1
|
Voigt B, Frazier K, Yazdi D, Gontarz P, Zhang B, Sepich DS, Solnica-Krezel L, Gray RS. A conserved regulation of cell expansion underlies notochord mechanics, spine morphogenesis, and endochondral bone lengthening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607640. [PMID: 39211248 PMCID: PMC11361061 DOI: 10.1101/2024.08.12.607640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cell size is a key contributor to tissue morphogenesis 1 . As a notable example, growth plate hypertrophic chondrocytes use cellular biogenesis and disproportionate fluid uptake to expand 10-20 times in size to drive lengthening of endochondral bone 2,3 . Similarly, notochordal cells expand to one of the largest cell types in the developing embryo to drive axial extension 4-6 . In zebrafish, the notochord vacuolated cells undergo vacuole fusion to form a single large, fluid-filled vacuole that fills the cytoplasmic space and contributes to vacuolated cell expansion 7 . When this process goes awry, the notochord lacks sufficient hydrostatic pressure to support vertebral bone deposition resulting in adult spines with misshapen vertebral bones and scoliosis 8 . However, it remains unclear whether endochondral bone and the notochord share common genetic and cellular mechanisms for regulating cell and tissue expansion. Here, we demonstrate that the 5'-inositol phosphatase gene, inppl1a , regulates notochord expansion, spine morphogenesis, and endochondral bone lengthening in zebrafish. Furthermore, we show that inppl1a regulates notochord expansion independent of vacuole fusion, thereby genetically decoupling these processes. We demonstrate that inppl1a -dependent notochord expansion is essential to establish normal mechanical properties of the notochord to facilitate the development of a straight spine. Finally, we find that inppl1a is also important for endochondral bone lengthening in fish, as has been shown in the human INPPL1 -related endochondral bone disorder, Opsismodysplasia 9 . Overall, this work reveals a conserved mechanism of cell size regulation that influences disparate tissues critical for skeletal development and short-stature disorders.
Collapse
|
2
|
Kumar U, Fang CY, Roan HY, Hsu SC, Wang CH, Chen CH. Whole-body replacement of larval myofibers generates permanent adult myofibers in zebrafish. EMBO J 2024; 43:3090-3115. [PMID: 38839992 PMCID: PMC11294464 DOI: 10.1038/s44318-024-00136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Drastic increases in myofiber number and size are essential to support vertebrate post-embryonic growth. However, the collective cellular behaviors that enable these increases have remained elusive. Here, we created the palmuscle myofiber tagging and tracking system for in toto monitoring of the growth and fates of ~5000 fast myofibers in developing zebrafish larvae. Through live tracking of individual myofibers within the same individuals over extended periods, we found that many larval myofibers readily dissolved during development, enabling the on-site addition of new and more myofibers. Remarkably, whole-body surveillance of multicolor-barcoded myofibers further unveiled a gradual yet extensive elimination of larval myofiber populations, resulting in near-total replacement by late juvenile stages. The subsequently emerging adult myofibers are not only long-lasting, but also morphologically and functionally distinct from the larval populations. Furthermore, we determined that the elimination-replacement process is dependent on and driven by the autophagy pathway. Altogether, we propose that the whole-body replacement of larval myofibers is an inherent yet previously unnoticed process driving organismic muscle growth during vertebrate post-embryonic development.
Collapse
Affiliation(s)
- Uday Kumar
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chun-Yi Fang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chung-Han Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
3
|
Maeno A, Koita R, Nakazawa H, Fujii R, Yamada K, Oikawa S, Tani T, Ishizaka M, Satoh K, Ishizu A, Sugawara T, Adachi U, Kikuchi M, Iwanami N, Matsuda M, Kawamura A. The Hox code responsible for the patterning of the anterior vertebrae in zebrafish. Development 2024; 151:dev202854. [PMID: 38940461 DOI: 10.1242/dev.202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The vertebral column is a characteristic structure of vertebrates. Genetic studies in mice have shown that Hox-mediated patterning plays a key role in specifying discrete anatomical regions of the vertebral column. Expression pattern analyses in several vertebrate embryos have provided correlative evidence that the anterior boundaries of Hox expression coincide with distinct anatomical vertebrae. However, because functional analyses have been limited to mice, it remains unclear which Hox genes actually function in vertebral patterning in other vertebrates. In this study, various zebrafish Hox mutants were generated for loss-of-function phenotypic analysis to functionally decipher the Hox code responsible for the zebrafish anterior vertebrae between the occipital and thoracic vertebrae. We found that Hox genes in HoxB- and HoxC-related clusters participate in regulating the morphology of the zebrafish anterior vertebrae. In addition, medaka hoxc6a was found to be responsible for anterior vertebral identity, as in zebrafish. Based on phenotypic similarities with Hoxc6 knockout mice, our results suggest that the Hox patterning system, including at least Hoxc6, may have been functionally established in the vertebral patterning of the common ancestor of ray-finned and lobe-finned fishes.
Collapse
Affiliation(s)
- Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Rina Koita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Hidemichi Nakazawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Renka Fujii
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Sae Oikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Taisei Tani
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Atsuki Ishizu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Takumi Sugawara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Urara Adachi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Morimichi Kikuchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya 321-8505, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
4
|
Barak MM, Schlott J, Gundersen L, Diaz G, Rhee V, Villoth N, Ferber A, Blair S. Morphological examination of abdominal vertebral bodies from grass carp using high-resolution micro-CT scans. J Anat 2024; 245:84-96. [PMID: 38419134 PMCID: PMC11161828 DOI: 10.1111/joa.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
The vertebral column, a defining trait of all vertebrates, is organized as a concatenated chain of vertebrae, and therefore its support to the body depends on individual vertebral morphology. Consequently, studying the morphology of the vertebral centrum is of anatomical and clinical importance. Grass carp (GC) is a member of the infraclass Teleostei (teleost fish), which accounts for the majority of all vertebrate species; thus, its vertebral anatomical structure can help us understand vertebrate development and vertebral morphology. In this study, we have investigated the morphology and symmetry of the grass carp vertebral centrum using high-resolution micro-CT scans. To this end, three abdominal vertebrae (V9, V10, & V11) from eight grass carp were micro-CT scanned and then segmented using Dragonfly (ORS Inc.). Grass carp vertebral centrum conformed to the basic teleost pattern and demonstrated an amphicoelous shape (biconcave hourglass). The centrum's cranial endplate was smaller, less circular, and shallower compared to the caudal endplate. While the vertebral centrum demonstrated bilateral symmetry along the sagittal plane (left/right), the centrum focus was shifted dorsally and cranially, breaking dorsoventral and craniocaudal symmetry. The sum of these findings implies that the caudal aspect of grass carp vertebral centrum is bigger and more robust. Currently, we have no information whether this is due to nature, for example, differences in gene expression, or nurture, for example, environmental effect. As the vertebral parapophyses and spinous processes are slanted caudally, the direction of muscle action during swimming may create a gradient of stresses from cranial to caudal, resulting in a more robust caudal aspect of the vertebral centrum. Expanding our study to include additional quadrupedal and bipedal (i.e., human) vertebrae, as well as testing if these morphological aspects of the vertebrae are indeed plastic and can be affected by environmental factors (i.e., temperature or other stressors) may help answer this question.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - James Schlott
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| | - Laura Gundersen
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Giovanni Diaz
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Vanessa Rhee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | | | | | - Salvatore Blair
- Department of Biology, Winthrop University, Rock Hill, South Carolina, USA
| |
Collapse
|
5
|
Adachi U, Koita R, Seto A, Maeno A, Ishizu A, Oikawa S, Tani T, Ishizaka M, Yamada K, Satoh K, Nakazawa H, Furudate H, Kawakami K, Iwanami N, Matsuda M, Kawamura A. Teleost Hox code defines regional identities competent for the formation of dorsal and anal fins. Proc Natl Acad Sci U S A 2024; 121:e2403809121. [PMID: 38861596 PMCID: PMC11194558 DOI: 10.1073/pnas.2403809121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
The dorsal and anal fins can vary widely in position and length along the anterior-posterior axis in teleost fishes. However, the molecular mechanisms underlying the diversification of these fins remain unknown. Here, we used genetic approaches in zebrafish and medaka, in which the relative positions of the dorsal and anal fins are opposite, to demonstrate the crucial role of hox genes in the patterning of the teleost posterior body, including the dorsal and anal fins. By the CRISPR-Cas9-induced frameshift mutations and positional cloning of spontaneous dorsalfinless medaka, we show that various hox mutants exhibit the absence of dorsal or anal fins, or a stepwise posterior extension of these fins, with vertebral abnormalities. Our results indicate that multiple hox genes, primarily from hoxc-related clusters, encompass the regions responsible for the dorsal and anal fin formation along the anterior-posterior axis. These results further suggest that shifts in the anterior boundaries of hox expression which vary among fish species, lead to diversification in the position and size of the dorsal and anal fins, similar to how modulations in Hox expression can alter the number of anatomically distinct vertebrae in tetrapods. Furthermore, we show that hox genes responsible for dorsal fin formation are different between zebrafish and medaka. Our results suggest that a novel mechanism has occurred during teleost evolution, in which the gene network responsible for fin formation might have switched to the regulation downstream of other hox genes, leading to the remarkable diversity in the dorsal fin position.
