1
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
2
|
Schloop AE, Bandodkar PU, Reeves GT. Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient. Curr Top Dev Biol 2019; 137:143-191. [PMID: 32143742 DOI: 10.1016/bs.ctdb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.
Collapse
Affiliation(s)
- Allison E Schloop
- Genetics Program, North Carolina State University, Raleigh, NC, United States
| | - Prasad U Bandodkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
3
|
Brigaud I, Duteyrat JL, Chlasta J, Le Bail S, Couderc JL, Grammont M. Transforming Growth Factor β/activin signalling induces epithelial cell flattening during Drosophila oogenesis. Biol Open 2015; 4:345-54. [PMID: 25681395 PMCID: PMC4359740 DOI: 10.1242/bio.201410785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the regulation of epithelial morphogenesis is essential for the formation of tissues and organs in multicellular organisms, little is known about how signalling pathways control cell shape changes in space and time. In the Drosophila ovarian epithelium, the transition from a cuboidal to a squamous shape is accompanied by a wave of cell flattening and by the ordered remodelling of E-cadherin-based adherens junctions. We show that activation of the TGFβ pathway is crucial to determine the timing, the degree and the dynamic of cell flattening. Within these cells, TGFβ signalling controls cell-autonomously the formation of Actin filament and the localisation of activated Myosin II, indicating that internal forces are generated and used to remodel AJ and to promote cytoskeleton rearrangement. Our results also reveal that TGFβ signalling controls Notch activity and that its functions are partly executed through Notch. Thus, we demonstrate that the cells that undergo the cuboidal-to-squamous transition produce active cell-shaping mechanisms, rather than passively flattening in response to a global force generated by the growth of the underlying cells. Thus, our work on TGFβ signalling provides new insights into the mechanisms through which signal transduction cascades orchestrate cell shape changes to generate proper organ structure.
Collapse
Affiliation(s)
- Isabelle Brigaud
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Jean-Luc Duteyrat
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France
| | - Julien Chlasta
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sandrine Le Bail
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Jean-Louis Couderc
- CNRS 6293, Clermont University, Inserm U1103, UMR GReD, UFR Médecine, Clermont-Ferrand F-63001, France
| | - Muriel Grammont
- Université Lyon 1, Lyon and Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, Villeurbanne, France Laboratoire Joliot Curie, CNRS, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Stein DS, Stevens LM. Maternal control of the Drosophila dorsal-ventral body axis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:301-30. [PMID: 25124754 DOI: 10.1002/wdev.138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The pathway that generates the dorsal-ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- David S Stein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
5
|
Fauré A, Vreede BMI, Sucena É, Chaouiya C. A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects. PLoS Comput Biol 2014; 10:e1003527. [PMID: 24675973 PMCID: PMC3967936 DOI: 10.1371/journal.pcbi.1003527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.
Collapse
Affiliation(s)
- Adrien Fauré
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Yamaguchi University, Faculty of Science, Yoshida, Yamaguchi City, Yamaguchi, Japan
| | | | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, Campo Grande, Lisboa, Portugal
| | | |
Collapse
|
6
|
Dynamic model for the coordination of two enhancers of broad by EGFR signaling. Proc Natl Acad Sci U S A 2013; 110:17939-44. [PMID: 24127599 DOI: 10.1073/pnas.1304753110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is widely appreciated that a typical developmental control gene is regulated by multiple enhancers, coordination of enhancer activities remains poorly understood. We propose a mechanism for such coordination in Drosophila oogenesis, when the expression of the transcription factor Broad (BR) evolves from a uniform to a two-domain pattern that prefigures the formation of two respiratory eggshell appendages. This change reflects sequential activities of two enhancers of the br gene, early and late, both of which are controlled by the epidermal growth factor receptor (EGFR) pathway. The late enhancer controls br in the appendage-producing cells, but the function of the early enhancer remained unclear. We found that the early enhancer is essential for the activity of the late enhancer and induction of eggshell appendages. This requirement can be explained by a mechanism whereby the BR protein produced by the early enhancer protects the late enhancer from EGFR-dependent repression. We illustrate this complex mechanism using a computational model that correctly predicts the wild-type dynamics of BR expression and its response to genetic perturbations.
