1
|
Bunker J, Bashir M, Bailey S, Boodram P, Perry A, Delaney R, Tsachaki M, Sprecher SG, Nelson E, Call GB, Rister J. Blimp-1/PRDM1 and Hr3/RORβ specify the blue-sensitive photoreceptor subtype in Drosophila by repressing the hippo pathway. Front Cell Dev Biol 2023; 11:1058961. [PMID: 36960411 PMCID: PMC10027706 DOI: 10.3389/fcell.2023.1058961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
During terminal differentiation of the mammalian retina, transcription factors control binary cell fate decisions that generate functionally distinct subtypes of photoreceptor neurons. For instance, Otx2 and RORβ activate the expression of the transcriptional repressor Blimp-1/PRDM1 that represses bipolar interneuron fate and promotes rod photoreceptor fate. Moreover, Otx2 and Crx promote expression of the nuclear receptor Nrl that promotes rod photoreceptor fate and represses cone photoreceptor fate. Mutations in these four transcription factors cause severe eye diseases such as retinitis pigmentosa. Here, we show that a post-mitotic binary fate decision in Drosophila color photoreceptor subtype specification requires ecdysone signaling and involves orthologs of these transcription factors: Drosophila Blimp-1/PRDM1 and Hr3/RORβ promote blue-sensitive (Rh5) photoreceptor fate and repress green-sensitive (Rh6) photoreceptor fate through the transcriptional repression of warts/LATS, the nexus of the phylogenetically conserved Hippo tumor suppressor pathway. Moreover, we identify a novel interaction between Blimp-1 and warts, whereby Blimp-1 represses a warts intronic enhancer in blue-sensitive photoreceptors and thereby gives rise to specific expression of warts in green-sensitive photoreceptors. Together, these results reveal that conserved transcriptional regulators play key roles in terminal cell fate decisions in both the Drosophila and the mammalian retina, and the mechanistic insights further deepen our understanding of how Hippo pathway signaling is repurposed to control photoreceptor fates for Drosophila color vision.
Collapse
Affiliation(s)
- Joseph Bunker
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Mhamed Bashir
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Sydney Bailey
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Pamela Boodram
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
- NYU Langone Medical Center, New York, NY, United States
| | - Alexis Perry
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Rory Delaney
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
| | - Maria Tsachaki
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Erik Nelson
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Gerald B. Call
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jens Rister
- Department of Biology, Integrated Sciences Complex, University of Massachusetts Boston, Boston, MA, United States
- *Correspondence: Jens Rister,
| |
Collapse
|
2
|
Wang H, Morrison CA, Ghosh N, Tea JS, Call GB, Treisman JE. The Blimp-1 transcription factor acts in non-neuronal cells to regulate terminal differentiation of the Drosophila eye. Development 2022; 149:dev200217. [PMID: 35297965 PMCID: PMC8995086 DOI: 10.1242/dev.200217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/07/2022] [Indexed: 09/10/2023]
Abstract
The formation of a functional organ such as the eye requires specification of the correct cell types and their terminal differentiation into cells with the appropriate morphologies and functions. Here, we show that the zinc-finger transcription factor Blimp-1 acts in secondary and tertiary pigment cells in the Drosophila retina to promote the formation of a bi-convex corneal lens with normal refractive power, and in cone cells to enable complete extension of the photoreceptor rhabdomeres. Blimp-1 expression depends on the hormone ecdysone, and loss of ecdysone signaling causes similar differentiation defects. Timely termination of Blimp-1 expression is also important, as its overexpression in the eye has deleterious effects. Our transcriptomic analysis revealed that Blimp-1 regulates the expression of many structural and secreted proteins in the retina. Blimp-1 may function in part by repressing another transcription factor; Slow border cells is highly upregulated in the absence of Blimp-1, and its overexpression reproduces many of the effects of removing Blimp-1. This work provides insight into the transcriptional networks and cellular interactions that produce the structures necessary for visual function.
