1
|
Al-Mamun MH, Cazzonelli CI, Krishna P. BZR1 and BES1 transcription factors mediate brassinosteroid control over root system architecture in response to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2024; 15:1387321. [PMID: 38779077 PMCID: PMC11109456 DOI: 10.3389/fpls.2024.1387321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Plants modify their root system architecture (RSA) in response to nitrogen (N) deficiency. The plant steroidal hormone, brassinosteroid (BR), plays important roles in root growth and development. This study demonstrates that optimal levels of exogenous BR impact significant increases in lateral root length and numbers in Arabidopsis seedlings under mild N-deficient conditions as compared to untreated seedlings. The impact of BR on RSA was stronger under mild N deficiency than under N-sufficient conditions. The BR effects on RSA were mimicked in dominant mutants of BZR1 and BES1 (bzr1-1D and bes1-D) transcription factors, while the RSA was highly reduced in the BR-insensitive mutant bri1-6, confirming that BR signaling is essential for the development of RSA under both N-sufficient and N-deficient conditions. Exogenous BR and constitutive activity of BZR1 and BES1 in dominant mutants led to enhanced root meristem, meristematic cell number, and cortical cell length. Under mild N deficiency, bzr1-1D displayed higher fresh and dry shoot weights, chlorophyll content, and N levels in the shoot, as compared to the wild type. These results indicate that BR modulates RSA under both N-sufficient and N-deficient conditions via the transcription factors BES1/BZR1 module and confers tolerance to N deficiency.
Collapse
Affiliation(s)
| | | | - Priti Krishna
- School of Science, Western Sydney University, Richmond, NSW, Australia
- Faculty of Life Sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Kim SH, Lee SH, Park TK, Tian Y, Yu K, Lee BH, Bai MY, Cho SJ, Kim TW. Comparative analysis of BZR1/BES1 family transcription factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:747-765. [PMID: 37926922 DOI: 10.1111/tpj.16527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Brassinazole Resistant 1 (BZR1) and bri1 EMS Suppressor 1 (BES1) are key transcription factors that mediate brassinosteroid (BR)-responsive gene expression in Arabidopsis. The BZR1/BES1 family is composed of BZR1, BES1, and four BES1/BZR1 homologs (BEH1-BEH4). However, little is known about whether BEHs are regulated by BR signaling in the same way as BZR1 and BES1. We comparatively analyzed the functional characteristics of six BZR1/BES1 family members and their regulatory mechanisms in BR signaling using genetic and biochemical analyses. We also compared their subcellular localizations regulated by the phosphorylation status, interaction with GSK3-like kinases, and heterodimeric combination. We found that all BZR1/BES1 family members restored the phenotypic defects of bri1-5 by their overexpression. Unexpectedly, BEH2-overexpressing plants showed the most distinct phenotype with enhanced BR responses. RNA-Seq analysis indicated that overexpression of both BZR1 and BEH2 regulates BR-responsive gene expression, but BEH2 has a much greater proportion of BR-independent gene expression than BZR1. Unlike BZR1 and BES1, the BR-regulated subcellular translocation of the four BEHs was not tightly correlated with their phosphorylation status. Notably, BEH1 and BEH2 are predominantly localized in the nucleus, which induces the nuclear accumulation of other BZR1/BES1 family proteins through heterodimerization. Altogether, our comparative analyses suggest that BEH1 and BEH2 play an important role in the functional interaction between BZR1/BES1 family transcription factors.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Se-Hwa Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Ki Park
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yanchen Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Kyoungjae Yu
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Yang D, Shin HY, Kang HK, Shang Y, Park SY, Jeong DH, Nam KH. Reciprocal inhibition of expression between RAV1 and BES1 modulates plant growth and development in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1226-1240. [PMID: 36511120 DOI: 10.1111/jipb.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/10/2022] [Indexed: 05/13/2023]
Abstract