Collapse
|
7
|
Shilo BZ, Haskel-Ittah M, Ben-Zvi D, Schejter ED, Barkai N. Creating gradients by morphogen shuttling. Trends Genet 2013; 29:339-47. [PMID: 23369355 DOI: 10.1016/j.tig.2013.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/22/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
Morphogen gradients are used to pattern a field of cells according to variations in the concentration of a signaling molecule. Typically, the morphogen emanates from a confined group of cells. During early embryogenesis, however, the ability to define a restricted source for morphogen production is limited. Thus, various early patterning systems rely on a broadly expressed morphogen that generates an activation gradient within its expression domain. Computational and experimental work has shed light on how a sharp and robust gradient can be established under those situations, leading to a mechanism termed 'morphogen shuttling'. This mechanism relies on an extracellular shuttling molecule that forms an inert, highly diffusible complex with the morphogen. Morphogen release from the complex following cleavage of the shuttling molecule by an extracellular protease leads to the accumulation of free ligand at the center of its expression domain and a graded activation of the developmental pathway that decreases significantly even within the morphogen-expression domain.
Collapse
Affiliation(s)
- Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
8
|
Haskel-Ittah M, Ben-Zvi D, Branski-Arieli M, Schejter ED, Shilo BZ, Barkai N. Self-organized shuttling: generating sharp dorsoventral polarity in the early Drosophila embryo. Cell 2012; 150:1016-28. [PMID: 22939625 DOI: 10.1016/j.cell.2012.06.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/28/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradients. It is less clear how sharp gradients can arise within the source of a broadly expressed morphogen. A recent solution relies on localized production of an inhibitor outside the domain of morphogen production, which effectively redistributes (shuttles) and concentrates the morphogen within its expression domain. Here, we study how a sharp gradient is established without a localized inhibitor, focusing on early dorsoventral patterning of the Drosophila embryo, where an active ligand and its inhibitor are concomitantly generated in a broad ventral domain. Using theory and experiments, we show that a sharp Toll activation gradient is produced through "self-organized shuttling," which dynamically relocalizes inhibitor production to lateral regions, followed by inhibitor-dependent ventral shuttling of the activating ligand Spätzle. Shuttling may represent a general paradigm for patterning early embryos.
Collapse
Affiliation(s)
- Michal Haskel-Ittah
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Andreu MJ, Ajuria L, Samper N, González-Pérez E, Campuzano S, González-Crespo S, Jiménez G. EGFR-dependent downregulation of Capicua and the establishment of Drosophila dorsoventral polarity. Fly (Austin) 2012; 6:234-9. [PMID: 22878648 DOI: 10.4161/fly.21160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral (DV) axis formation in Drosophila begins during oogenesis through the graded activation of the EGF receptor (EGFR)-Ras-MAPK signaling pathway in the follicle cell layer of the egg chamber. EGFR signaling, which is higher in dorsal follicle cells, represses expression of the sulfotransferase-encoding gene pipe, thereby delimiting a ventral domain of Pipe activity that is critical for the subsequent induction of ventral embryonic fates. We have characterized the transcriptional circuit that links EGFR signaling to pipe repression: in dorsal follicle cells, the homeodomain transcription factor Mirror (Mirr), which is induced by EGFR signaling, directly represses pipe transcription, whereas in ventral follicle cells, the HMG-box protein Capicua (Cic) supports pipe expression by repressing mirr. Although Cic is under negative post-transcriptional regulation by Ras-MAPK signaling in different contexts, the relevance of this mechanism for the interpretation of the EGFR signal during DV pattern formation remains unclear. Here, we consider a model where EGFR-mediated downregulation of Cic modulates the spatial distribution of Mirr protein in lateral follicle cells, thereby contributing to define the position at which the pipe expression border is formed.
