(s)
- E C Lelièvre
- Centre de Recherche des Cordeliers, INSERM UMR S872, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Paridaen JTML, Janson E, Utami KH, Pereboom TC, Essers PB, van Rooijen C, Zivkovic D, MacInnes AW. The nucleolar GTP-binding proteins Gnl2 and nucleostemin are required for retinal neurogenesis in developing zebrafish. Dev Biol 2011; 355:286-301. [PMID: 21565180 DOI: 10.1016/j.ydbio.2011.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 04/18/2011] [Accepted: 04/21/2011] [Indexed: 11/30/2022]
Abstract
Nucleostemin (NS), a member of a family of nucleolar GTP-binding proteins, is highly expressed in proliferating cells such as stem and cancer cells and is involved in the control of cell cycle progression. Both depletion and overexpression of NS result in stabilization of the tumor suppressor p53 protein in vitro. Although it has been previously suggested that NS has p53-independent functions, these to date remain unknown. Here, we report two zebrafish mutants recovered from forward and reverse genetic screens that carry loss of function mutations in two members of this nucleolar protein family, Guanine nucleotide binding-protein-like 2 (Gnl2) and Gnl3/NS. We demonstrate that these proteins are required for correct timing of cell cycle exit and subsequent neural differentiation in the brain and retina. Concomitantly, we observe aberrant expression of the cell cycle regulators cyclinD1 and p57kip2. Our models demonstrate that the loss of Gnl2 or NS induces p53 stabilization and p53-mediated apoptosis. However, the retinal differentiation defects are independent of p53 activation. Furthermore, this work demonstrates that Gnl2 and NS have both non-cell autonomously and cell-autonomous function in correct timing of cell cycle exit and neural differentiation. Finally, the data suggest that Gnl2 and NS affect cell cycle exit of neural progenitors by regulating the expression of cell cycle regulators independently of p53.
Collapse
Affiliation(s)
- Judith T M L Paridaen
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Perry KJ, Johnson VR, Malloch EL, Fukui L, Wever J, Thomas AG, Hamilton PW, Henry JJ. The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis. Dev Dyn 2011; 239:3024-37. [PMID: 20925114 DOI: 10.1002/dvdy.22446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) represent diverse, multifamily groups of cell signaling receptors involved in many cellular processes. We identified Xenopus laevis GPR84 as a member of the A18 subfamily of GPCRs. During development, GPR84 is detected in the embryonic lens placode, differentiating lens fiber cells, retina, and cornea. Anti-sense morpholino oligonucleotide-mediated knockdown and RNA rescue experiments demonstrate GPR84's importance in lens, cornea, and retinal development. Examination of cell proliferation using an antibody against histone H3 S10P reveals significant increases in the lens and retina following GPR84 knockdown. Additionally, there was also an increase in apoptosis in the retina and lens, as revealed by TUNEL assay. Reciprocal transplantation of the presumptive lens ectoderm between uninjected controls and morpholino-injected embryos demonstrates that GPR84 is necessary in the retina for proper development of the retina, as well as other eye tissues including the lens and cornea.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illionis 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bilitou A, Ohnuma SI. The role of cell cycle in retinal development: cyclin-dependent kinase inhibitors co-ordinate cell-cycle inhibition, cell-fate determination and differentiation in the developing retina. Dev Dyn 2010; 239:727-36. [PMID: 20108332 DOI: 10.1002/dvdy.22223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The mature retina is formed through multi-step developmental processes, including eye field specification, optic vesicle evagination, and cell-fate determination. Co-ordination of these developmental events with cell-proliferative activity is essential to achieve formation of proper retinal structure and function. In particular, the molecular and cellular dynamics of the final cell cycle significantly influence the identity that a cell acquires, since cell fate is largely determined at the final cell cycle for the production of postmitotic cells. This review summarizes our current understanding of the cellular mechanisms that underlie the co-ordination of cell-cycle and cell-fate determination, and also describes a molecular role of cyclin-dependent kinase inhibitors (CDKIs) as co-ordinators of cell-cycle arrest, cell-fate determination and differentiation.