RAV1 (Related to ABI3/VP1) is a plant-specific B3 and AP2 domain-containing transcription factor that acts as a negative regulator of growth in many plant species. The expression of RAV1 is downregulated by brassinosteroids (BRs); large-scale transcriptome analyses have shown that the expression of RAV1 was previously targeted by BRI1-EMS-SUPPRESOR1 (BES1) and BRASSINAZOLE-RESISTANT1 (BZR1), which are critical transcription factors for the BR-signaling process. Using RAV1-overexpressing transgenic plants, we showed that RAV1 overexpression reduced the BR signaling capacity, resulting in the downregulation of BR biosynthetic genes and BES1 expression. Furthermore, we demonstrated that BES1, not BZR1, is directly bound to the RAV1 promoter and repressed RAV1 expression, and vice versa; RAV1 is also bound to the BES1 promoter and repressed BES1 expression. This mutual inhibition was specific to RAV1 and BES1 because RAV1 exhibited binding activity to the BZR1 promoter but did not repress BZR1 expression. We observed that constitutively activated BR signaling phenotypes in bes1-D were attenuated by the repression of endogenous BES1 expression in transgenic bes1-D plants overexpressing RAV1. RNA-sequencing analysis of RAV1-overexpressing transgenic plants and bes1-D mutant plants revealed differentially expressed genes by RAV1 and BES1 and genes that were oppositely co-regulated by RAV1 and BES1. RAV1 and BES1 regulated different transcriptomes but co-regulated a specific set of genes responsible for the balance between growth and defense. These results suggested that the mutual inhibitory transcriptional activities of RAV1 and BES1 provide fine regulatory mechanisms for plant growth and development.
Collapse
Affiliation(s)
- Dami Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyun-Young Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyun Kyung Kang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yun Shang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research, Institute for Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - So Young Park
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Dong-Hoon Jeong
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyoung Hee Nam
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research, Institute for Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
4
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
5
|
Lardon R, Trinh HK, Xu X, Vu LD, Van De Cotte B, Pernisová M, Vanneste S, De Smet I, Geelen D. Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants. FRONTIERS IN PLANT SCIENCE 2022; 13:894208. [PMID: 36684719 PMCID: PMC9847488 DOI: 10.3389/fpls.2022.894208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023]
Abstract
Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.
Collapse
Affiliation(s)
- Robin Lardon
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Hoang Khai Trinh
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho, Vietnam
| | - Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Markéta Pernisová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Steffen Vanneste
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon, South Korea
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Mi L, Mo A, Yang J, Liu H, Ren D, Chen W, Long H, Jiang N, Zhang T, Lu P. Arabidopsis Novel Microgametophyte Defective Mutant 1 Is Required for Pollen Viability via Influencing Intine Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:814870. [PMID: 35498668 PMCID: PMC9039731 DOI: 10.3389/fpls.2022.814870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 05/28/2023]
Abstract
The pollen intine layer is necessary for male fertility in flowering plants. However, the mechanisms behind the developmental regulation of intine formation still remain largely unknown. Here, we identified a positive regulator, Arabidopsis novel microgametophyte defective mutant 1 (AtNMDM1), which influences male fertility by regulating intine formation. The AtNMDM1, encoding a pollen nuclei-localized protein, was highly expressed in the pollens at the late anther stages, 10-12. Both the mutations and the knock-down of AtNMDM1 resulted in pollen defects and significantly lowered the seed-setting rates. Genetic transmission analysis indicated that AtNMDM1 is a microgametophyte lethal gene. Calcofluor white staining revealed that abnormal cellulose distribution was present in the aborted pollen. Ultrastructural analyses showed that the abnormal intine rather than the exine led to pollen abortion. We further found, using transcriptome analysis, that cell wall modification was the most highly enriched gene ontology (GO) term used in the category of biological processes. Notably, two categories of genes, Arabinogalactan proteins (AGPs) and pectin methylesterases (PMEs) were greatly reduced, which were associated with pollen intine formation. In addition, we also identified another regulator, AtNMDM2, which interacted with AtNMDM1 in the pollen nuclei. Taken together, we identified a novel regulator, AtNMDM1 that affected cellulose distribution in the intine by regulating intine-related gene expression; furthermore, these results provide insights into the molecular mechanisms of pollen intine development.