Collapse
Affiliation(s)
- Urara Adachi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Rina Koita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Akira Seto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Atsuki Ishizu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Sae Oikawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Taisei Tani
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Hidemichi Nakazawa
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Hiroyuki Furudate
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Masaru Matsuda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya321-8505, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama338-8570, Japan
| |
Collapse
|
6
|
Breuer M, Rummler M, Singh J, Maher S, Zaouter C, Jamadagni P, Pilon N, Willie BM, Patten SA. CHD7 regulates craniofacial cartilage development via controlling HTR2B expression. J Bone Miner Res 2024; 39:498-512. [PMID: 38477756 PMCID: PMC11262153 DOI: 10.1093/jbmr/zjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024]
Abstract
Mutations in the Chromodomain helicase DNA-binding protein 7 - coding gene (CHD7) cause CHARGE syndrome (CS). Although craniofacial and skeletal abnormalities are major features of CS patients, the role of CHD7 in bone and cartilage development remain largely unexplored. Here, using a zebrafish (Danio rerio) CS model, we show that chd7-/- larvae display abnormal craniofacial cartilage development and spinal deformities. The craniofacial and spine defects are accompanied by a marked reduction of bone mineralization. At the molecular level, we show that these phenotypes are associated with significant reduction in the expression levels of osteoblast differentiation markers. Additionally, we detected a marked depletion of collagen 2α1 in the cartilage of craniofacial regions and vertebrae, along with significantly reduced number of chondrocytes. Chondrogenesis defects are at least in part due to downregulation of htr2b, which we found to be also dysregulated in human cells derived from an individual with CHD7 mutation-positive CS. Overall, this study thus unveils an essential role for CHD7 in cartilage and bone development, with potential clinical relevance for the craniofacial defects associated with CS.
Collapse
Affiliation(s)
- Maximilian Breuer
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Jaskaran Singh
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Sabrina Maher
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charlotte Zaouter
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Priyanka Jamadagni
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Départment des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Biological and Biomedical Engineering, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal H4A 0A9, Canada
| | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique (INRS) – Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Département de Neurosciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC H3C 3P8, Canada
| |
Collapse
|
7
|
Oudhoff H, Hisler V, Baumgartner F, Rees L, Grepper D, Jaźwińska A. Skeletal muscle regeneration after extensive cryoinjury of caudal myomeres in adult zebrafish. NPJ Regen Med 2024; 9:8. [PMID: 38378693 PMCID: PMC10879182 DOI: 10.1038/s41536-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Skeletal muscles can regenerate after minor injuries, but severe structural damage often leads to fibrosis in mammals. Whether adult zebrafish possess the capacity to reproduce profoundly destroyed musculature remains unknown. Here, a new cryoinjury model revealed that several myomeres efficiently regenerated within one month after wounding the zebrafish caudal peduncle. Wound clearance involved accumulation of the selective autophagy receptor p62, an immune response and Collagen XII deposition. New muscle formation was associated with proliferation of Pax7 expressing muscle stem cells, which gave rise to MyoD1 positive myogenic precursors, followed by myofiber differentiation. Monitoring of slow and fast muscles revealed their coordinated replacement in the superficial and profound compartments of the myomere. However, the final boundary between the muscular components was imperfectly recapitulated, allowing myofibers of different identities to intermingle. The replacement of connective with sarcomeric tissues required TOR signaling, as rapamycin treatment impaired new muscle formation, leading to persistent fibrosis. The model of zebrafish myomere restoration may provide new medical perspectives for treatment of traumatic injuries.
Collapse
Affiliation(s)
- Hendrik Oudhoff
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Vincent Hisler
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Florian Baumgartner
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Lana Rees
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Dogan Grepper
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700, Fribourg, Switzerland.
| |
Collapse
|
8
|
Serra KM, Vyzas C, Shehreen S, Chipendo I, Clifford KM, Youngstrom DW, Devoto SH. Vertebral pattern and morphology is determined during embryonic segmentation. Dev Dyn 2024; 253:204-214. [PMID: 37688793 DOI: 10.1002/dvdy.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND The segmented nature of the adult vertebral column is based on segmentation of the paraxial mesoderm during early embryogenesis. Disruptions to embryonic segmentation, whether caused by genetic lesions or environmental stress, result in adult vertebral pathologies. However, the mechanisms linking embryonic segmentation and the details of adult vertebral morphology are poorly understood. RESULTS We induced border defects using two approaches in zebrafish: heat stress and misregulation of embryonic segmentation genes tbx6, mesp-ba, and ripply1. We assayed vertebral length, regularity, and polarity using microscopic and radiological imaging. In population studies, we find a correlation between specific embryonic border defects and specific vertebral defects, and within individual fish, we trace specific adult vertebral defects to specific embryonic border defects. CONCLUSIONS Our data reveal that transient disruptions of embryonic segment border formation led to significant vertebral anomalies that persist through adulthood. The spacing of embryonic borders controls the length of the vertebra. The positions of embryonic borders control the positions of ribs and arches. Embryonic borders underlie fusions and divisions between adjacent spines and ribs. These data suggest that segment borders have a dominant role in vertebral development.
Collapse
Affiliation(s)
- Kevin M Serra
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Christina Vyzas
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Sarah Shehreen
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Iris Chipendo
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Katherine M Clifford
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
9
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Marie-Hardy L, Slimani L, Messa G, El Bourakkadi Z, Prigent A, Sayetta C, Koëth F, Pascal-Moussellard H, Wyart C, Cantaut-Belarif Y. Loss of CSF-contacting neuron sensory function is associated with a hyper-kyphosis of the spine reminiscent of Scheuermann's disease. Sci Rep 2023; 13:5529. [PMID: 37016154 PMCID: PMC10073078 DOI: 10.1038/s41598-023-32536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Scheuermann's disease, also referred to as Scheuermann's kyphosis, is the second most frequent spine deformity occurring in humans after adolescent idiopathic scoliosis (AIS), both with an unclear etiology. Recent genetic studies in zebrafish unraveled new mechanisms linked to AIS, highlighting the role of the Reissner fiber, an acellular polymer bathing in the cerebrospinal fluid (CSF) in close proximity with ciliated cells and mechanosensory neurons lining the central canal of the spinal cord (CSF-cNs). However, while the Reissner fiber and ciliary beating have been linked to AIS-like phenotypes in zebrafish, the relevance of the sensory functions of CSF-cNs for human spine disorders remains unknown. Here, we show that the thoracic hyper-kyphosis of the spine previously reported in adult pkd2l1 mutant zebrafish, in which the mechanosensory function of CSF-cNs is likely defective, is restricted to the sagittal plane and is not associated with vertebral malformations. By applying orthopedic criteria to analyze the amplitude of the curvature at the apex of the kyphosis, the curve pattern, the sagittal balance and sex bias, we demonstrate that pkd2l1 knock-outs develop a phenotype reminiscent of Scheuermann's disease. Altogether our work consolidates the benefit of combining genetics and analysis of spine deformities in zebrafish to model idiopathic spine disorders in humans.
Collapse
Affiliation(s)
- Laura Marie-Hardy
- Orthopedic Surgery and Trauma Center, Pitié-Salpêtrière Teaching Hospital (AP-HP), 47 Boulevard de L'Hôpital, 75013, Paris, France
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Lotfi Slimani
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Dental School University Paris Cité, and Life Imaging Platform (PIV), Montrouge, France
| | - Giulia Messa
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Zaineb El Bourakkadi
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Annick Prigent
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Celia Sayetta
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Fanny Koëth
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Hugues Pascal-Moussellard
- Orthopedic Surgery and Trauma Center, Pitié-Salpêtrière Teaching Hospital (AP-HP), 47 Boulevard de L'Hôpital, 75013, Paris, France
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France
| | - Claire Wyart
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France.