Collapse
Affiliation(s)
- Aikaterini Bilitou
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | |
Collapse
|
34
|
Liu K, Liu Y, Mo W, Qiu R, Wang X, Wu JY, He R. MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Res 2010; 39:2869-79. [PMID: 21131276 PMCID: PMC3074159 DOI: 10.1093/nar/gkq904] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the fine control of cell proliferation and differentiation during the development of the nervous system. MiR-124, a neural specific miRNA, is expressed from the beginning of eye development in Xenopus, and has been shown to repress cell proliferation in the optic cup, however, its role at earlier developmental stages is unclear. Here, we show that this miRNA exerts a different role in cell proliferation at the optic vesicle stage, the stage which precedes optic cup formation. We show that miR-124 is both necessary and sufficient to promote cell proliferation and repress neurogenesis at the optic vesicle stage, playing an anti-neural role. Loss of miR-124 upregulates expression of neural markers NCAM, N-tubulin while gain of miR-124 downregulates these genes. Furthermore, miR-124 interacts with a conserved miR-124 binding site in the 3'-UTR of NeuroD1 and negatively regulates expression of the proneural marker NeuroD1, a bHLH transcription factor for neuronal differentiation. The miR-124-induced effect on cell proliferation can be antagonized by NeuroD1. These results reveal a novel regulatory role of miR-124 in neural development and uncover a previously unknown interaction between NeuroD1 and miR-124.
Collapse
Affiliation(s)
- Kaili Liu
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Prykhozhij SV. In the absence of Sonic hedgehog, p53 induces apoptosis and inhibits retinal cell proliferation, cell-cycle exit and differentiation in zebrafish. PLoS One 2010; 5:e13549. [PMID: 21042410 PMCID: PMC2958845 DOI: 10.1371/journal.pone.0013549] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022] Open
Abstract
Background Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. Methodology/Principal Findings Analysis of the zebrafish shh−/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh−/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh−/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh−/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53−/−shh−/− mutant retina suggesting the effect of p53 on retinal differentiation. Conclusions Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.
Collapse
Affiliation(s)
- Sergey V Prykhozhij
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
36
|
Stephens WZ, Senecal M, Nguyen M, Piotrowski T. Loss of adenomatous polyposis coli (apc) results in an expanded ciliary marginal zone in the zebrafish eye. Dev Dyn 2010; 239:2066-77. [PMID: 20549742 DOI: 10.1002/dvdy.22325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The distal region of neural retina (ciliary marginal zone [CMZ]) contains stem cells that produce non-neural and neuronal progenitors. We provide a detailed gene expression analysis of the eyes of apc mutant zebrafish where the Wnt/beta-catenin pathway is constitutively active. Wnt/beta-catenin signaling leads to an expansion of the CMZ accompanied by a central shift of the retinal identity gene sox2 and the proneural gene atoh7. This suggests an important role for peripheral Wnt/beta-catenin signaling in regulating the expression and localization of neurogenic genes in the central retina. Retinal identity genes rx1 and vsx2, as well as meis1 and pax6a act upstream of Wnt/beta-catenin pathway activation. Peripheral cells that likely contain stem cells can be identified by the expression of follistatin, otx1, and axin2 and the lack of expression of myca and cyclinD1. Our results introduce the zebrafish apc mutation as a new model to study signaling pathways regulating the CMZ.