Collapse
Affiliation(s)
- Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jiange Yang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Haifei Long
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Genome-wide analysis of JAZ family genes expression patterns during fig (Ficus carica L.) fruit development and in response to hormone treatment. BMC Genomics 2022; 23:170. [PMID: 35236292 PMCID: PMC8889711 DOI: 10.1186/s12864-022-08420-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.
Collapse
|
8
|
Plant AR, Larrieu A, Causier B. Repressor for hire! The vital roles of TOPLESS-mediated transcriptional repression in plants. THE NEW PHYTOLOGIST 2021; 231:963-973. [PMID: 33909309 DOI: 10.1111/nph.17428] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 05/15/2023]
Abstract
Transcriptional corepressors play important roles in establishing the appropriate levels of gene expression during growth and development. The TOPLESS (TPL) family of corepressors are critical for all plant life. TPLs are involved in numerous developmental processes and in the response to extrinsic challenges. As such these proteins have been the focus of intense study since Long and colleagues first described the TPL corepressor in 2006. In this review we will explore the evolutionary history of these essential plant-specific proteins, their mechanism of action based on recent structural analyses, and the myriad of pathways in which they function. We speculate how relatively minor changes in the peptide sequence of transcriptional regulators allowed them to recruit TPL into new processes, driving innovation and resulting in TPL becoming vital for plant development.
Collapse
Affiliation(s)
- Alastair Robert Plant
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Antoine Larrieu
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| | - Barry Causier
- Faculty of Biological Sciences, Centre for Plant Science, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Betegón‐Putze I, Mercadal J, Bosch N, Planas‐Riverola A, Marquès‐Bueno M, Vilarrasa‐Blasi J, Frigola D, Burkart RC, Martínez C, Conesa A, Sozzani R, Stahl Y, Prat S, Ibañes M, Caño‐Delgado AI. Precise transcriptional control of cellular quiescence by BRAVO/WOX5 complex in Arabidopsis roots. Mol Syst Biol 2021; 17:e9864. [PMID: 34132490 PMCID: PMC8207686 DOI: 10.15252/msb.20209864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding stem cell regulatory circuits is the next challenge in plant biology, as these cells are essential for tissue growth and organ regeneration in response to stress. In the Arabidopsis primary root apex, stem cell-specific transcription factors BRAVO and WOX5 co-localize in the quiescent centre (QC) cells, where they commonly repress cell division so that these cells can act as a reservoir to replenish surrounding stem cells, yet their molecular connection remains unknown. Genetic and biochemical analysis indicates that BRAVO and WOX5 form a transcription factor complex that modulates gene expression in the QC cells to preserve overall root growth and architecture. Furthermore, by using mathematical modelling we establish that BRAVO uses the WOX5/BRAVO complex to promote WOX5 activity in the stem cells. Our results unveil the importance of transcriptional regulatory circuits in plant stem cell development.
Collapse
Affiliation(s)
- Isabel Betegón‐Putze
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Josep Mercadal
- Departament de Matèria CondensadaFacultat de FísicaUniversitat de BarcelonaBarcelonaSpain
- Universitat de Barcelona Institute of Complex Systems (UBICS)BarcelonaSpain
| | - Nadja Bosch
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Ainoa Planas‐Riverola
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Mar Marquès‐Bueno
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| | - Josep Vilarrasa‐Blasi
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
- Present address:
Department of BiologyStanford UniversityStanfordCAUSA
| | - David Frigola
- Departament de Matèria CondensadaFacultat de FísicaUniversitat de BarcelonaBarcelonaSpain
| | - Rebecca C Burkart
- Institute for Developmental GeneticsHeinrich‐Heine UniversityDüsseldorfGermany
| | - Cristina Martínez
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB)MadridSpain
| | - Ana Conesa
- Microbiology and Cell ScienceInstitute for Food and Agricultural ResearchGenetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Rosangela Sozzani
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Yvonne Stahl
- Institute for Developmental GeneticsHeinrich‐Heine UniversityDüsseldorfGermany
| | - Salomé Prat