Collapse
Affiliation(s)
- Hongsu Wang
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Carolyn A. Morrison
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Neha Ghosh
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Joy S. Tea
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gerald B. Call
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Jessica E. Treisman
- Skirball Institutefor Biomolecular Medicine and Department of Cell Biology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
3
|
Zhang W, Ma L, Liu X, Peng Y, Liang G, Xiao H. Dissecting the roles of FTZ-F1 in larval molting and pupation, and the sublethal effects of methoxyfenozide on Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2021; 77:1328-1338. [PMID: 33078511 DOI: 10.1002/ps.6146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In holometabolous insects, the major developmental transitions - larval molting and pupation - are triggered by a pulse of 20-hydroxyecdysone (20E) and coordinated by juvenile hormone. Methoxyfenozide (MF), an ecdysteroid agonist, represents a new class of insect growth regulators and is effective against lepidopteran pests. Fushi-tarazu factor 1 (FTZ-F1) is an ecdysone-inducible transcription factor. To date, the effect of MF on 20E-response genes remains unclear, and we speculate the involvement of FTZ-F1 in MF's growth regulating effect. RESULTS MF at LC25 and LC10 caused severe ecdysis failure in Helicoverpa armigera, extended their larval duration, lowered their pupal weight, and reduced the respiratory, pupation and emergence rates. Furthermore, sublethal doses of MF inhibited ecdysteroidogenesis and lowered the intrinsic 20E titer, but showed an inductive effect on 20E-response genes including HaFTZ-F1. HaFTZ-F1, predominantly expressed in larval epidermis, was markedly upregulated before or right after larval ecdysis, and maintained a high level in prepupal stage. Knockdown of HaFTZ-F1 in 4th-instar larvae severely impaired larval ecdysis, whereas its knockdown in final-instar larvae caused abnormal pupation. Moreover, knocking down HaFTZ-F1 downregulated three critical ecdysteroidogenesis genes, lowered 20E titer, and suppressed the expression of 20E receptors and 20E-response genes. The introduction of 20E into HaFTZ-F1-RNAi larvae partly relieved the negative effects on the 20E-induced signaling cascade. CONCLUSION Our findings reveal the adverse effects of sublethal doses of MF on the development of H. armigera and elucidate the resulting perturbations on the 20E-induced signaling cascade; we propose that HaFTZ-F1 regulates ecdysis and pupation by mediating 20E titer and its signaling pathway. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Long Ma
- College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xiangya Liu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Yuan H, Zhang W, Fu Y, Jiang S, Xiong Y, Zhai S, Gong Y, Qiao H, Fu H, Wu Y. MnFtz-f1 Is Required for Molting and Ovulation of the Oriental River Prawn Macrobrachium nipponense. Front Endocrinol (Lausanne) 2021; 12:798577. [PMID: 34987481 PMCID: PMC8721877 DOI: 10.3389/fendo.2021.798577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Molting and ovulation are the basic processes responsible for the growth and reproduction of Macrobrachium nipponense; however, the molecular mechanisms of molting and ovulation in M. nipponense are poorly understood. The present study aimed to use MnFtz-f1 as the starting point to study the molting and ovulation phenomena in M. nipponense at the molecular level. The full-length MnFtz-f1 cDNA sequence was 2,198 base pairs (bp) in length with an open reading frame of 1,899 bp encoding 632 amino acids. Quantitative real-time PCR analysis showed that MnFtz-f1 was highly expressed in the ovary at the cleavage stage and on the fifth day after hatching. In vivo administration of 20-hydroxyecdysone (20E) showed that 20E effectively inhibited the expression of the MnFtz-f1 gene, and the silencing of the MnFtz-f1 gene reduced the content of 20E in the ovary. In situ hybridization (ISH) analysis revealed the localization of MnFtz-f1 in the ovary. Silencing of MnFtz-f1 by RNA interference (RNAi) resulted in significant inhibition of the expression of the vitellogenin (Vg), Spook, and Phantom genes, thus confirming that MnFtz-f1 had a mutual regulatory relationship with Vg, Spook, and Phantom. After RNAi, the molting frequency and ovulation number of M. nipponense decreased significantly, which demonstrated that MnFtz-f1 played a pivotal role in the process of molting and ovulation.