Collapse
Affiliation(s)
- María José Andreu
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Andreu MJ, González-Pérez E, Ajuria L, Samper N, González-Crespo S, Campuzano S, Jiménez G. Mirror represses pipe expression in follicle cells to initiate dorsoventral axis formation in Drosophila. Development 2012; 139:1110-4. [PMID: 22318229 DOI: 10.1242/dev.076562] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsoventral (DV) axis formation in Drosophila begins with selective activation of EGFR, a receptor tyrosine kinase (RTK), in dorsal-anterior (DA) ovarian follicle cells. A critical event regulated by EGFR signaling is the repression of the sulfotransferase-encoding gene pipe in dorsal follicle cells, but how this occurs remains unclear. Here we show that Mirror (Mirr), a homeodomain transcription factor induced by EGFR signaling in DA follicle cells, directly represses pipe expression by binding to a conserved element in the pipe regulatory region. In addition, we find that the HMG-box protein Capicua (Cic) supports pipe expression in ventral follicle cells by repressing Mirr in this region. Interestingly, this role of Cic resembles its function in regulating anteroposterior (AP) body patterning, where Cic supports gap gene expression in central regions of the embryo by repressing Tailless, a repressor induced by RTK signaling at the embryonic poles. Thus, related RTK-Cic repressor circuits regulate the early stages of Drosophila DV and AP body axis formation.
Collapse
Affiliation(s)
- María José Andreu
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Transcriptional interpretation of the EGF receptor signaling gradient. Proc Natl Acad Sci U S A 2012; 109:1572-7. [PMID: 22307613 DOI: 10.1073/pnas.1115190109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) controls a wide range of developmental events, from body axes specification in insects to cardiac development in humans. During Drosophila oogenesis, a gradient of EGFR activation patterns the follicular epithelium. Multiple transcriptional targets of EGFR in this tissue have been identified, but their regulatory elements are essentially unknown. We report the regulatory elements of broad (br) and pipe (pip), two important targets of EGFR signaling in Drosophila oogenesis. br is expressed in a complex pattern that prefigures the formation of respiratory eggshell appendages. We found that this pattern is generated by dynamic activities of two regulatory elements, which display different responses to Pointed, Capicua, and Mirror, transcription factors involved in the EGFR-mediated gene expression. One of these elements is active in a pattern similar to pip, a gene repressed by EGFR and essential for establishing the dorsoventral polarity of the embryo. We demonstrate that this similarity of expression depends on a common sequence motif that binds Mirror in vitro and is essential for transcriptional repression in vivo.
Collapse
|
12
|
El-Sherif E, Lynch JA, Brown SJ. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:16-39. [PMID: 23801665 PMCID: PMC5323069 DOI: 10.1002/wdev.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.
Collapse
Affiliation(s)
- Ezzat El-Sherif
- Program of Genetics, Kansas State University, Manhattan, Kansas
| | - Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
13
|
Technau M, Knispel M, Roth S. Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila. Dev Genes Evol 2011; 222:1-17. [PMID: 22198544 PMCID: PMC3291829 DOI: 10.1007/s00427-011-0384-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/29/2011] [Indexed: 01/28/2023]
Abstract
During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP.
Collapse
Affiliation(s)
- Martin Technau
- Institute for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | | | | |
Collapse
|
14
|
Cheung LS, Schüpbach T, Shvartsman SY. Pattern formation by receptor tyrosine kinases: analysis of the Gurken gradient in Drosophila oogenesis. Curr Opin Genet Dev 2011; 21:719-25. [PMID: 21862318 DOI: 10.1016/j.gde.2011.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/21/2011] [Indexed: 12/11/2022]
Abstract
Spatial patterns of cell differentiation in developing tissues can be controlled by receptor tyrosine kinase (RTK) signaling gradients, which may form when locally secreted ligands activate uniformly expressed receptors. Graded activation of RTKs can span multiple cell diameters, giving rise to spatiotemporal patterns of signaling through the Extracellular Signal Regulated/Mitogen Activated Protein Kinase (ERK/MAPK), which connects receptor activation to multiple aspects of tissue morphogenesis. This general mechanism has been identified in numerous developmental contexts, from body axis specification in insects to patterning of the mammalian neocortex. We review recent quantitative studies of this mechanism in Drosophila oogenesis, an established genetic model of signaling through the Epidermal Growth Factor Receptor (EGFR), a highly conserved RTK.