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université (SU), 75013, Paris, France.
| |
Collapse
|
11
|
Marconi A, Yang CZ, McKay S, Santos ME. Morphological and temporal variation in early embryogenesis contributes to species divergence in Malawi cichlid fishes. Evol Dev 2023; 25:170-193. [PMID: 36748313 PMCID: PMC10909517 DOI: 10.1111/ede.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
The cichlid fishes comprise the largest extant vertebrate family and are the quintessential example of rapid "explosive" adaptive radiations and phenotypic diversification. Despite low genetic divergence, East African cichlids harbor a spectacular intra- and interspecific morphological diversity, including the hyper-variable, neural crest (NC)-derived traits such as coloration and craniofacial skeleton. Although the genetic and developmental basis of these phenotypes has been investigated, understanding of when, and specifically how early, in ontogeny species-specific differences emerge, remains limited. Since adult traits often originate during embryonic development, the processes of embryogenesis could serve as a potential source of species-specific variation. Consequently, we designed a staging system by which we compare the features of embryogenesis between three Malawi cichlid species-Astatotilapia calliptera, Tropheops sp. 'mauve' and Rhamphochromis sp. "chilingali"-representing a wide spectrum of variation in pigmentation and craniofacial morphologies. Our results showed fundamental differences in multiple aspects of embryogenesis that could underlie interspecific divergence in adult adaptive traits. First, we identified variation in the somite number and signatures of temporal variation, or heterochrony, in the rates of somite formation. The heterochrony was also evident within and between species throughout ontogeny, up to the juvenile stages. Finally, the identified interspecific differences in the development of pigmentation and craniofacial cartilages, present at the earliest stages of their overt formation, provide compelling evidence that the species-specific trajectories begin divergence during early embryogenesis, potentially during somitogenesis and NC development. Altogether, our results expand our understanding of fundamental cichlid biology and provide new insights into the developmental origins of vertebrate morphological diversity.
Collapse
Affiliation(s)
| | | | - Samuel McKay
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
12
|
Özelçi E, Mailand E, Rüegg M, Oates AC, Sakar MS. Deconstructing body axis morphogenesis in zebrafish embryos using robot-assisted tissue micromanipulation. Nat Commun 2022; 13:7934. [PMID: 36566327 PMCID: PMC9789989 DOI: 10.1038/s41467-022-35632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Classic microsurgical techniques, such as those used in the early 1900s by Mangold and Spemann, have been instrumental in advancing our understanding of embryonic development. However, these techniques are highly specialized, leading to issues of inter-operator variability. Here we introduce a user-friendly robotic microsurgery platform that allows precise mechanical manipulation of soft tissues in zebrafish embryos. Using our platform, we reproducibly targeted precise regions of tail explants, and quantified the response in real-time by following notochord and presomitic mesoderm (PSM) morphogenesis and segmentation clock dynamics during vertebrate anteroposterior axis elongation. We find an extension force generated through the posterior notochord that is strong enough to buckle the structure. Our data suggest that this force generates a unidirectional notochord extension towards the tailbud because PSM tissue around the posterior notochord does not let it slide anteriorly. These results complement existing biomechanical models of axis elongation, revealing a critical coupling between the posterior notochord, the tailbud, and the PSM, and show that somite patterning is robust against structural perturbations.
Collapse
Affiliation(s)
- Ece Özelçi
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland
| | - Erik Mailand
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Matthias Rüegg
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrew C Oates
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland.
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Institute of Bioengineering, EPFL, 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Clayton SW, Angermeier A, Halbrooks JE, McCardell R, Serra R. TGFβ signaling is required for sclerotome resegmentation during development of the spinal column in Gallus gallus. Dev Biol 2022; 488:120-130. [PMID: 35644252 PMCID: PMC9552462 DOI: 10.1016/j.ydbio.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
We previously showed the importance of TGFβ signaling in development of the mouse axial skeleton. Here, we provide the first direct evidence that TGFβ signaling is required for resegmentation of the sclerotome using chick embryos. Lipophilic fluorescent tracers, DiO and DiD, were microinjected into adjacent somites of embryos treated with or without TGFβRI inhibitors, SB431542, SB525334 or SD208, at developmental day E2.5 (HH16). Lineage tracing of labeled cells was observed over the course of 4 days until the completion of resegmentation at E6.5 (HH32). Vertebrae were malformed and intervertebral discs were small and misshapen in inhibitor injected embryos. Hypaxial myofibers were also increased in thickness after treatment with the inhibitor. Inhibition of TGFβ signaling resulted in alterations in resegmentation that ranged between full, partial, and slanted shifts in distribution of DiO or DiD labeled cells within vertebrae. Patterning of rostro-caudal markers within sclerotome was disrupted at E3.5 after treatment with TGFβRI inhibitor with rostral domains expressing both rostral and caudal markers. We propose that TGFβ signaling regulates rostro-caudal polarity and subsequent resegmentation in sclerotome during spinal column development.
Collapse
Affiliation(s)
- Sade W Clayton
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA; Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Allyson Angermeier
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Jacob E Halbrooks
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA
| | - Ronisha McCardell
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA; Dillard University, Greensburg, LA, USA
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
14
|
Vertebral anomalies in a natural population of Taricha granulosa (Caudata: Salamandridae). ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractDevelopmental plasticity, a common pattern in lissamphibian evolution, results in numerous alternative morphologies among species and also within populations. In the present study, a natural population of the salamander Taricha granulosa (Salamandridae) was examined to detect variation in the vertebral count and to identify potential deformities of their vertebral column. The number of trunk vertebrae varied between 11 and 13 and we recorded 58 individuals with 69 anomalous vertebral elements. These anomalies range from congenital malformations (block vertebrae, unilateral bars, hemivertebrae), extra ossifications in the haemal region, to posttraumatic pathologies. Most osseous pathologies were encountered in the caudal region of the axial skeleton. Our data suggest a high frequency of vertebral malformations in salamanders; however, the identification of the exact causes remains challenging.
Collapse
|
15
|
Mulley JF. Regulation of posterior Hox genes by sex steroids explains vertebral variation in inbred mouse strains. J Anat 2022; 240:735-745. [PMID: 34747015 PMCID: PMC8930804 DOI: 10.1111/joa.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
A series of elegant embryo transfer experiments in the 1950s demonstrated that the uterine environment could alter vertebral patterning in inbred mouse strains. In the intervening decades, attention has tended to focus on the technical achievements involved and neglected the underlying biological question: how can genetically homogenous individuals have a heterogenous number of vertebrae? Here I revisit these experiments and, with the benefit of knowledge of the molecular-level processes of vertebral patterning gained over the intervening decades, suggest a novel hypothesis for homeotic transformation of the last lumbar vertebra to the adjacent sacral type through regulation of Hox genes by sex steroids. Hox genes are involved in both axial patterning and development of male and female reproductive systems and have been shown to be sensitive to sex steroids in vitro and in vivo. Regulation of these genes by sex steroids and resulting alterations to vertebral patterning may hint at a deep evolutionary link between the ribless lumbar region of mammals and the switch from egg-laying to embryo implantation. An appreciation of the impact of sex steroids on Hox genes may explain some puzzling aspects of human disease, and highlights the spine as a neglected target for in utero exposure to endocrine disruptors.
Collapse
|
16
|
Gillis JA, Bennett S, Criswell KE, Rees J, Sleight VA, Hirschberger C, Calzarette D, Kerr S, Dasen J. Big insight from the little skate: Leucoraja erinacea as a developmental model system. Curr Top Dev Biol 2022; 147:595-630. [PMID: 35337464 DOI: 10.1016/bs.ctdb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; Marine Biological Laboratory, Woods Hole, MA, United States.
| | - Scott Bennett
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Jenaid Rees
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria A Sleight
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Dan Calzarette
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Sarah Kerr
- Wesleyan University, Middletown, CT, United States
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU School of Medicine, Neuroscience Institute, NY, United States
| |
Collapse
|
17
|
Berio F, Bayle Y, Riley C, Larouche O, Cloutier R. Phenotypic regionalization of the vertebral column in the thorny skate Amblyraja radiata: Stability and variation. J Anat 2022; 240:253-267. [PMID: 34542171 PMCID: PMC8742970 DOI: 10.1111/joa.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
Regionalization of the vertebral column occurred early during vertebrate evolution and has been extensively investigated in mammals. However, less data are available on vertebral regions of crown gnathostomes. This is particularly true for batoids (skates, sawfishes, guitarfishes, and rays) whose vertebral column has long been considered to be composed of the same two regions as in teleost fishes despite the presence of a synarcual. However, the numerous vertebral units in chondrichthyans may display a more complex regionalization pattern than previously assumed and the intraspecific variation of such pattern deserves a thorough investigation. In this study, we use micro-computed tomography (µCT) scans of vertebral columns of a growth series of thorny skates Amblyraja radiata to provide the first fine-scale morphological description of vertebral units in a batoids species. We further investigate axial regionalization using a replicable clustering analysis on presence/absence of vertebral elements to decipher the regionalization of the vertebral column of A. radiata. We identify four vertebral regions in this species. The two anteriormost regions, named synarcual and thoracic, may undergo strong developmental or functional constraints because they display stable patterns of shapes and numbers of vertebral units across all growth stages. The third region, named hemal transitional, is characterized by high inter-individual morphological variation and displays a transition between the monospondylous (one centrum per somite) to diplospondylous (two centra per somite) conditions. The posteriormost region, named caudal, is subdivided into three sub-regions with shapes changing gradually along the anteroposterior axis. These regionalized patterns are discussed in light of ecological habits of skates.