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yin Fu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Shuhua Zhai
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Hui Qiao, ; Hongtuo Fu,
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- *Correspondence: Hui Qiao, ; Hongtuo Fu,
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
5
|
Knapp EM, Li W, Singh V, Sun J. Nuclear receptor Ftz-f1 promotes follicle maturation and ovulation partly via bHLH/PAS transcription factor Sim. eLife 2020; 9:54568. [PMID: 32338596 PMCID: PMC7239656 DOI: 10.7554/elife.54568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
The NR5A-family nuclear receptors are highly conserved and function within the somatic follicle cells of the ovary to regulate folliculogenesis and ovulation in mammals; however, their roles in Drosophila ovaries are largely unknown. Here, we discover that Ftz-f1, one of the NR5A nuclear receptors in Drosophila, is transiently induced in follicle cells in late stages of oogenesis via ecdysteroid signaling. Genetic disruption of Ftz-f1 expression prevents follicle cell differentiation into the final maturation stage, which leads to anovulation. In addition, we demonstrate that the bHLH/PAS transcription factor Single-minded (Sim) acts as a direct target of Ftz-f1 to promote follicle cell differentiation/maturation and that Ftz-f1’s role in regulating Sim expression and follicle cell differentiation can be replaced by its mouse homolog steroidogenic factor 1 (mSF-1). Our work provides new insight into the regulation of follicle maturation in Drosophila and the conserved role of NR5A nuclear receptors in regulating folliculogenesis and ovulation. When animals reproduce, females release eggs from their ovaries which then get fertilized by sperm from males. Each egg needs to properly mature within a collection of cells known as follicle cells before it can be let go. As the egg matures, so do the follicle cells surrounding it, until both are primed and ready to discharge the egg from the ovary. Mammals rely on a protein called SF-1 to mature their follicle cells, but it is unclear how this process works. Most animals – from humans to fruit flies – release their eggs in a very similar way, using many of the same proteins and genes. For example, the gene for SF-1 in mammals is similar to a gene in fruit flies which codes for another protein called Ftz-f1. Since it is more straightforward to study ovaries in fruit flies than in humans and other mammals, investigating this protein could shed light on how follicle cells mature. However, it remained unclear whether Ftz-f1 plays a similar role to its mammalian counterpart. Here, Knapp et al. show that Ftz-f1 is present in the follicle cells of fruit flies and is required for them to properly mature. Ftz-f1 controlled this process by regulating the activity of another protein called Sim. Further experiments found that the gene that codes for the SF-1 protein in mice was able to compensate for the loss of Ftz-f1 and drive follicle cells to mature. Studying how ovaries release eggs is an essential part of understanding female fertility. This work highlights the similarities between these processes in mammals and fruit flies and may help us understand how ovaries work in humans and other mammals. In the future, the findings of Knapp et al. may lead to new therapies for infertility in females and other disorders that affect ovaries.