Collapse
Affiliation(s)
- Lily S Cheung
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ J08544, USA
| | | | | |
Collapse
|
15
|
EGF signaling and the origin of axial polarity among the insects. Curr Biol 2010; 20:1042-7. [PMID: 20471269 DOI: 10.1016/j.cub.2010.04.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 01/07/2023]
Abstract
The eggs of insects are unusual in that they often have bilateral symmetry when they are laid, indicating that both anterior-posterior (AP) and dorsal-ventral (DV) symmetries are broken during oogenesis. The molecular basis of this process is well understood in Drosophila melanogaster, in which symmetry breaking events for both axes depend on the asymmetric position of the oocyte nucleus and on germline-soma signaling mediated by the Tgf alpha-like epidermal growth factor (EGF) ligand Gurken. Germline-soma signaling interactions centered around the oocyte nucleus have been proposed in other insect species, but the molecular nature of these interactions has not been elucidated. We have examined the behavior of the oocyte nucleus and the function of EGF signaling components in the ovaries of the wasp Nasonia vitripennis, the beetle Tribolium castaneum, and the cricket Gryllus bimaculatus. We have found that EGF signaling has broadly conserved roles in mediating the encapsulation of oocytes by the somatic follicle cell layer, in establishing polarity of the egg chambers, and in setting up the DV axis of the embryo. These results provide insights into the evolutionary origins of the unique strategy employed by insects to establish embryonic axial polarity during oogenesis.
Collapse
|
16
|
Yakoby N, Bristow CA, Gong D, Schafer X, Lembong J, Zartman JJ, Halfon MS, Schüpbach T, Shvartsman SY. A combinatorial code for pattern formation in Drosophila oogenesis. Dev Cell 2008; 15:725-37. [PMID: 19000837 PMCID: PMC2822874 DOI: 10.1016/j.devcel.2008.09.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/27/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and bone morphogenetic protein signaling pathways. We demonstrate the validity of the code by testing it against a set of patterns obtained in a large-scale transcriptional profiling experiment. Using the proposed code, we distinguish 36 distinct patterns for 81 genes expressed in the follicular epithelium and characterize their joint dynamics over four stages of oogenesis. The proposed combinatorial framework allows systematic analysis of the diversity and dynamics of two-dimensional transcriptional patterns and guides future studies of gene regulation.
Collapse
Affiliation(s)
- Nir Yakoby
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Oda H, Akiyama-Oda Y. Differing strategies for forming the arthropod body plan: Lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea. Dev Growth Differ 2008; 50:203-14. [DOI: 10.1111/j.1440-169x.2008.00998.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
LeMosy EK. Proteolytic regulatory mechanisms in the formation of extracellular morphogen gradients. ACTA ACUST UNITED AC 2006; 78:243-55. [PMID: 17061259 DOI: 10.1002/bdrc.20074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growth factors are secreted into the extracellular space, where they encounter soluble inhibitors, extracellular matrix glycoproteins and proteoglycans, and proteolytic enzymes that can each modulate the spatial distribution, activity state, and receptor interactions of these signaling molecules. During development, morphogenetic gradients of these growth factors pattern fields of cells responsive to different levels of signaling, creating such structures as the branched pattern of airways and vasculature, and the arrangement of digits in the hand. This review focuses specifically on the roles of proteolytic enzymes and their regulators in the generation of such activity gradients. Evidence from Drosophila developmental pathways provides a detailed understanding of general mechanisms underlying proteolytic control of morphogen gradients, while recent studies of several mammalian growth factors illustrate the relevance of this proteolytic control to human development and disease.
Collapse
Affiliation(s)
- Ellen K LeMosy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|
19
|
Reeves GT, Muratov CB, Schüpbach T, Shvartsman SY. Quantitative Models of Developmental Pattern Formation. Dev Cell 2006; 11:289-300. [PMID: 16950121 DOI: 10.1016/j.devcel.2006.08.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
Pattern formation in developing organisms can be regulated at a variety of levels, from gene sequence to anatomy. At this level of complexity, mechanistic models of development become essential for integrating data, guiding future experiments, and predicting the effects of genetic and physical perturbations. However, the formulation and analysis of quantitative models of development are limited by high levels of uncertainty in experimental measurements, a large number of both known and unknown system components, and the multiscale nature of development. At the same time, an expanding arsenal of experimental tools can constrain models and directly test their predictions, making the modeling efforts not only necessary, but feasible. Using a number of problems in fruit fly development, we discuss how models can be used to test the feasibility of proposed patterning mechanisms and characterize their systems-level properties.