Collapse
Affiliation(s)
- Fidji Berio
- Laboratoire de Paléontologie et Biologie ÉvolutiveUniversité du Québec à RimouskiRimouskiQuébecCanada
| | - Yann Bayle
- Université de BordeauxBordeaux INPCNRSLaBRIUMR5800TalenceFrance
| | - Cyrena Riley
- Laboratoire de Paléontologie et Biologie ÉvolutiveUniversité du Québec à RimouskiRimouskiQuébecCanada
| | - Olivier Larouche
- Laboratoire de Paléontologie et Biologie ÉvolutiveUniversité du Québec à RimouskiRimouskiQuébecCanada
- Department of BioSciencesRice UniversityHoustonTexasUSA
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie ÉvolutiveUniversité du Québec à RimouskiRimouskiQuébecCanada
| |
Collapse
|
18
|
hox gene expression predicts tetrapod-like axial regionalization in the skate, Leucoraja erinacea. Proc Natl Acad Sci U S A 2021; 118:2114563118. [PMID: 34903669 PMCID: PMC8713815 DOI: 10.1073/pnas.2114563118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 01/11/2023] Open
Abstract
The axial skeleton of tetrapods is organized into distinct anteroposterior regions of the vertebral column (cervical, trunk, sacral, and caudal), and transitions between these regions are determined by colinear anterior expression boundaries of Hox5/6, -9, -10, and -11 paralogy group genes within embryonic paraxial mesoderm. Fishes, conversely, exhibit little in the way of discrete axial regionalization, and this has led to scenarios of an origin of Hox-mediated axial skeletal complexity with the evolutionary transition to land in tetrapods. Here, combining geometric morphometric analysis of vertebral column morphology with cell lineage tracing of hox gene expression boundaries in developing embryos, we recover evidence of at least five distinct regions in the vertebral skeleton of a cartilaginous fish, the little skate (Leucoraja erinacea). We find that skate embryos exhibit tetrapod-like anteroposterior nesting of hox gene expression in their paraxial mesoderm, and we show that anterior expression boundaries of hox5/6, hox9, hox10, and hox11 paralogy group genes predict regional transitions in the differentiated skate axial skeleton. Our findings suggest that hox-based axial skeletal regionalization did not originate with tetrapods but rather has a much deeper evolutionary history than was previously appreciated.
Collapse
|
19
|
Abstract
Tetrapods use their neck to move the head three-dimensionally, relative to the body and limbs. Fish lack this anatomical neck, yet during feeding many species elevate (dorsally rotate) the head relative to the body. Cranial elevation is hypothesized to result from the craniovertebral and cranial-most intervertebral joints acting as a neck, by dorsally rotating (extending). However, this has never been tested due to the difficulty of visualizing and measuring vertebral motion in vivo. I used X-ray reconstruction of moving morphology to measure three-dimensional vertebral kinematics in rainbow trout (Oncorhynchus mykiss) and Commerson's frogfish (Antennarius commerson) during feeding. Despite dramatically different morphologies, in both species dorsoventral rotations extended far beyond the craniovertebral and cranial intervertebral joints. Trout combine small (most less than 3°) dorsal rotations over up to a third of their intervertebral joints to elevate the neurocranium. Frogfish use extremely large (often 20-30°) rotations of the craniovertebral and first intervertebral joint, but smaller rotations occurred across two-thirds of the vertebral column during cranial elevation. Unlike tetrapods, fish rotate large regions of the vertebral column to rotate the head. This suggests both cranial and more caudal vertebrae should be considered to understand how non-tetrapods control motion at the head-body interface.
Collapse
Affiliation(s)
- Ariel L. Camp
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, USA
| |
Collapse
|
20
|
Waldmann L, Leyhr J, Zhang H, Öhman-Mägi C, Allalou A, Haitina T. The broad role of Nkx3.2 in the development of the zebrafish axial skeleton. PLoS One 2021; 16:e0255953. [PMID: 34411150 PMCID: PMC8376051 DOI: 10.1371/journal.pone.0255953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Nkx3.2 (Bapx1) is an important chondrocyte maturation inhibitor. Previous Nkx3.2 knockdown and overexpression studies in non-mammalian gnathostomes have focused on its role in primary jaw joint development, while the function of this gene in broader skeletal development is not fully described. We generated a mutant allele of nkx3.2 in zebrafish with CRISPR/Cas9 and applied a range of techniques to characterize skeletal phenotypes at developmental stages from larva to adult, revealing loss of the jaw joint, fusions in bones of the occiput, morphological changes in the Weberian apparatus, and the loss or deformation of bony elements derived from basiventral cartilages of the vertebrae. Axial phenotypes are reminiscent of Nkx3.2 knockout in mammals, suggesting that the function of this gene in axial skeletal development is ancestral to osteichthyans. Our results highlight the broad role of nkx3.2 in zebrafish skeletal development and its context-specific functions in different skeletal elements.
Collapse
Affiliation(s)
- Laura Waldmann
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Jake Leyhr
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hanqing Zhang
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden
| | - Caroline Öhman-Mägi
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| | - Amin Allalou
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Piatkowska AM, Evans SE, Stern CD. Cellular aspects of somite formation in vertebrates. Cells Dev 2021; 168:203732. [PMID: 34391979 DOI: 10.1016/j.cdev.2021.203732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Vertebrate segmentation, the process that generates a regular arrangement of somites and thereby establishes the pattern of the adult body and of the musculoskeletal and peripheral nervous systems, was noticed many centuries ago. In the last few decades, there has been renewed interest in the process and especially in the molecular mechanisms that might account for its regularity and other spatial-temporal properties. Several models have been proposed but surprisingly, most of these do not provide clear links between the molecular mechanisms and the cell behaviours that generate the segmental pattern. Here we present a short survey of our current knowledge about the cellular aspects of vertebrate segmentation and the similarities and differences between different vertebrate groups in how they achieve their metameric pattern. Taking these variations into account should help to assess each of the models more appropriately.
Collapse
Affiliation(s)
- Agnieszka M Piatkowska
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK
| | - Susan E Evans
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street (Anatomy Building), London WC1E 6BT, UK.
| |
Collapse
|
22
|
RNA-sequence reveals differentially expressed genes affecting the crested trait of Wumeng crested chicken. Poult Sci 2021; 100:101357. [PMID: 34329989 PMCID: PMC8335650 DOI: 10.1016/j.psj.2021.101357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Wumeng crested chicken has a cluster of slender feathers on its head, and the underlying skull region exhibits an obvious tumor-like protrusion. This is the typical skull structure of crested chickens. The associated regulatory genes are located on autosomes and are incompletely dominant. This trait is related to brain herniation, but the genetic mechanisms of its formation and development are unclear. In this study, RNA sequencing (RNA-Seq) analysis was conducted on 6 skull tissue samples from 3 Wumeng crested chickens with prominent skull protrusions and 3 without a prominent skull protrusion phenotype. A total of 46,376,934 to 43,729,046 clean reads were obtained, the percentage of uniquely mapped reads compared with the reference genome was between 89.73%-91.00%, and 39,795,458-41,836,502 unique reads were obtained. Among different genomic regions, the highest frequency of sequencing reads occurred in exon regions (85.44-88.28%). Additionally, a total of 423 new transcripts and 26,999 alternative splicings (AS) events were discovered in this sequencing analysis. This study identified 1,089 differentially expressed genes (DEGs), among which 485 were upregulated and 604 were downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that the DEGs were enriched in terms related to signal transduction, cell development, cell differentiation, the lysosome, serine, and threonine metabolism, and the interaction of cytokines with cytokine receptors. Based on the comprehensive analysis of DEGs combined with reported quantitative trait loci (QTLs), the expression of BMP2, EPHA3, EPHB1, HOXC6, SCN2B, BMP7, and HOXC10 was verified by real-time quantitative polymerase chain reaction (qRT-PCR). The qRT-PCR results were consistent with the RNA-Seq results, indicating that these 7 genes may be candidates genes regulating the crested trait.