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB)MadridSpain
| | - Marta Ibañes
- Departament de Matèria CondensadaFacultat de FísicaUniversitat de BarcelonaBarcelonaSpain
- Universitat de Barcelona Institute of Complex Systems (UBICS)BarcelonaSpain
| | - Ana I Caño‐Delgado
- Department of Molecular GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UB, Campus UAB (Cerdanyola del Vallès)BarcelonaSpain
| |
Collapse
|
10
|
Hwang H, Lee HY, Ryu H, Cho H. Functional Characterization of BRASSINAZOLE-RESISTANT 1 in Panax Ginseng ( PgBZR1) and Brassinosteroid Response during Storage Root Formation. Int J Mol Sci 2020; 21:ijms21249666. [PMID: 33352948 PMCID: PMC7766047 DOI: 10.3390/ijms21249666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
Brassinosteroids (BRs) play crucial roles in the physiology and development of plants. In the model plant Arabidopsis, BR signaling is initiated at the level of membrane receptors, BRASSINOSTEROIDS INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) complex, thus activating the transcription factors (TFs) BRASSINAZOLE RESISTANT 1/BRI1-EMS-SUPPRESSOR 1 (BZR1/BES1) to coordinate BR responsive genes. BRASSINOSTEROIDS INSENSITIVE 2 (BIN2), glycogen synthase kinase 3 (GSK3) like-kinase, negatively regulates BZR1/BES1 transcriptional activity through phosphorylation-dependent cytosolic retention and shuttling. However, it is still unknown whether this mechanism is conserved in Panax ginseng C. A. Mayer, a member of the Araliaceae family, which is a shade-tolerant perennial root crop. Despite its pharmacological and agricultural importance, the role of BR signaling in the development of P. ginseng and characterization of BR signaling components are still elusive. In this study, by utilizing the Arabidopsisbri1 mutant, we found that ectopic expression of the gain of function form of PgBZR1 (Pgbzr1-1D) restores BR deficiency. In detail, ectopic expression of Pgbzr1-1D rescues dwarfism, defects of floral organ development, and hypocotyl elongation of bri1-5, implying the functional conservation of PgBZR1 in P. ginseng. Interestingly, brassinolide (BL) and BRs biosynthesis inhibitor treatment in two-year-old P. ginseng storage root interferes with and promotes, respectively, secondary growth in terms of xylem formation. Altogether, our results provide new insight into the functional conservation and potential diversification of BR signaling and response in P. ginseng.
Collapse
Affiliation(s)
- Hyeona Hwang
- Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Hwa-Yong Lee
- Department of Forest Science, College of Agriculture, Life & Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence: (H.R.); (H.C.)
| | - Hyunwoo Cho
- Department of Industrial Plant Science & Technology, College of Agriculture, Life & Environmental Sciences, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (H.R.); (H.C.)
| |
Collapse
|
11
|
Song B, Zhao H, Dong K, Wang M, Wu S, Li S, Wang Y, Chen P, Jiang L, Tao Y. Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1520-1534. [PMID: 33037720 DOI: 10.1111/tpj.15018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
In dense canopy, a reduction in red to far-red (R/FR) light ratio triggers shade avoidance responses (SARs) in Arabidopsis thaliana, a shade avoiding plant. Two red/far-red (R/FR) light photoreceptors, PHYB and PHYA, were reported to be key negative regulators of the SARs. PHYB represses the SARs under normal light conditions; however, the role of PHYA in the SARs remains elusive. We set up two shade conditions: Shade and strong Shade (s-Shade) with different R/FR ratios (0.7 and 0.1), which allowed us to observe phenotypes dominated by PHYB- and PHYA-mediated pathway, respectively. By comparing the hypocotyl growth under these two conditions with time, we found PHYA was predominantly activated in the s-Shade after prolonged shade treatment. We further showed that under s-Shade, PHYA inhibits hypocotyl elongation partially through repressing the brassinosteroid (BR) pathway. COP1 and PIF4,5 act downstream of PHYA. After prolonged shade treatment, the nuclear localization of COP1 was reduced, while the PIF4 protein level was much lower in the s-Shade than that in Shade. Both changes occurred in a PHYA-dependent manner. We propose that under deep canopy, the R/FR ratio is extremely low, which promotes the nuclear accumulation of PHYA. Activated PHYA reduces COP1 nuclear speckle, which may lead to changes of downstream targets, such as PIF4,5 and HY5. Together, these proteins regulate the BR pathway through modulating BES1/BZR1 and the expression of BR biosynthesis and BR target genes.