Collapse
Affiliation(s)
- Gregory T Reeves
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
20
|
Goentoro LA, Reeves GT, Kowal CP, Martinelli L, Schüpbach T, Shvartsman SY. Quantifying the Gurken morphogen gradient in Drosophila oogenesis. Dev Cell 2006; 11:263-72. [PMID: 16890165 PMCID: PMC4091837 DOI: 10.1016/j.devcel.2006.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/01/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Quantitative information about the distribution of morphogens is crucial for understanding their effects on cell-fate determination, yet it is difficult to obtain through direct measurements. We have developed a parameter estimation approach for quantifying the spatial distribution of Gurken, a TGFalpha-like EGFR ligand that acts as a morphogen in Drosophila oogenesis. Modeling of Gurken/EGFR system shows that the shape of the Gurken gradient is controlled by a single dimensionless parameter, the Thiele modulus, which reflects the relative importance of ligand diffusion and degradation. By combining the model with genetic alterations of EGFR levels, we have estimated the value of the Thiele modulus in the wild-type egg chamber. This provides a direct characterization of the shape of the Gurken gradient and demonstrates how parameter estimation techniques can be used to quantify morphogen gradients in development.
Collapse
Affiliation(s)
- Lea A. Goentoro
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Gregory T. Reeves
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Craig P. Kowal
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| | - Luigi Martinelli
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
| | - Trudi Schüpbach
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Stanislav Y. Shvartsman
- Department of Chemical Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
21
|
Moussian B, Roth S. Dorsoventral axis formation in the Drosophila embryo--shaping and transducing a morphogen gradient. Curr Biol 2006; 15:R887-99. [PMID: 16271864 DOI: 10.1016/j.cub.2005.10.026] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The graded nuclear location of the transcription factor Dorsal along the dorsoventral axis of the early Drosophila embryo provides positional information for the determination of different cell fates. Nuclear uptake of Dorsal depends on a complex signalling pathway comprising two parts: an extracellular proteolytic cascade transmits the dorsoventral polarity of the egg chamber to the early embryo and generates a gradient of active Spätzle protein, the ligand of the receptor Toll; an intracellular cascade downstream of Toll relays this graded signal to embryonic nuclei. The slope of the Dorsal gradient is not determined by diffusion of extracellular or intracellular components from a local source, but results from self-organised patterning, in which positive and negative feedback is essential to create and maintain the ratio of key factors at different levels, thereby establishing and stabilising the graded spatial information for Dorsal nuclear uptake.
Collapse
Affiliation(s)
- Bernard Moussian
- Department of Genetics, Max-Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany
| | | |
Collapse
|
22
|
Pai LM, Wang PY, Chen SR, Barcelo G, Chang WL, Nilson L, Schüpbach T. Differential effects of Cbl isoforms on Egfr signaling in Drosophila. Mech Dev 2006; 123:450-62. [PMID: 16844358 DOI: 10.1016/j.mod.2006.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 01/23/2023]
Abstract
The Cbl family of proteins downregulate epidermal growth factor receptor (Egfr) signaling via receptor internalization and destruction. These proteins contain two functional domains, a RING finger domain with E3 ligase activity, and a proline rich domain mediating the formation of protein complexes. The Drosophila cbl gene encodes two isoforms, D-CblS and D-CblL. While both contain a RING finger domain, the proline rich domain is absent from D-CblS. We demonstrate that expression of either isoform is sufficient to rescue both the lethality of a D-cbl null mutant and the adult phenotypes characteristic of Egfr hyperactivation, suggesting that both isoforms downregulate Egfr signaling. Interestingly, targeted overexpression of D-CblL, but not D-CblS, results in phenotypes characteristic of reduced Egfr signaling and suppresses the effect of constitutive Egfr activation. The level of D-CblL was significantly correlated with the phenotypic severity of reduced Egfr signaling, suggesting that D-CblL controls the efficiency of downregulation of Egfr signaling. Furthermore, reduced dynamin function suppresses the effects of D-CblL overexpression in follicle cells, suggesting that D-CblL promotes internalization of activated receptors. D-CblL is detected in a punctate cytoplasmic pattern, whereas D-CblS is mainly localized at the follicle cell cortex. Therefore, D-CblS and D-CblL may downregulate Egfr through distinct mechanisms.