Collapse
|
23
|
Abstract
The axial skeleton of all vertebrates is composed of individual units known as vertebrae. Each vertebra has individual anatomical attributes, yet they can be classified in five different groups, namely cervical, thoracic, lumbar, sacral and caudal, according to shared characteristics and their association with specific body areas. Variations in vertebral number, size, morphological features and their distribution amongst the different regions of the vertebral column are a major source of the anatomical diversity observed among vertebrates. In this review I will discuss the impact of those variations on the anatomy of different vertebrate species and provide insights into the genetic origin of some remarkable morphological traits that often serve to classify phylogenetic branches or individual species, like the long trunks of snakes or the long necks of giraffes.
Collapse
|
24
|
Abstract
Atonal homologue 8 (atoh8) is a basic helix-loop-helix transcription factor expressed in a variety of embryonic tissues. While several studies have implicated atoh8 in various developmental pathways in other species, its role in zebrafish development remains uncertain. So far, no studies have dealt with an in-depth in situ analysis of the tissue distribution of atoh8 in embryonic zebrafish. We set out to pinpoint the exact location of atoh8 expression in a detailed spatio-temporal analysis in zebrafish during the first 24 h of development (hpf). To our surprise, we observed transcription from pre-segmentation stages in the paraxial mesoderm and during the segmentation stages in the somitic sclerotome and not—as previously reported—in the myotome. With progressing maturation of the somites, the restriction of atoh8 to the sclerotomal compartment became evident. Double in situ hybridisation with atoh8 and myoD revealed that both genes are expressed in the somites at coinciding developmental stages; however, their domains do not spatially overlap. A second domain of atoh8 expression emerged in the embryonic brain in the developing cerebellum and hindbrain. Here, we observed a specific expression pattern which was again in contrast to the previously published suggestion of atoh8 transcription in neural crest cells. Our findings point towards a possible role of atoh8 in sclerotome, cerebellum and hindbrain development. More importantly, the results of this expression analysis provide new insights into early sclerotome development in zebrafish—a field of research in developmental biology which has not received much attention so far.
Collapse
|
25
|
Yamada K, Maeno A, Araki S, Kikuchi M, Suzuki M, Ishizaka M, Satoh K, Akama K, Kawabe Y, Suzuki K, Kobayashi D, Hamano N, Kawamura A. An atlas of seven zebrafish hox cluster mutants provides insights into sub/neofunctionalization of vertebrate Hox clusters. Development 2021; 148:269044. [PMID: 34096572 DOI: 10.1242/dev.198325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Vertebrate Hox clusters are comprised of multiple Hox genes that control morphology and developmental timing along multiple body axes. Although results of genetic analyses using Hox-knockout mice have been accumulating, genetic studies in other vertebrates have not been sufficient for functional comparisons of vertebrate Hox genes. In this study, we isolated all of the seven hox cluster loss-of-function alleles in zebrafish using the CRISPR-Cas9 system. Comprehensive analysis of the embryonic phenotype and X-ray micro-computed tomography scan analysis of adult fish revealed several species-specific functional contributions of homologous Hox clusters along the appendicular axis, whereas important shared general principles were also confirmed, as exemplified by serial anterior vertebral transformations along the main body axis, observed in fish for the first time. Our results provide insights into discrete sub/neofunctionalization of vertebrate Hox clusters after quadruplication of the ancient Hox cluster. This set of seven complete hox cluster loss-of-function alleles provide a formidable resource for future developmental genetic analysis of the Hox patterning system in zebrafish.
Collapse
Affiliation(s)
- Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Akiteru Maeno
- Plant Resource Development, Division of Genetic Resource Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Soh Araki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Morimichi Kikuchi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Masato Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Mizuki Ishizaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Koumi Satoh
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kagari Akama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Yuki Kawabe
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Kenya Suzuki
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Daiki Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nanami Hamano
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-okubo 255, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
26
|
Witzmann F, Haridy Y, Hilger A, Manke I, Asbach P. Rarity of congenital malformation and deformity in the fossil record of vertebrates - A non-human perspective. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 33:30-42. [PMID: 33647859 DOI: 10.1016/j.ijpp.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE A malformed pectoral joint of the middle Devonian antiarch fish Asterolepis ornata is described, and a survey of congenital malformations in the fossil record is provided. MATERIALS The specimen of A. ornata (MB.f.73) from Ehrman in Latvia, stored at the Museum für Naturkunde Berlin, Germany. METHODS A. ornata was macroscopically and radiologically investigated, and the overview on congenital malformation was based on an extensive literature survey. RESULTS In the deformed joint of A. ornata, the articular surfaces and muscle attachment sites are greatly reduced, indicating restricted mobility. Congenital malformations can be found since the middle Silurian and affect all groups of vertebrates, but they are rare. Teeth and the vertebral column are the most commonly affected anatomical regions, and the mechanisms causing these malformations probably remained the same through geological time. CONCLUSIONS Micro-CT of the deformed joint shows no disturbance of the normal trabecular pattern and no evidence of trauma or disease, suggesting a congenital hypoplasia, although an acquired deformity cannot be ruled out completely. SIGNIFICANCE Congenital malformations, even those that are rare, were part of the common history of vertebrates for more than 400 million years. LIMITATIONS Epidemiologic measures like incidence and prevalence usually cannot be applied to define rare diseases in the fossil record. SUGGESTIONS FOR FURTHER RESEARCH A broadly based analysis of species of fossil vertebrates with numerus recovered specimens (e.g. many bony fishes, amphibians, certain dinosaurs) might statistically affirm the occurrence of malformations and possible correlations with the paleoenvironment.
Collapse
Affiliation(s)
- Florian Witzmann
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany.
| | - Yara Haridy
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany.
| | - André Hilger
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Ingo Manke
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Patrick Asbach
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany.
| |
Collapse
|
27
|
Maxwell EE, Romano C, Wu F. Regional disparity in the axial skeleton of Saurichthyidae and implications for axial regionalization in non‐teleostean actinopterygians. J Zool (1987) 2021. [DOI: 10.1111/jzo.12878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- E. E. Maxwell
- Staatliches Museum für Naturkunde Stuttgart Stuttgart Germany
| | - C. Romano
- Paläontologisches Institut und Museum Universität Zürich Zürich Switzerland
| | - F.‐X. Wu
- Key Laboratory of Vertebrate Evolution and Human Origins Institute of Vertebrate Paleontology and Paleoanthropology Chinese Academy of Sciences Beijing China
- Center for Excellence in Life and Paleoenvironment Chinese Academy of Sciences Beijing China
| |
Collapse
|
28
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
29
|
Abstract
The vertebrate body plan is characterized by the presence of a segmented spine along its main axis. Here, we examine the current understanding of how the axial tissues that are formed during embryonic development give rise to the adult spine and summarize recent advances in the field, largely focused on recent studies in zebrafish, with comparisons to amniotes where appropriate. We discuss recent work illuminating the genetics and biological mechanisms mediating extension and straightening of the body axis during development, and highlight open questions. We specifically focus on the processes of notochord development and cerebrospinal fluid physiology, and how defects in those processes may lead to scoliosis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, Dell Pediatrics Research Institute, Austin, TX, 78723, USA
| |
Collapse
|
30
|
Reyes Corral WD, Aguirre WE. Effects of temperature and water turbulence on vertebral number and body shape in Astyanax mexicanus (Teleostei: Characidae). PLoS One 2019; 14:e0219677. [PMID: 31356643 PMCID: PMC6663064 DOI: 10.1371/journal.pone.0219677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/29/2019] [Indexed: 11/22/2022] Open
Abstract
Environmental changes can modify the phenotypic characteristics of populations, which in turn can influence their evolutionary trajectories. In ectotherms like fishes, temperature is a particularly important environmental variable that is known to have significant impacts on the phenotype. Here, we raised specimens of the surface ecomorph of Astyanax mexicanus at temperatures of 20°C, 23°C, 25°C, and 28°C to examine how temperature influenced vertebral number and body shape. To increase biological realism, specimens were also subjected to two water turbulence regimes. Vertebral number was counted from x-rays and body shape variation was analysed using geometric morphometric methods. Temperature significantly impacted mean total vertebral number, which increased at the lowest and highest temperatures. Fish reared at lower temperatures had relatively more precaudal vertebrae while fish reared at higher temperatures had relatively more caudal vertebrae. Vertebral anomalies, especially vertebral fusions, were most frequent at the extreme temperature treatments. Temperature significantly impacted body shape as well, with fish reared at 20°C being particularly divergent. Water turbulence also impacted body shape in a generally predictable manner, with specimens reared in high turbulence environments being more streamlined and having extended dorsal and anal fin bases. Variation in environmental variables thus resulted in significant changes in morphological traits known to impact fish fitness, indicating that A. mexicanus has the capacity to exhibit a range of phenotypic plasticity when challenged by environmental change. Understanding the biochemical mechanisms underlying this plasticity and whether adaptive plasticity has influenced the evolutionary radiation of the Characidae, are major directions for future research.