Collapse
Affiliation(s)
- Bin Song
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Hongli Zhao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Kangmei Dong
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Meiling Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Shujuan Wu
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Si Li
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuxiang Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Peirui Chen
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Liangrong Jiang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yi Tao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| |
Collapse
|
12
|
Wang L, Hart BE, Khan GA, Cruz ER, Persson S, Wallace IS. Associations between phytohormones and cellulose biosynthesis in land plants. ANNALS OF BOTANY 2020; 126:807-824. [PMID: 32619216 PMCID: PMC7539351 DOI: 10.1093/aob/mcaa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. SCOPE Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. CONCLUSION Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
Collapse
Affiliation(s)
- Liu Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bret E Hart
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | | | - Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
- Department of Chemistry, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
13
|
Lee HG, Won JH, Choi YR, Lee K, Seo PJ. Brassinosteroids Regulate Circadian Oscillation via the BES1/TPL-CCA1/LHY Module in Arabidopsisthaliana. iScience 2020; 23:101528. [PMID: 32947126 PMCID: PMC7502351 DOI: 10.1016/j.isci.2020.101528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023] Open
Abstract
Brassinosteroids (BRs) regulate a variety of physiological processes in plants via extensive crosstalk with diverse biological signaling networks. Although BRs are known to reciprocally regulate circadian oscillation, the molecular mechanism underlying BR-mediated regulation of circadian clock remains unknown. Here, we demonstrate that the BR-activated transcription factor bri1-EMS-SUPPRESSOR 1 (BES1) integrates BR signaling into the circadian network in Arabidopsis. BES1 repressed expression of CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) at night by binding to their promoters, together with TOPLESS (TPL). The repression of CCA1 and LHY by BR treatment, which occurred during the night, was compromised in bes1-ko and tpl-8 mutants. Consistently, long-term treatment with BR shortened the circadian period, and BR-induced rhythmic shortening was impaired in bes1-ko and tpl-8 single mutants and in the cca1-1lhy-21 double mutant. Overall, BR signaling is conveyed to the circadian oscillator via the BES1/TPL-CCA1/LHY module, contributing to gating diurnal BR responses in plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
| | - Jin Hoon Won
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yee-Ram Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Kyounghee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
14
|
Jiang J, Ding AB, Liu F, Zhong X. Linking signaling pathways to histone acetylation dynamics in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5179-5190. [PMID: 32333777 PMCID: PMC7475247 DOI: 10.1093/jxb/eraa202] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 05/04/2023]
Abstract
As sessile organisms, plants face versatile environmental challenges and require proper responses at multiple levels for survival. Epigenetic modification of DNA and histones is a conserved gene-regulatory mechanism and plays critical roles in diverse aspects of biological processes, ranging from genome defense and imprinting to development and physiology. In recent years, emerging studies have revealed the interplay between signaling transduction pathways, epigenetic modifications, and chromatin cascades. Specifically, histone acetylation and deacetylation dictate plant responses to environmental cues by modulating chromatin dynamics to regulate downstream gene expression as signaling outputs. In this review, we summarize current understandings of the link between plant signaling pathways and epigenetic modifications with a focus on histone acetylation and deacetylation.