Collapse
Affiliation(s)
- W Zac Stephens
- Department of Neurobiology and Anatomy, University of Utah Medical School, 20N Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
37
|
Naylor RW, Collins RJ, Philpott A, Jones EA. Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size. Organogenesis 2010; 5:201-10. [PMID: 20539739 DOI: 10.4161/org.5.4.9973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 09/02/2009] [Indexed: 11/19/2022] Open
Abstract
The Xenopus laevis cyclin dependent kinase inhibitor p27(Xic1) has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27(Xic1) is expressed in the developing kidney in the nephrostomal regions. Using overexpression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27(Xic1) regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27(Xic1) expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27(Xic1) are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27(Xic1), and reveal its differentiation function is not universally utilised in all developing tissues.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Biological Sciences; and Warwick University; Coventry, UK
| | | | | | | |
Collapse
|
38
|
Cerveny KL, Cavodeassi F, Turner KJ, de Jong-Curtain TA, Heath JK, Wilson SW. The zebrafish flotte lotte mutant reveals that the local retinal environment promotes the differentiation of proliferating precursors emerging from their stem cell niche. Development 2010; 137:2107-15. [PMID: 20504962 DOI: 10.1242/dev.047753] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is currently unclear how intrinsic and extrinsic mechanisms cooperate to control the progression from self-renewing to neurogenic divisions in retinal precursor cells. Here, we use the zebrafish flotte lotte (flo) mutant, which carries a mutation in the elys (ahctf1) gene, to study the relationship between cell cycle progression and neuronal differentiation by investigating how proliferating progenitor cells transition towards differentiation in a retinal stem cell niche termed the ciliary marginal zone (CMZ). In zebrafish embryos without Elys, CMZ cells retain the capacity to proliferate but lose the ability to enter their final neurogenic divisions to differentiate as neurons. However, mosaic retinae composed of wild-type and flo cells show that despite inherent cell cycle defects, flo mutant cells progress from proliferation to differentiation when in the vicinity of wild-type retinal neurons. We propose that the differentiated retinal environment limits the proliferation of precursors emerging from the CMZ in a manner that explains the spatial organisation of cells in the CMZ and ensures that proliferative retinal progenitors are driven towards differentiation.
Collapse
Affiliation(s)
- Kara L Cerveny
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E6BT, UK
| | | | | | | | | | | |
Collapse
|
39
|
Jiang SY, Wang JT. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation. Biochem Biophys Res Commun 2010; 395:524-9. [PMID: 20394734 DOI: 10.1016/j.bbrc.2010.04.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.
Collapse
Affiliation(s)
- Shao-Yun Jiang
- School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070, China
| | | |
Collapse
|
40
|
Sánchez-Sánchez AV, Camp E, Leal-Tassias A, Mullor JL. Wnt signaling has different temporal roles during retinal development. Dev Dyn 2010; 239:297-310. [PMID: 20014102 DOI: 10.1002/dvdy.22168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentiation of neural retinal precursor (NRP) cells in vertebrates follows an established order of cell-fate determination associated with exit from the cell cycle. Wnt signaling regulates cell cycle in colon carcinoma cells and has been implicated in different aspects of retinal development in various species. To better understand the biological roles of Wnt in the developing retina, we have used a transgenic and pharmacological approach to manipulate the Wnt signaling pathway during retinal development in medaka embryos. With the use of both approaches, we observed that during the early phase of retinal development Wnt signaling regulated cell cycle progression, proliferation, apoptosis, and differentiation of NRP cells. However, during later phases of retinal development, proliferation and apoptosis were not affected by manipulation of Wnt signaling. Instead, Wnt regulated Vsx1 expression, but not the expression of other retinal cell markers tested. Thus, the response of NRP cells to Wnt signaling is stage-dependent.
Collapse
Affiliation(s)
- Ana V Sánchez-Sánchez
- Department of Regenerative Medicine, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | | | | | | |
Collapse
|
41
|
Abstract
Cell identity is acquired in different brain structures according to a stereotyped timing schedule, by accommodating the proliferation of multipotent progenitor cells and the generation of distinct types of mature nerve cells at precise times. However, the molecular mechanisms coupling the identity of a specific neuron and its birth date are poorly understood. In the neural retina, only late progenitor cells that divide slowly can become bipolar neurons, by the activation of otx2 and vsx1 genes. In Xenopus, we found that Xotx2 and Xvsx1 translation is inhibited in early progenitor cells that divide rapidly by a set of cell cycle-related microRNAs (miRNAs). Through expression and functional screenings, we selected 4 miRNAs--mir-129, mir-155, mir-214, and mir-222--that are highly expressed at early developmental stages in the embryonic retina and bind to the 3' UTR of Xotx2 and Xvsx1 mRNAs inhibiting their translation. The functional inactivation of these miRNAs in vivo releases the inhibition, supporting the generation of additional bipolar cells. We propose a model in which the proliferation rate and the age of a retinal progenitor are linked to each other and determine the progenitor fate through the activity of a set of miRNAs.