Collapse
Affiliation(s)
| | - Windsor E. Aguirre
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| |
Collapse
|
31
|
Liu MZ, Zhou DC, Liu Q, Xie FL, Xiang DX, Tang GY, Luo SL. Osteogenesis activity of isocoumarin a through the activation of the PI3K-Akt/Erk cascade-activated BMP/RUNX2 signaling pathway. Eur J Pharmacol 2019; 858:172480. [PMID: 31228453 DOI: 10.1016/j.ejphar.2019.172480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022]
Abstract
Bone formation refers to a series of complex events related to the activities of osteoblasts. In this study, we evaluated the osteogenesis activity of a natural compound named isocoumarin A that was isolated from the rhizomes of Polygonum amplexicaule on the non-transformed preosteoblastic cell line MC3T3-E1 for an in vitro study, and the results revealed that it increased the proliferation and promoted the mineralization of the extracellular matrix of MC3T3-E1 cells after treatment for 3 d in a dose-dependent manner. The cell metabolic activity peaked at 169% at 10 μM, and the activity of alkaline phosphatase (ALP) tripled to 15.94 U/mg compared with the control group. The protein levels of morphogenetic protein 2 (BMP-2), runt-related transcription factor 2 (RUNX2), ALP, and the mRNA levels of ALP, type I collagen (COL-1), and osteocalcin (OCN) were also upregulated after isocoumarin A administration. The mechanism investigation revealed that these effects were associated with the activation of the p-Akt/p-Erk1/2-activated BMP/RUNX2 signaling pathway. Subsequently, the in vivo investigation on the zebrafish embryos model demonstrated that isocoumarin A (0.30 mM) increased the number of vertebrae (5.38 ± 2.07 pcs) and the vertebral area (433.25 ± 111.77 μm2) in the development process of zebrafish embryos after a 7-day postfertilization (dpf) culture compared with the control group (2.50 ± 1.16 pcs and 209.75 ± 86.40 μm2). Together, these results indicated that isocoumarin A could be viewed as a promising candidate in early drug discovery and development to promote the healing of fractures and postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Min-Zhen Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Dong-Chu Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Qiang Liu
- Department of Pharmacy, Yiyang Central Hospital, Yiyang, 41300, PR China
| | - Fu-Li Xie
- School of Medical Science, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, PR China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Gen-Yun Tang
- School of Medical Science, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, PR China
| | - Shi-Lin Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China; Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
32
|
Wopat S, Bagwell J, Sumigray KD, Dickson AL, Huitema LFA, Poss KD, Schulte-Merker S, Bagnat M. Spine Patterning Is Guided by Segmentation of the Notochord Sheath. Cell Rep 2019; 22:2026-2038. [PMID: 29466731 PMCID: PMC5860813 DOI: 10.1016/j.celrep.2018.01.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Abstract
The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine.
Collapse
Affiliation(s)
- Susan Wopat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Leonie F A Huitema
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Stefan Schulte-Merker
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT, Utrecht, the Netherlands; Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, 48149 Münster, Germany; CiM Cluster of Excellence (EXC1003-CiM), 48149 Münster, Germany
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Camp AL. What Fish Can Teach Us about the Feeding Functions of Postcranial Muscles and Joints. Integr Comp Biol 2019; 59:383-393. [DOI: 10.1093/icb/icz005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Studies of vertebrate feeding have predominantly focused on the bones and muscles of the head, not the body. Yet, postcranial musculoskeletal structures like the spine and pectoral girdle are anatomically linked to the head, and may also have mechanical connections through which they can contribute to feeding. The feeding roles of postcranial structures have been best studied in ray-finned fishes, where the body muscles, vertebral column, and pectoral girdle attach directly to the head and help expand the mouth during suction feeding. Therefore, I use the anatomy and motion of the head–body interface in these fishes to develop a mechanical framework for studying postcranial functions during feeding. In fish the head and body are linked by the vertebral column, the pectoral girdle, and the body muscles that actuate these skeletal systems. The morphology of the joints and muscles of the cranio-vertebral and hyo-pectoral interfaces may determine the mobility of the head relative to the body, and ultimately the role of these interfaces during feeding. The postcranial interfaces can function as anchors during feeding: the body muscles and joints minimize motion between the head and body to stabilize the head or transmit forces from the body. Alternatively, the postcranial interfaces can be motors: body muscles actuate motion between the head and body to generate power for feeding motions. The motor function is likely important for many suction-feeding fishes, while the anchor function may be key for bite- or ram-feeding fishes. This framework can be used to examine the role of the postcranial interface in other vertebrate groups, and how that role changes (or not) with morphology and feeding behaviors. Such studies can expand our understanding of muscle function, as well as the evolution of vertebrate feeding behaviors across major transitions such as the invasion of land and the emergence of jaws.
Collapse
Affiliation(s)
- Ariel L Camp
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
34
|
Marie-Hardy L, Khalifé M, Slimani L, Pascal-Moussellard H. Computed tomography method for characterising the zebrafish spine. Orthop Traumatol Surg Res 2019; 105:361-367. [PMID: 30799173 DOI: 10.1016/j.otsr.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/19/2018] [Accepted: 12/06/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The zebrafish is widely used in research due in part to its readily manipulable genome. Zebrafish models of spinal deformities including scoliosis were developed recently. However, the methods used to assess the spine in these models vary across studies. The primary objective of this study was to investigate the feasibility and modalities of local and regional spine structure evaluation by micro-CT in the normal zebrafish. The secondary objectives were to assess the feasibility of spinal angle measurements in normal zebrafish subjected to external stresses designed to mimic spinal deformities, to determine normal angle values in the coronal and sagittal planes, and to detail the micro-CT features of the zebrafish spine. HYPOTHESIS Micro-CT is an effective and reproducible tool for determining orthopaedic parameters to characterise the zebrafish spine. MATERIAL AND METHODS Two observers conducted preliminary analyses on 15 zebrafish including 12 adults (aged 18 months) and 3 juveniles (aged 12 weeks). For the analyses, 6 of the animals were placed in an artificial position to mimic a scoliosis spinal deformity. Micro-CT (Quantum FX Caliper™) was used with 59μm resolution and a 30-mm field of view. Image processing was with RadiAnt DICOM Viewer™ software. RESULTS We defined several assessment planes on the 3D micro-CT reconstructions to measure orthopaedic parameters in the sagittal plane (thoracic and maximal kyphotic curves with their apices, length of the various spinal segments, and sagittal index) and coronal plane (Cobb angles, apices, end-vertebrae, coronal alignment, and side of the convexity). Mean thoracic kyphosis was 20.5°±5.0° in the adults and 8.7° in the juveniles. No curvature was apparent in the coronal plane in the zebrafish left in the neutral position. In the zebrafish with artificially induced curves, micro-CT was effective in determining the Cobb angles and apical vertebrae. DISCUSSION This work defines a standardised micro-CT method for assessing the zebrafish spine. In addition, spinal parameter values that can be considered normal were determined, namely, less than 30° of thoracic kyphosis in the sagittal plane and less than 10° in the coronal plane. Our method was effective in assessing induced spinal deformities on micro-CT reconstructions. We hope it will prove of value in future studies of the zebrafish model. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Laura Marie-Hardy
- Service d'orthopédie et de traumatologie, hôpital de la Pitié-Salpêtrière, 47, boulevard de l'hôpital, 75013 Paris, France.
| | - Marc Khalifé
- Service d'orthopédie et de traumatologie, hôpital de la Pitié-Salpêtrière, 47, boulevard de l'hôpital, 75013 Paris, France
| | - Lofti Slimani
- EA2496, pathologie, imagerie & biothérapies orofaciales, faculté de chirurgie dentaire, université Paris Descartes, 1, rue Maurice-Arnoux, 92120 Montrouge, France
| | - Hugues Pascal-Moussellard
- Service d'orthopédie et de traumatologie, hôpital de la Pitié-Salpêtrière, 47, boulevard de l'hôpital, 75013 Paris, France
| |
Collapse
|
35
|
Rescan PY. Development of myofibres and associated connective tissues in fish axial muscle: Recent insights and future perspectives. Differentiation 2019; 106:35-41. [PMID: 30852471 DOI: 10.1016/j.diff.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/18/2023]
Abstract
Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.