Collapse
Affiliation(s)
- Jianjun Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Correspondence: or
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Correspondence: or
| |
Collapse
|
15
|
Harvey S, Kumari P, Lapin D, Griebel T, Hickman R, Guo W, Zhang R, Parker JE, Beynon J, Denby K, Steinbrenner J. Downy Mildew effector HaRxL21 interacts with the transcriptional repressor TOPLESS to promote pathogen susceptibility. PLoS Pathog 2020; 16:e1008835. [PMID: 32785253 PMCID: PMC7446885 DOI: 10.1371/journal.ppat.1008835] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/24/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Hyaloperonospora arabidopsidis (Hpa) is an oomycete pathogen causing Arabidopsis downy mildew. Effector proteins secreted from the pathogen into the plant play key roles in promoting infection by suppressing plant immunity and manipulating the host to the pathogen's advantage. One class of oomycete effectors share a conserved 'RxLR' motif critical for their translocation into the host cell. Here we characterize the interaction between an RxLR effector, HaRxL21 (RxL21), and the Arabidopsis transcriptional co-repressor Topless (TPL). We establish that RxL21 and TPL interact via an EAR motif at the C-terminus of the effector, mimicking the host plant mechanism for recruiting TPL to sites of transcriptional repression. We show that this motif, and hence interaction with TPL, is necessary for the virulence function of the effector. Furthermore, we provide evidence that RxL21 uses the interaction with TPL, and its close relative TPL-related 1, to repress plant immunity and enhance host susceptibility to both biotrophic and necrotrophic pathogens.
Collapse
Affiliation(s)
- Sarah Harvey
- Department of Biology, University of York, York, United Kingdom
| | - Priyanka Kumari
- Institut für Phytopathologie, Universität Gießen, Gießen, Germany
| | - Dmitry Lapin
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Cologne, Germany
| | - Thomas Griebel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Dahlem Center of Plant Sciences, Plant Physiology, Freie Universität Berlin, Berlin, Germany
| | - Richard Hickman
- Department of Biology, University of York, York, United Kingdom
| | - Wenbin Guo
- The James Hutton Institute, Invergowrie, Dundee, Scotland United Kingdom
| | - Runxuan Zhang
- The James Hutton Institute, Invergowrie, Dundee, Scotland United Kingdom
| | - Jane E. Parker
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Cologne, Germany
| | - Jim Beynon
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Katherine Denby
- Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|
16
|
Kuhn A, Ramans Harborough S, McLaughlin HM, Natarajan B, Verstraeten I, Friml J, Kepinski S, Østergaard L. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife 2020; 9:51787. [PMID: 32267233 PMCID: PMC7164952 DOI: 10.7554/elife.51787] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hormonal signalling in animals often involves direct transcription factor-hormone interactions that modulate gene expression. In contrast, plant hormone signalling is most commonly based on de-repression via the degradation of transcriptional repressors. Recently, we uncovered a non-canonical signalling mechanism for the plant hormone auxin whereby auxin directly affects the activity of the atypical auxin response factor (ARF), ETTIN towards target genes without the requirement for protein degradation. Here we show that ETTIN directly binds auxin, leading to dissociation from co-repressor proteins of the TOPLESS/TOPLESS-RELATED family followed by histone acetylation and induction of gene expression. This mechanism is reminiscent of animal hormone signalling as it affects the activity towards regulation of target genes and provides the first example of a DNA-bound hormone receptor in plants. Whilst auxin affects canonical ARFs indirectly by facilitating degradation of Aux/IAA repressors, direct ETTIN-auxin interactions allow switching between repressive and de-repressive chromatin states in an instantly-reversible manner.
Collapse
Affiliation(s)
- André Kuhn
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sigurd Ramans Harborough
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Heather M McLaughlin
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Bhavani Natarajan
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Jiří Friml
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Zhang QQ, Wang JG, Wang LY, Wang JF, Wang Q, Yu P, Bai MY, Fan M. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:421-432. [PMID: 31001922 DOI: 10.1111/jipb.12818] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 05/25/2023]
Abstract
The formation of lateral branches has an important and fundamental contribution to the remarkable developmental plasticity of plants, which allows plants to alter their architecture to adapt to the challenging environment conditions. The Gibberellin (GA) phytohormones have been known to regulate the outgrowth of axillary meristems (AMs), but the specific molecular mechanisms remain unclear. Here we show that DELLA proteins regulate axillary bud formation by interacting and regulating the DNA-binding ability of SQUAMOSA-PROMOTER BINDING PROTEIN LIKE 9 (SPL9), a microRNA156-targeted squamosa promoter binding protein-like transcription factor. SPL9 participates in the initial regulation of axillary buds by repressing the expression of LATERAL SUPPRESSOR (LAS), a key regulator in the initiation of AMs, and LAS contributes to the specific expression pattern of the GA deactivation enzyme GA2ox4, which is specifically expressed in the axils of leaves to form a low-GA cell niche in this anatomical region. Nevertheless, increasing GA levels in leaf axils by ectopically expressing the GA-biosynthesis enzyme GA20ox2 significantly impaired axillary meristem initiation. Our study demonstrates that DELLA-SPL9-LAS-GA2ox4 defines a core feedback regulatory module that spatially pattern GA content in the leaf axil and precisely control the axillary bud formation in different spatial and temporal.