Collapse
|
42
|
Wilson JM, Martinez-De Luna RI, El Hodiri HM, Smith R, King MW, Mescher AL, Neff AW, Belecky-Adams TL. RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis. Gene Expr Patterns 2009; 10:44-52. [PMID: 19900578 DOI: 10.1016/j.gep.2009.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/30/2022]
Abstract
Ddx39, a DEAD-box RNA helicase, is a part of the homeostatic machinery that regulates the switch between cellular proliferation and differentiation. Ddx39 was shown to be differentially regulated in Xenopus laevis using a differential screen of mRNAs from regenerating limbs (King et al., 2003). Here, the expression patterns of Ddx39 in developing limb and nervous system are reported. Ddx39 was detected by RT-PCR in the Xenopus embryo, the earliest stage examined. Localization of the message by whole-mount in situ hybridization at stage 17 showed it to be localized primarily to the developing nervous system. Ddx39 was present in the ventricular region of the developing neural tube up to and including stage 48, and was also localized to the head mesenchyme, pharyngeal arches, and paraxial mesoderm. Strong label was also present in the developing limb buds at stages 48-55. Analysis of expression patterns in cryosections of the developing eye at stage 38 and 47 showed Ddx39 in the ciliary marginal zone (CMZ) adjacent to the neural retina and within the lens epithelium. Ddx39 was also present in the anterior eye during fibroblast growth factor 2 (FGF2)-mediated retinal regeneration. BrDU incorporation analyses and double-label studies with proliferating cell nuclear antigen showed that Ddx39 message was restricted to a subpopulation of proliferating cells in the developing and regenerating optic cup.
Collapse
Affiliation(s)
- Jonathan M Wilson
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Agathocleous M, Harris WA. From Progenitors to Differentiated Cells in the Vertebrate Retina. Annu Rev Cell Dev Biol 2009; 25:45-69. [DOI: 10.1146/annurev.cellbio.042308.113259] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
- Gonville and Caius College, University of Cambridge, Cambridge CB2 1TA, United Kingdom;
| | - William A. Harris
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
44
|
Khalfallah O, Ravassard P, Lagache CS, Fligny C, Serre A, Bayard E, Faucon-Biguet N, Mallet J, Meloni R, Nardelli J. Zinc finger protein 191 (ZNF191/Zfp191) is necessary to maintain neural cells as cycling progenitors. Stem Cells 2009; 27:1643-53. [PMID: 19544452 DOI: 10.1002/stem.88] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The identification of the factors that allow better monitoring of stem cell renewal and differentiation is of paramount importance for the implementation of new regenerative therapies, especially with regard to the nervous and hematopoietic systems. In this article, we present new information on the function of zinc finger protein 191 (ZNF/Zfp191), a factor isolated in hematopoietic cell lines, within progenitors of the central nervous system (CNS). ZNF/Zfp191 has been found to be principally expressed in progenitors of the developing CNS of humans and mice. Such an overlap of the expression patterns in addition to the high homology of the protein in mammals suggested that ZNF/Zfp191 exerts a conserved function within such progenitors. Indeed, ZNF191 knockdown in human neural progenitors inhibits proliferation and leads to the exit of the cell cycle. Conversely, ZNF191 misexpression maintains progenitors in cycle and exerts negative control on the Notch pathway, which prevents them from differentiating. The present data, together with the fact that the inactivation of Zfp191 leads to embryonic lethality, confirm ZNF191 as an essential factor acting for the promotion of the cell cycle and thus maintenance in the progenitor stage. On the bases of expression data, such a function can be extended to progenitor cells of other tissues such as the hematopoietic system, which emphasizes the important issue of further understanding the molecular events controlled by ZNF/Zfp191.