Collapse
Affiliation(s)
- Pierre-Yves Rescan
- Inra, UR1037 - Laboratoire de Physiologie et Génomique des Poissons, Campus de Beaulieu - Bât 16A, 35042 Rennes Cedex, France.
| |
Collapse
|
36
|
Aguirre WE, Young A, Navarrete-Amaya R, Valdiviezo-Rivera J, Jiménez-Prado P, Cucalón RV, Nugra-Salazar F, Calle-Delgado P, Borders T, Shervette VR. Vertebral number covaries with body form and elevation along the western slopes of the Ecuadorian Andes in the Neotropical fish genusRhoadsia(Teleostei: Characidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Windsor E Aguirre
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Ashley Young
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | | | | | - Pedro Jiménez-Prado
- Escuela de Gestión Ambiental, Pontificia Universidad Católica del Ecuador Sede Esmeraldas, Esmeraldas, Ecuador
| | - Roberto V Cucalón
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | - Fredy Nugra-Salazar
- Laboratorio de Zoología de Vertebrados de la Universidad del Azuay, Cuenca, Ecuador
| | - Paola Calle-Delgado
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Casilla, Guayaquil, Ecuador
| | - Thomas Borders
- Department of Biological Sciences, DePaul University, Chicago, IL, USA
| | | |
Collapse
|
37
|
Johanson Z, Martin K, Fraser G, James K. The Synarcual of the Little Skate, Leucoraja erinacea: Novel Development Among the Vertebrates. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Ma RC, Jacobs CT, Sharma P, Kocha KM, Huang P. Stereotypic generation of axial tenocytes from bipartite sclerotome domains in zebrafish. PLoS Genet 2018; 14:e1007775. [PMID: 30388110 PMCID: PMC6235400 DOI: 10.1371/journal.pgen.1007775] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/14/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Development of a functional musculoskeletal system requires coordinated generation of muscles, bones, and tendons. However, how axial tendon cells (tenocytes) are generated during embryo development is still poorly understood. Here, we show that axial tenocytes arise from the sclerotome in zebrafish. In contrast to mouse and chick, the zebrafish sclerotome consists of two separate domains: a ventral domain and a previously undescribed dorsal domain. While dispensable for sclerotome induction, Hedgehog (Hh) signaling is required for the migration and maintenance of sclerotome derived cells. Axial tenocytes are located along the myotendinous junction (MTJ), extending long cellular processes into the intersomitic space. Using time-lapse imaging, we show that both sclerotome domains contribute to tenocytes in a dynamic and stereotypic manner. Tenocytes along a given MTJ always arise from the sclerotome of the adjacent anterior somite. Inhibition of Hh signaling results in loss of tenocytes and enhanced sensitivity to muscle detachment. Together, our work shows that axial tenocytes in zebrafish originate from the sclerotome and are essential for maintaining muscle integrity. The coordinated generation of bones, muscles and tendons at the correct time and location is critical for the development of a functional musculoskeletal system. Although it is well known that tendon is the connective tissue that attaches muscles to bones, it is still poorly understood how tendon cells, or tenocytes, are generated during embryo development. Using the zebrafish model, we identify trunk tenocytes located along the boundary of muscle segments. Using cell tracing in live animals, we find that tenocytes originate from the sclerotome, an embryonic structure that is previously known to generate the trunk skeleton. In contrast to higher vertebrates, the zebrafish sclerotome consists of two separate domains, a ventral domain and a novel dorsal domain. Both domains give rise to trunk tenocytes in a dynamic and stereotypic manner. Hedgehog (Hh) signaling, an important cell signaling pathway, is not required for sclerotome induction but essential for the generation of sclerotome derived cells. Inhibition of Hh signaling leads to loss of tenocytes and increased sensitivity to muscle detachment. Thus, our work shows that tenocytes develop from the sclerotome and play an important role in maintaining muscle integrity.
Collapse
Affiliation(s)
- Roger C. Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Craig T. Jacobs
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Priyanka Sharma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Katrinka M. Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
39
|
Criswell KE, Coates MI, Gillis JA. Embryonic origin of the gnathostome vertebral skeleton. Proc Biol Sci 2018; 284:rspb.2017.2121. [PMID: 29167367 PMCID: PMC5719183 DOI: 10.1098/rspb.2017.2121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022] Open
Abstract
The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral components (neural arches, haemal arches and centra) derive from paraxial mesoderm (somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches derived from somites, but centra formed, in part, by secretion of bone matrix from the notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish (the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find no evidence of cellular or matrix contribution from the notochord to the skate vertebral skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts.
Collapse
Affiliation(s)
- Katharine E Criswell
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA .,Department of Zoology, University of Cambridge, Cambridge, UK.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Michael I Coates
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge, UK.,Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
40
|
Recent Advances in Hagfish Developmental Biology in a Historical Context: Implications for Understanding the Evolution of the Vertebral Elements. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-4-431-56609-0_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Powell GL, Russell AP, Sutey J. Patterns of growth in the presacral vertebral column of the leopard gecko (Eublepharis macularius). J Morphol 2018; 279:1088-1103. [PMID: 29732599 DOI: 10.1002/jmor.20833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/06/2018] [Accepted: 04/08/2018] [Indexed: 11/10/2022]
Abstract
Postnatal growth patterns within the vertebral column may be informative about body proportions and regionalization. We measured femur length, lengths of all pre-sacral vertebrae, and lengths of intervertebral spaces, from radiographs of a series of 21 Eublepharis macularius, raised under standard conditions and covering most of the ontogenetic body size range. Vertebrae were grouped into cervical, sternal, and dorsal compartments, and lengths of adjacent pairs of vertebrae were summed before analysis. Femur length was included as an index of body size. Principal component analysis of the variance-covariance matrix of these data was used to investigate scaling among them. PC1 explained 94.19% of total variance, interpreted as the variance due to body size. PC1 differed significantly from the hypothetical isometric vector, indicating overall allometry. The atlas and axis vertebrae displayed strong negative allometry; the remainder of the vertebral pairs exhibited weak negative allometry, isometry or positive allometry. PC1 explained a markedly smaller amount of variance for the vertebral pairs of the cervical compartment than for the remainder of the vertebral pairs, with the exception of the final pair. The relative standard deviations of the eigenvalues from the PCAs of the three vertebral compartments indicated that the vertebrae of the cervical compartment were less strongly integrated by scaling than were the sternal or dorsal vertebrae, which did not differ greatly between themselves in their strong integration, suggesting that the growth of the cervical vertebrae is constrained by the mechanical requirements of the head. Regionalization of the remainder of the vertebral column is less clearly defined but may be associated with wave form propagation incident upon locomotion, and by locomotory changes occasioned by tail autotomy and regeneration. Femur length exhibits negative allometry relative to individual vertebral pairs and to vertebral column length, suggesting a change in locomotor requirements over the ontogenetic size range.
Collapse
Affiliation(s)
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Sutey
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
42
|
Lleras Forero L, Narayanan R, Huitema LF, VanBergen M, Apschner A, Peterson-Maduro J, Logister I, Valentin G, Morelli LG, Oates AC, Schulte-Merker S. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife 2018; 7:33843. [PMID: 29624170 PMCID: PMC5962341 DOI: 10.7554/elife.33843] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord.
Collapse
Affiliation(s)
- Laura Lleras Forero
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany.,CiM Cluster of Excellence (EXC-1003-CiM), Münster, Germany.,Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | | | - Maaike VanBergen
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | | | | | - Ive Logister
- Hubrecht Institute-KNAW & UMC Utrecht, Utrecht, Netherlands
| | | | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisica, FCEyN, UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Andrew C Oates
- The Francis Crick Institute, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| |
Collapse
|
43
|
Woltering JM, Holzem M, Schneider RF, Nanos V, Meyer A. The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan. BMC DEVELOPMENTAL BIOLOGY 2018; 18:8. [PMID: 29614958 PMCID: PMC5883283 DOI: 10.1186/s12861-018-0166-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Background The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on “direct-developing” amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are “indirect-developing” organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. Results Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely “direct” mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. Conclusions As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between “direct” and “indirect” developing actinopterygians using a comparison between zebrafish and A. burtoni development.