Collapse
Affiliation(s)
- Li-Mei Pai
- Department of Biochemistry, Chang-Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
23
|
Carneiro K, Fontenele M, Negreiros E, Lopes E, Bier E, Araujo H. Graded maternal short gastrulation protein contributes to embryonic dorsal-ventral patterning by delayed induction. Dev Biol 2006; 296:203-18. [PMID: 16781701 DOI: 10.1016/j.ydbio.2006.04.453] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 04/04/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Establishment of the dorsal-ventral (DV) axis of the Drosophila embryo depends on ventral activation of the maternal Toll pathway, which creates a gradient of the NFkB/c-rel-related transcription factor dorsal. Signaling through the maternal BMP pathway also alters the dorsal gradient, probably by regulating degradation of the IkB homologue Cactus. The BMP4 homologue decapentaplegic (dpp) and the BMP antagonist short gastrulation (sog) are expressed by follicle cells during mid-oogenesis, but it is unknown how they affect embryonic patterning following fertilization. Here, we provide evidence that maternal Sog and Dpp proteins are secreted into the perivitelline space where they remain until early embryogenesis to modulate Cactus degradation, enabling their dual function in patterning the eggshell and embryo. We find that metalloproteases encoded by tolloid (tld) and tolkin (tok), which cleave Sog, are expressed by follicle cells and are required to generate DV asymmetry in the Dpp signal. Expression of tld and tok is ventrally restricted by the TGF-alpha ligand encoded by gurken, suggesting that signaling via the EGF receptor pathway may regulate embryonic patterning through two independent mechanisms: by restricting the expression of pipe and thereby activation of Toll signaling and by spatially regulating BMP activity.
Collapse
Affiliation(s)
- K Carneiro
- Department of Histology and Embryology, Universidade Federal do Rio de Janeiro, CCS, Bl. F, Sala F2-031, Av. Brig. Trompowski, s/n, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Jordan KC, Hatfield SD, Tworoger M, Ward EJ, Fischer KA, Bowers S, Ruohola-Baker H. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary. Dev Dyn 2005; 232:709-24. [PMID: 15704171 DOI: 10.1002/dvdy.20318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in the epidermal growth factor receptor (EGFR) pathway can lead to aggressive tumor formation. Activation of this pathway during normal development produces multiple outcomes at the cellular level, leading to cellular differentiation and cell cycle activation. To elucidate the downstream events induced by this pathway, we used genome-wide cDNA microarray technology to identify potential EGFR targets in Drosophila oogenesis. We focused on genes for which the transcriptional responses due to EGFR pathway activation and inactivation were in opposite directions, as this is expected for genes that are directly regulated by the pathway in this tissue type. We perturbed the EGFR pathway in epithelial follicle cells using seven different genetic backgrounds. To activate the pathway, we overexpressed an activated form of the EGFR (UAS-caEGFR), and an activated form of the signal transducer Raf (UAS-caRaf); we also over- or ectopically expressed the downstream homeobox transcription factor Mirror (UAS-mirr) and the ligand-activating serine protease Rhomboid (UAS-rho). To reduce pathway activity we used loss-of-function mutations in the ligand (gurken) and receptor (torpedo). From microarrays containing 6,255 genes, we found 454 genes that responded in an opposite manner in gain-of-function and loss-of-function conditions among which are many Wingless signaling pathway components. Further analysis of two such components, sugarless and pangolin, revealed a function for these genes in late follicle cell patterning. Of interest, components of other signaling pathways were also enriched in the EGFR target group, suggesting that one reason for the pleiotropic effects seen with EGFR activity in cancer progression and development may be its ability to regulate many other signaling pathways.