Collapse
Affiliation(s)
- Elizabeth M Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, United States
| | - Wei Li
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, United States
| | - Vijender Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, United States
| |
Collapse
|
6
|
Ma Y, McKay DJ, Buttitta L. Changes in chromatin accessibility ensure robust cell cycle exit in terminally differentiated cells. PLoS Biol 2019; 17:e3000378. [PMID: 31479438 PMCID: PMC6743789 DOI: 10.1371/journal.pbio.3000378] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
During terminal differentiation, most cells exit the cell cycle and enter into a prolonged or permanent G0 in which they are refractory to mitogenic signals. Entry into G0 is usually initiated through the repression of cell cycle gene expression by formation of a transcriptional repressor complex called dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM). However, when DREAM repressive function is compromised during terminal differentiation, additional unknown mechanisms act to stably repress cycling and ensure robust cell cycle exit. Here, we provide evidence that developmentally programmed, temporal changes in chromatin accessibility at a small subset of critical cell cycle genes act to enforce cell cycle exit during terminal differentiation in the Drosophila melanogaster wing. We show that during terminal differentiation, chromatin closes at a set of pupal wing enhancers for the key rate-limiting cell cycle regulators Cyclin E (cycE), E2F transcription factor 1 (e2f1), and string (stg). This closing coincides with wing cells entering a robust postmitotic state that is strongly refractory to cell cycle reactivation, and the regions that close contain known binding sites for effectors of mitogenic signaling pathways such as Yorkie and Notch. When cell cycle exit is genetically disrupted, chromatin accessibility at cell cycle genes remains unaffected, and the closing of distal enhancers at cycE, e2f1, and stg proceeds independent of the cell cycling status. Instead, disruption of cell cycle exit leads to changes in accessibility and expression of a subset of hormone-induced transcription factors involved in the progression of terminal differentiation. Our results uncover a mechanism that acts as a cell cycle–independent timer to limit the response to mitogenic signaling and aberrant cycling in terminally differentiating tissues. In addition, we provide a new molecular description of the cross talk between cell cycle exit and terminal differentiation during metamorphosis. The longer a cell remains in G0, the more refractory it becomes to re-entering the cell cycle. This study shows that in terminally differentiated cells in vivo, regulatory elements at genes encoding just three key cell cycle regulators (cycE, e2f1 and stg) become inaccessible, limiting their aberrant activation and maintaining a prolonged, robust G0.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel J McKay
- Department of Biology, Department of Genetics, Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Laura Buttitta
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Aly H, Akagi K, Ueda H. Proteasome activity determines pupation timing through the degradation speed of timer molecule Blimp-1. Dev Growth Differ 2018; 60:502-508. [DOI: 10.1111/dgd.12569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Hamdy Aly
- The Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Kazutaka Akagi
- Aging Homeostasis Research Project Team; National Center for Geriatrics and Gerontology; Obu Aichi Japan
| | - Hitoshi Ueda
- The Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
- Department of Biology; Faculty of Science; Okayama University; Okayama Japan
| |
Collapse
|
8
|
Blimp-1 Mediates Tracheal Lumen Maturation in Drosophila melanogaster. Genetics 2018; 210:653-663. [PMID: 30082278 DOI: 10.1534/genetics.118.301444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
The specification of tissue identity during embryonic development requires precise spatio-temporal coordination of gene expression. Many transcription factors required for the development of organs have been identified and their expression patterns are known; however, the mechanisms through which they coordinate gene expression in time remain poorly understood. Here, we show that hormone-induced transcription factor Blimp-1 participates in the temporal coordination of tubulogenesis in Drosophila melanogaster by regulating the expression of many genes involved in tube maturation. In particular, we demonstrate that Blimp-1 regulates the expression of genes involved in chitin deposition and F-actin organization. We show that Blimp-1 is involved in the temporal control of lumen maturation by regulating the beginning of chitin deposition. We also report that Blimp-1 represses a variety of genes involved in tracheal maturation. Finally, we reveal that the kinase Btk29A serves as a link between Blimp-1 transcriptional repression and apical extracellular matrix organization.
Collapse
|
9
|
Buhler K, Clements J, Winant M, Bolckmans L, Vulsteke V, Callaerts P. Growth control through regulation of insulin-signaling by nutrition-activated steroid hormone in Drosophila. Development 2018; 145:dev.165654. [DOI: 10.1242/dev.165654] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Growth and maturation are coordinated processes in all animals. Integration of internal cues, such as signalling pathways, with external cues such as nutritional status is paramount for an orderly progression of development in function of growth. In Drosophila, this involves insulin and steroid signalling, but the underlying mechanisms and their coordination are incompletely understood. We show that bioactive 20-hydroxyecdysone production by the enzyme Shade in the fat body is a nutrient-dependent process. We demonstrate that under fed conditions, Shade plays a role in growth control. We identify the trachea and the insulin-producing cells in the brain as direct targets through which 20-hydroxyecdysone regulates insulin-signaling. The identification of the trachea-dependent regulation of insulin-signaling exposes an important variable that may have been overlooked in other studies focusing on insulin-signaling in Drosophila. Our findings provide a potentially conserved, novel mechanism by which nutrition can modulate steroid hormone bioactivation, reveal an important caveat of a commonly used transgenic tool to study IPC function and yield further insights as to how steroid and insulin signalling are coordinated during development to regulate growth and developmental timing.