Collapse
Affiliation(s)
- Olfa Khalfallah
- CRICM UPMC/Inserm UMR_S 975;CNRS UMR 7225, Biotechnology and Biotherapy Laboratory F-75005, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bibliowicz J, Gross JM. Expanded progenitor populations, vitreo-retinal abnormalities, and Müller glial reactivity in the zebrafish leprechaun/patched2 retina. BMC DEVELOPMENTAL BIOLOGY 2009; 9:52. [PMID: 19840373 PMCID: PMC2770046 DOI: 10.1186/1471-213x-9-52] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 10/19/2009] [Indexed: 12/04/2022]
Abstract
Background The roles of the Hedgehog (Hh) pathway in controlling vertebrate retinal development have been studied extensively; however, species- and context-dependent findings have provided differing conclusions. Hh signaling has been shown to control both population size and cell cycle kinetics of proliferating retinal progenitors, and to modulate differentiation within the retina by regulating the timing of cell cycle exit. While cell cycle exit has in turn been shown to control cell fate decisions within the retina, a direct role for the Hh pathway in retinal cell fate decisions has yet to be established in vivo. Results To gain further insight into Hh pathway function in the retina, we have analyzed retinal development in leprechaun/patched2 mutant zebrafish. While lep/ptc2 mutants possessed more cells in their retinas, all cell types, except for Müller glia, were present at identical ratios as those observed in wild-type siblings. lep/ptc2 mutants possessed a localized upregulation of GFAP, a marker for 'reactive' glia, as well as morphological abnormalities at the vitreo-retinal interface, where Müller glial endfeet terminate. In addition, analysis of the over-proliferation phenotype at the ciliary marginal zone (CMZ) revealed that the number of proliferating progenitors, but not the rate of proliferation, was increased in lep/ptc2 mutants. Conclusion Our results indicate that Patched2-dependent Hh signaling does not likely play an integral role in neuronal cell fate decisions in the zebrafish retina. ptc2 deficiency in zebrafish results in defects at the vitreo-retinal interface and Müller glial reactivity. These phenotypes are similar to the ocular abnormalities observed in human patients suffering from Basal Cell Naevus Syndrome (BCNS), a disorder that has been linked to mutations in the human PTCH gene (the orthologue of the zebrafish ptc2), and point to the utility of the lep/ptc2 mutant line as a model for the study of BCNS-related ocular pathologies. Our findings regarding CMZ progenitor proliferation suggest that, in the zebrafish retina, Hh pathway activity may not affect cell cycle kinetics; rather, it likely regulates the size of the retinal progenitor pool in the CMZ.
Collapse
Affiliation(s)
- Jonathan Bibliowicz
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|
46
|
Agathocleous M, Iordanova I, Willardsen MI, Xue XY, Vetter ML, Harris WA, Moore KB. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 2009; 136:3289-99. [PMID: 19736324 DOI: 10.1242/dev.040451] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation. Independently of Sox2, Wnt stimulates retinal progenitor proliferation and this, when combined with the block on differentiation, maintains retinal progenitor fates. Feedback inhibition by Sox2 on Wnt signaling and by the proneural transcription factors on Sox2 mean that each element of the core pathway activates the next element and inhibits the previous one, providing a directional network that ensures retinal cells make the transition from progenitors to neurons and glia.
Collapse
Affiliation(s)
- Michalis Agathocleous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
COUP-TFI and -TFII nuclear receptors are expressed in amacrine cells and play roles in regulating the differentiation of retinal progenitor cells. Exp Eye Res 2009; 90:49-56. [PMID: 19766631 DOI: 10.1016/j.exer.2009.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 11/22/2022]
Abstract
Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) are members of the steroid/thyroid hormone receptor superfamily. We have shown that two homologous COUP-TF genes, COUP-TFI and COUP-TFII, are expressed in developing mouse retina with a unique gradient along the dorsal-ventral axis. In this work, we aimed to characterize the detailed expression patterns of COUP-TFs in mature retina. Their functions in retinal progenitor cell differentiation into subtypes of mature retinal cells were also examined. Immunostaining of frozen mouse retinal sections with antibodies against COUP-TFs and markers for retinal subtypes revealed that COUP-TFI and -TFII are expressed in amacrine cells, especially in a glycinergic subtype in mature mouse retina. Forced expression of COUP-TFI and -TFII in mouse retinal explant culture by retrovirus-mediated gene transfer promoted amacrine and cone photoreceptor cell differentiation, whereas that of rod photoreceptors decreased. Cell proliferation and apoptosis were not affected by the perturbation of COUP-TFI and -TFII expression levels. Using the Y79 retinoblastoma cell line, we observed that COUP-TFI and -TFII suppressed the transcriptional activation of the Nrl gene. We then analyzed one another member of COUP-TF transcription factors, COUP-TFgamma, whose structure is relatively distant from those of COUP-TFI and -TFII. It is expressed mainly in horizontal cells and has weak activity in inducing amacrine cells when COUP-TFgamma was ectopically expressed in retinal explants. In summary, we found that COUP-TFI and -TFII play roles in amacrine cell differentiation, and COUP-TFgamma has distinct expression pattern and roles during retinal development.