Collapse
Affiliation(s)
- Joost M Woltering
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| | - Michaela Holzem
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.,Current address: Department of Biological an Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0 BP, UK
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Vasilios Nanos
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| |
Collapse
|
44
|
Witzmann F. Mini‐series: palaeopathology – a fresh look at ancient diseases in the fossil record. J Zool (1987) 2018. [DOI: 10.1111/jzo.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F. Witzmann
- Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
| |
Collapse
|
45
|
De Clercq A, Perrott MR, Davie PS, Preece MA, Wybourne B, Ruff N, Huysseune A, Witten PE. Vertebral column regionalisation in Chinook salmon, Oncorhynchus tshawytscha. J Anat 2017; 231:500-514. [PMID: 28762509 PMCID: PMC5603787 DOI: 10.1111/joa.12655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 02/05/2023] Open
Abstract
Teleost vertebral centra are often similar in size and shape, but vertebral-associated elements, i.e. neural arches, haemal arches and ribs, show regional differences. Here we examine how the presence, absence and specific anatomical and histological characters of vertebral centra-associated elements can be used to define vertebral column regions in juvenile Chinook salmon (Oncorhynchus tshawytscha). To investigate if the presence of regions within the vertebral column is independent of temperature, animals raised at 8 and 12 °C were studied at 1400 and 1530 degreedays, in the freshwater phase of the life cycle. Anatomy and composition of the skeletal tissues of the vertebral column were analysed using Alizarin red S whole-mount staining and histological sections. Six regions, termed I-VI, are recognised in the vertebral column of specimens of both temperature groups. Postcranial vertebrae (region I) carry neural arches and parapophyses but lack ribs. Abdominal vertebrae (region II) carry neural arches and ribs that articulate with parapophyses. Elastic- and fibrohyaline cartilage and Sharpey's fibres connect the bone of the parapophyses to the bone of the ribs. In the transitional region (III) vertebrae carry neural arches and parapophyses change stepwise into haemal arches. Ribs decrease in size, anterior to posterior. Vestigial ribs remain attached to the haemal arches with Sharpey's fibres. Caudal vertebrae (region IV) carry neural and haemal arches and spines. Basidorsals and basiventrals are small and surrounded by cancellous bone. Preural vertebrae (region V) carry neural and haemal arches with modified neural and haemal spines to support the caudal fin. Ural vertebrae (region VI) carry hypurals and epurals that represent modified haemal and neural arches and spines, respectively. The postcranial and transitional vertebrae and their respective characters are usually recognised, but should be considered as regions within the vertebral column of teleosts because of their distinctive morphological characters. While the number of vertebrae within each region can vary, each of the six regions is recognised in specimens of both temperature groups. This refined identification of regionalisation in the vertebral column of Chinook salmon can help to address evolutionary developmental and functional questions, and to support applied research into this farmed species.
Collapse
Affiliation(s)
- A. De Clercq
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| | - M. R. Perrott
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | - P. S. Davie
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | - B. Wybourne
- Skretting AustraliaRosny ParkTasmaniaAustralia
| | - N. Ruff
- Skretting AustraliaRosny ParkTasmaniaAustralia
| | - A. Huysseune
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| | - P. E. Witten
- Institute of Veterinary, Animal and Biomedical SciencesMassey UniversityPalmerston NorthNew Zealand
- Evolutionary Developmental BiologyGhent UniversityGhentBelgium
| |
Collapse
|
46
|
Matsubara Y, Hirasawa T, Egawa S, Hattori A, Suganuma T, Kohara Y, Nagai T, Tamura K, Kuratani S, Kuroiwa A, Suzuki T. Anatomical integration of the sacral-hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods. Nat Ecol Evol 2017; 1:1392-1399. [PMID: 29046533 DOI: 10.1038/s41559-017-0247-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/22/2017] [Indexed: 11/09/2022]
Abstract
Elucidating how body parts from different primordia are integrated during development is essential for understanding the nature of morphological evolution. In tetrapod evolution, while the position of the hindlimb has diversified along with the vertebral formula, the mechanism responsible for this coordination has not been well understood. However, this synchronization suggests the presence of an evolutionarily conserved developmental mechanism that coordinates the positioning of the hindlimb skeleton derived from the lateral plate mesoderm with that of the sacral vertebrae derived from the somites. Here we show that GDF11 secreted from the posterior axial mesoderm is a key factor in the integration of sacral vertebrae and hindlimb positioning by inducing Hox gene expression in two different primordia. Manipulating the onset of GDF11 activity altered the position of the hindlimb in chicken embryos, indicating that the onset of Gdf11 expression is responsible for the coordinated positioning of the sacral vertebrae and hindlimbs. Through comparative analysis with other vertebrate embryos, we also show that each tetrapod species has a unique onset timing of Gdf11 expression, which is tightly correlated with the anteroposterior levels of the hindlimb bud. We conclude that the evolutionary diversity of hindlimb positioning resulted from heterochronic shifts in Gdf11 expression, which led to coordinated shifts in the sacral-hindlimb unit along the anteroposterior axis.
Collapse
Affiliation(s)
- Yoshiyuki Matsubara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - Ayumi Hattori
- Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku Sendai, 980-8575, Japan
| | - Takaya Suganuma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuhei Kohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tatsuya Nagai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | | | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| | - Takayuki Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
47
|
Understanding Idiopathic Scoliosis: A New Zebrafish School of Thought. Trends Genet 2017; 33:183-196. [DOI: 10.1016/j.tig.2017.01.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 12/28/2022]
|
48
|
Criswell KE, Coates MI, Gillis JA. Embryonic development of the axial column in the little skate,
Leucoraja erinacea. J Morphol 2017; 278:300-320. [DOI: 10.1002/jmor.20637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Katharine E. Criswell
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicago Illinois
- Marine Biological LaboratoryWoods Hole Massachusetts
| | - Michael I. Coates
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicago Illinois
| | - J. Andrew Gillis
- Marine Biological LaboratoryWoods Hole Massachusetts
- Department of ZoologyUniversity of CambridgeCambridge UK
| |
Collapse
|
49
|
Maschner A, Krück S, Draga M, Pröls F, Scaal M. Developmental dynamics of occipital and cervical somites. J Anat 2016; 229:601-609. [PMID: 27380812 DOI: 10.1111/joa.12516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 11/29/2022] Open
Abstract
Development of somites leading to somite compartments, sclerotome, dermomyotome and myotome, has been intensely investigated. Most knowledge on somite development, including the commonly used somite maturation stages, is based on data from somites at thoracic and lumbar levels. Potential regional differences in somite maturation dynamics have been indicated by a number of studies, but have not yet been comprehensively examined. Here, we present an overview on the developmental dynamics of somites at occipital and cervical levels in the chicken embryo. We show that in these regions, the onset of sclerotomal and myotomal compartment formation is later than at thoracolumbar levels, and is initiated simultaneously in multiple somites, which is in contrast to the serial cranial- to- caudal progression of somite maturation in the trunk. Our data suggest a variant spatiotemporal regulation of somite development in occipitocervical somites.
Collapse
Affiliation(s)
- Anja Maschner
- Department of Molecular Embryology, Institute of Anatomy, University of Freiburg, Freiburg, Germany
| | - Stefanie Krück
- Institute of Anatomy II, University of Cologne, Cologne, Germany
| | - Margarethe Draga
- Institute of Anatomy II, University of Cologne, Cologne, Germany
| | - Felicitas Pröls
- Institute of Anatomy II, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Institute of Anatomy II, University of Cologne, Cologne, Germany. .,Department of Molecular Embryology, Institute of Anatomy, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
50
|
Böhmer C, Rauhut OWM, Wörheide G. New insights into the vertebral Hox code of archosaurs. Evol Dev 2016; 17:258-69. [PMID: 26372060 DOI: 10.1111/ede.12136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Variation in axial formulae (i.e., number and identity of vertebrae) is an important feature in the evolution of vertebrates. Vertebrae at different axial positions exhibit a region-specific morphology. Key determinants for the establishment of particular vertebral shapes are the highly conserved Hox genes. Here, we analyzed Hox gene expression in the presacral vertebral column in the Nile crocodile in order to complement and extend a previous examination in the alligator and thus establish a Hox code for the axial skeleton of crocodilians in general. The newly determined expression of HoxA-4, C-5, B-7, and B-8 all revealed a crocodilian-specific pattern. HoxA-4 and HoxC-5 characterize cervical morphologies and the latter furthermore is associated with the position of the forelimb relative to the axial skeleton. HoxB-7 and HoxB-8 map exclusively to the dorsal vertebral region. The resulting expression patterns of these two Hox genes is the first description of their exact expression in the archosaurian embryo. Our comparative analyses of the Hox code in several amniote taxa provide new evidence that evolutionary differences in the axial skeleton correspond to changes in Hox gene expression domains. We detect two general processes: (i) expansion of a Hox gene's expression domain as well as (ii) a shift of gene expression. We infer that the ancestral archosaur Hox code may have resembled that of the crocodile. In association with the evolution of morphological traits, it may have been modified to patterns that can be observed in birds.
Collapse
Affiliation(s)
- Christine Böhmer
- Department für Geo- und Umweltwissenschaften & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Oliver W M Rauhut
- Department für Geo- und Umweltwissenschaften & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany
| | - Gert Wörheide
- Department für Geo- und Umweltwissenschaften & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 München, Germany.,SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333 München, Germany
| |
Collapse
|