Collapse
Affiliation(s)
- Katherine C Jordan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ward EJ, Berg CA. Juxtaposition between two cell types is necessary for dorsal appendage tube formation. Mech Dev 2005; 122:241-55. [PMID: 15652711 DOI: 10.1016/j.mod.2004.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Revised: 09/21/2004] [Accepted: 09/23/2004] [Indexed: 11/29/2022]
Abstract
The Drosophila egg chamber provides an excellent model for studying the link between patterning and morphogenesis. Late in oogenesis, a portion of the flat follicular epithelium remodels to form two tubes; secretion of eggshell proteins into the tube lumens creates the dorsal appendages. Two distinct cell types contribute to dorsal appendage formation: cells expressing the rhomboid-lacZ (rho-lacZ) marker form the ventral floor of the tube and cells expressing high levels of the transcription factor Broad form a roof over the rho-lacZ cells. In mutants that produce defective dorsal appendages (K10, Ras and ectopic decapentaplegic) both cell types are specified and reorganize to occupy their stereotypical locations within the otherwise defective tubes. Although the rho-lacZ and Broad cells rearrange to form a tube in wild type and mutant egg chambers, they never intermingle, suggesting that a boundary exists that prevents mixing between these two cell types. Consistent with this hypothesis, the Broad and rho-lacZ cells express different levels of the homophilic adhesion molecule Fasciclin 3. Furthermore, in the anterior of the egg, ectopic rhomboid is sufficient to induce both cell types, which reorganize appropriately to form an ectopic tube. We propose that signaling across a boundary separating the rho-lacZ and Broad cells choreographs the cell shape-changes and rearrangements necessary to transform an initially flat epithelium into a tube.
Collapse
Affiliation(s)
- Ellen J Ward
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, WA 98195-7730, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- Hans Meinhardt
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, D-72076 Tuebingen, Germany.
| |
Collapse
|
27
|
Roth S. The origin of dorsoventral polarity in Drosophila. Philos Trans R Soc Lond B Biol Sci 2003; 358:1317-29; discussion 1329. [PMID: 14511478 PMCID: PMC1693232 DOI: 10.1098/rstb.2003.1325] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Drosophila dorsoventral (DV) polarity arises during oogenesis when the oocyte nucleus moves from a central posterior to an asymmetrical anterior position. Nuclear movement is a symmetry-breaking step and establishes orthogonality between the anteroposterior and the DV axes. The asymmetrically anchored nucleus defines a cortical region within the oocyte which accumulates high levels of gurken messenger RNA (mRNA) and protein. Gurken is an ovarian-specific member of the transforming growth factor-alpha (TGF-alpha) family of secreted ligands. Secreted Gurken forms a concentration gradient that results in a dorsal-to-ventral gradient of EGF receptor activation in the follicle cells surrounding the oocyte. This leads to concentration-dependent activation or repression of target genes of the EGF pathway in the follicular epithelium. One outcome of this process is the restriction of pipe expression to a ventral domain that comprises 40% of the egg circumference. Pipe presumably modifies extracellular matrix components that are secreted by the follicle cells and are present at the ventral side of embryo after egg deposition. Here, they activate a proteolytic cascade that generates a gradient of the diffusible ligand, Spätzle. Spätzle activates the Toll receptor at the surface of the embryo that stimulates the nuclear uptake of the transcription factor Dorsal. This leads to a nuclear concentration gradient of Dorsal that specifies the cell types along the DV axis of the embryo.
Collapse
Affiliation(s)
- Siegfried Roth
- Institut für Entwicklungsbiologie, Universität Köln, Gyrhofstrasse 17, 50923 Köln, Germany.
| |
Collapse
|
28
|
Abstract
Recent data indicate that Gurken-mediated activation of the EGF receptor in the somatic follicle cells of the Drosophila ovary - required for dorsoventral patterning of the fly embryo - leads to cell-autonomous repression of pipe expression, suggesting that the EGF receptor signaling pathway acts directly to control pipe transcription.
Collapse
Affiliation(s)
- Anahita Amiri
- Section of Molecular Cell and Developmental Biology, and Institute for Cellular and Molecular Biology, Patterson Labs 532, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|