Collapse
Affiliation(s)
- Kurt Buhler
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Jason Clements
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Mattias Winant
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Lenz Bolckmans
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Veerle Vulsteke
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven - University of Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| |
Collapse
|
10
|
Jia Q, Liu S, Wen D, Cheng Y, Bendena WG, Wang J, Li S. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. J Biol Chem 2017; 292:21504-21516. [PMID: 29118190 DOI: 10.1074/jbc.m117.818880] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Tissue remodeling is a crucial process in animal development and disease progression. Coordinately controlled by the two main insect hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), tissues are remodeled context-specifically during insect metamorphosis. We previously discovered that two matrix metalloproteinases (Mmps) cooperatively induce fat body cell dissociation in Drosophila However, the molecular events involved in this Mmp-mediated dissociation are unclear. Here we report that JH and 20E coordinately and precisely control the developmental timing of Mmp-induced fat body cell dissociation. We found that during the larval-prepupal transition, the anti-metamorphic factor Kr-h1 transduces JH signaling, which directly inhibited Mmp expression and activated expression of tissue inhibitor of metalloproteinases (timp) and thereby suppressed Mmp-induced fat body cell dissociation. We also noted that upon a decline in the JH titer, a prepupal peak of 20E suppresses Mmp-induced fat body cell dissociation through the 20E primary-response genes, E75 and Blimp-1, which inhibited expression of the nuclear receptor and competence factor βftz-F1 Moreover, upon a decline in the 20E titer, βftz-F1 expression was induced by the 20E early-late response gene DHR3, and then βftz-F1 directly activated Mmp expression and inhibited timp expression, causing Mmp-induced fat body cell dissociation during 6-12 h after puparium formation. In conclusion, coordinated signaling via JH and 20E finely tunes the developmental timing of Mmp-induced fat body cell dissociation. Our findings shed critical light on hormonal regulation of insect metamorphosis.
Collapse
Affiliation(s)
- Qiangqiang Jia
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Di Wen
- the Department of Life Science, Qiannan Normal College for Nationalities, Duyun, Guizhou 558000, China
| | - Yongxu Cheng
- the College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - William G Bendena
- the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Jian Wang
- the Department of Entomology, University of Maryland, College Park, Maryland 20742
| | - Sheng Li
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China,
| |
Collapse
|
11
|
Amourda C, Saunders TE. Gene expression boundary scaling and organ size regulation in the Drosophila embryo. Dev Growth Differ 2017; 59:21-32. [PMID: 28093727 DOI: 10.1111/dgd.12333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
How the shape and size of tissues and organs is regulated during development is a major question in developmental biology. Such regulation relies upon both intrinsic cues (such as signaling networks) and extrinsic inputs (such as from neighboring tissues). Here, we focus on pattern formation and organ development during Drosophila embryogenesis. In particular, we outline the importance of both biochemical and mechanical tissue-tissue interactions in size regulation. We describe how the Drosophila embryo can potentially provide novel insights into how shape and size are regulated during development. We focus on gene expression boundary scaling in the early embryo and how size is regulated in three organs (hindgut, trachea, and ventral nerve cord) later in development, with particular focus on the role of tissue-tissue interactions. Overall, we demonstrate that Drosophila embryogenesis provides a suitable model system for studying spatial and temporal scaling and size control in vivo.
Collapse
Affiliation(s)
- Christopher Amourda
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, 117411, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, 117411, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.,Institute Of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|