Collapse
|
48
|
Andreazzoli M. Molecular regulation of vertebrate retina cell fate. ACTA ACUST UNITED AC 2009; 87:284-95. [DOI: 10.1002/bdrc.20161] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Abstract
The NM23 (non-metastatic 23) family is almost universally conserved across all three domains of life: eubacteria, archaea and eucaryotes. Unicellular organisms possess one NM23 ortholog, whilst vertebrates possess several. Gene multiplication through evolution has been accompanied by structural and functional diversification. Many NM23 orthologs are nucleoside diphosphate kinases (NDP kinases), but some more recently evolved members lack NDP kinase activity and/or display other functions, for instance, acting as protein kinases or transcription factors. These members display overlapping but distinct expression patterns during vertebrate development. In this review, we describe the functional differences and similarities among various NM23 family members. Moreover, we establish orthologous relationships through a phylogenetic analysis of NM23 members across vertebrate species, including Xenopus laevis and zebrafish, primitive chordates and several phyla of invertebrates. Finally, we summarize the involvement of NM23 proteins in development, in particular neural development. Carcinogenesis is a process of misregulated development, and NM23 was initially implicated as a metastasis suppressor. A more detailed understanding of the evolution of the family and its role in vertebrate development will facilitate elucidation of the mechanism of NM23 involvement in human cancer.
Collapse
|
50
|
Das G, Choi Y, Sicinski P, Levine EM. Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Dev 2009; 4:15. [PMID: 19416500 PMCID: PMC2694796 DOI: 10.1186/1749-8104-4-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 05/05/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Maintaining the correct balance of proliferation versus differentiation in retinal progenitor cells (RPCs) is essential for proper development of the retina. The cell cycle regulator cyclin D1 is expressed in RPCs, and mice with a targeted null allele at the cyclin D1 locus (Ccnd1-/-) have microphthalmia and hypocellular retinas, the latter phenotype attributed to reduced RPC proliferation and increased photoreceptor cell death during the postnatal period. How cyclin D1 influences RPC behavior, especially during the embryonic period, is unclear. RESULTS In this study, we show that embryonic RPCs lacking cyclin D1 progress through the cell cycle at a slower rate and exit the cell cycle at a faster rate. Consistent with enhanced cell cycle exit, the relative proportions of cell types born in the embryonic period, such as retinal ganglion cells and photoreceptor cells, are increased. Unexpectedly, cyclin D1 deficiency decreases the proportions of other early born retinal neurons, namely horizontal cells and specific amacrine cell types. We also found that the laminar positioning of horizontal cells and other cell types is altered in the absence of cyclin D1. Genetically replacing cyclin D1 with cyclin D2 is not efficient at correcting the phenotypes due to the cyclin D1 deficiency, which suggests the D-cyclins are not fully redundant. Replacement with cyclin E or inactivation of cyclin-dependent kinase inhibitor p27Kip1 restores the balance of RPCs and retinal cell types to more normal distributions, which suggests that regulation of the retinoblastoma pathway is an important function for cyclin D1 during embryonic retinal development. CONCLUSION Our findings show that cyclin D1 has important roles in RPC cell cycle regulation and retinal histogenesis. The reduction in the RPC population due to a longer cell cycle time and to an enhanced rate of cell cycle exit are likely to be the primary factors driving retinal hypocellularity and altered output of precursor populations in the embryonic Ccnd1-/- retina.
Collapse
Affiliation(s)
- Gaurav Das
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA.
| | | | | | | |
Collapse
|