Collapse
Affiliation(s)
- Qi-Qi Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jia-Gang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ling-Yan Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jun-Fang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ping Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
18
|
Wolf S. Deviating from the Beaten Track: New Twists in Brassinosteroid Receptor Function. Int J Mol Sci 2020; 21:ijms21051561. [PMID: 32106564 PMCID: PMC7084826 DOI: 10.3390/ijms21051561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
A key feature of plants is their plastic development tailored to the environmental conditions. To integrate environmental signals with genetic growth regulatory programs, plants rely on a number of hormonal pathways, which are intimately connected at multiple levels. Brassinosteroids (BRs), a class of plant sterol hormones, are perceived by cell surface receptors and trigger responses instrumental in tailoring developmental programs to environmental cues. Arguably, BR signalling is one of the best-characterized plant signalling pathways, and the molecular composition of the core signal transduction cascade seems clear. However, BR research continues to reveal new twists to re-shape our view on this key signalling circuit. Here, exciting novel findings pointing to the plasma membrane as a key site for BR signalling modulation and integration with other pathways are reviewed and new inputs into the BR signalling pathway and emerging “non-canonical” functions of the BR receptor complex are highlighted. Together, this new evidence underscores the complexity of plant signalling integration and serves as a reminder that highly-interconnected signalling pathways frequently comprise non-linear aspects which are difficult to convey in classical conceptual models.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Ackerman-Lavert M, Savaldi-Goldstein S. Growth models from a brassinosteroid perspective. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:90-97. [PMID: 31809963 DOI: 10.1016/j.pbi.2019.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 05/19/2023]
Abstract
Plant growth relies on interconnected hormonal pathways, their corresponding transcriptional networks and mechanical signals. This work reviews recent brassinosteroid (BR) studies and integrates them with current growth models derived from research in roots. The relevance of spatiotemporal BR signaling in the longitudinal and radial root axes and its multifaceted interaction with auxin, the impact of BR on final cell size determination and its interplay with microtubules and the cell wall are discussed. Also highlighted are emerging variations of canonical BR signaling that could function in developmental-specific context.
Collapse
|
20
|
Roles of Brassinosteroids in Plant Reproduction. Int J Mol Sci 2020; 21:ijms21030872. [PMID: 32013254 PMCID: PMC7037687 DOI: 10.3390/ijms21030872] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023] Open
Abstract
Brassinosteroids (BRs) are a group of steroid hormones, essentially important for plant development and growth. BR signaling functions to promote cell expansion and cell division, and plays a role in etiolation and reproduction. As the phytohormone originally identified in the pollen grains of Brassica napus, BR promotes the elongation of stigma. Recent studies have revealed that BR is also critical for floral transition, inflorescence stem architecture formation and other aspects of plant reproductive processes. In this review, we focus on the current understanding of BRs in plant reproduction, the spatial and temporal control of BR signaling, and the downstream molecular mechanisms in both the model plant Arabidopsis and crops. The crosstalk of BR with environmental factors and other hormones in reproduction will also be discussed.
Collapse
|
21
|
Martignago D, Rico-Medina A, Blasco-Escámez D, Fontanet-Manzaneque JB, Caño-Delgado AI. Drought Resistance by Engineering Plant Tissue-Specific Responses. FRONTIERS IN PLANT SCIENCE 2020; 10:1676. [PMID: 32038670 PMCID: PMC6987726 DOI: 10.3389/fpls.2019.01676] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Drought is the primary cause of agricultural loss globally, and represents a major threat to food security. Currently, plant biotechnology stands as one of the most promising fields when it comes to developing crops that are able to produce high yields in water-limited conditions. From studies of Arabidopsis thaliana whole plants, the main response mechanisms to drought stress have been uncovered, and multiple drought resistance genes have already been engineered into crops. So far, most plants with enhanced drought resistance have displayed reduced crop yield, meaning that there is still a need to search for novel approaches that can uncouple drought resistance from plant growth. Our laboratory has recently shown that the receptors of brassinosteroid (BR) hormones use tissue-specific pathways to mediate different developmental responses during root growth. In Arabidopsis, we found that increasing BR receptors in the vascular plant tissues confers resistance to drought without penalizing growth, opening up an exceptional opportunity to investigate the mechanisms that confer drought resistance with cellular specificity in plants. In this review, we provide an overview of the most promising phenotypical drought traits that could be improved biotechnologically to obtain drought-tolerant cereals. In addition, we discuss how current genome editing technologies could help to identify and manipulate novel genes that might grant resistance to drought stress. In the upcoming years, we expect that sustainable solutions for enhancing crop production in water-limited environments will be identified through joint efforts.
Collapse
Affiliation(s)
| | | | | | | | - Ana I. Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
22
|
Kim H, Shim D, Moon S, Lee J, Bae W, Choi H, Kim K, Ryu H. Transcriptional network regulation of the brassinosteroid signaling pathway by the BES1-TPL-HDA19 co-repressor complex. PLANTA 2019; 250:1371-1377. [PMID: 31280329 DOI: 10.1007/s00425-019-03233-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/03/2019] [Indexed: 05/26/2023]
Abstract
The brassinosteroid-related BES1 and BZR1 transcription factors dynamically modulate downstream gene networks via the TPL-HDA19 co-repressor complex in BR-signaling pathways in Arabidopsis thaliana. Brassinosteroids (BRs) are plant steroid hormones that are essential for diverse growth and developmental processes across the whole life cycle of plants. In Arabidopsis thaliana, the BR-related transcription factors BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE-RESISTANT 1 (BZR1) regulate a range of global gene expression in response to BR and several external signaling cues; however, the molecular mechanisms by which they mediate the reprogramming of downstream transcription remain unclear. We here report that formation of a protein complex between BES1 and BZR1 and Histone Deacetylase 19 (HDA19) via the conserved ERF-associated amphiphilic repression (EAR) motif proved essential for regulation of BR-signaling-related gene expression. Defects in BR-related functions of BES1 and BZR1 proteins containing a mutated EAR motif were completely rescued by artificial fusion with EAR-repression domain (SRDX), TOPLESS (TPL), or HDA19 proteins. RNA-sequencing analysis of Arabidopsis plants over-expressing bes1-DmEAR or bes1-DmEAR-HDA19 revealed an essential role for HDA19 activity in regulation of BES1/BZR1-mediated BR signaling. In addition to BR-related gene expression, the BES1-HDA19 transcription factor complex was important for abiotic stress-related drought stress tolerance and organ boundary formation. These results suggested that integrating activation of BR-signaling pathways with the formation of the protein complex containing BES1/BZR1 and TPL-HDA19 via the EAR motif was important in fine-tuning BR-related gene networks in plants.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Donghwan Shim
- Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Suyun Moon
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jinsu Lee
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Wonsil Bae
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyunmo Choi
- Department of Forest Bio-Resources, National Institute of Forest Science, Suwon, 16631, Republic of Korea
| | - Kyunghwan Kim
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
23
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
24
|
Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI. Brassinosteroid signaling in plant development and adaptation to stress. Development 2019; 146:146/5/dev151894. [PMID: 30872266 PMCID: PMC6432667 DOI: 10.1242/dev.151894] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brassinosteroids (BRs) are steroid hormones that are essential for plant growth and development. These hormones control the division, elongation and differentiation of various cell types throughout the entire plant life cycle. Our current understanding of the BR signaling pathway has mostly been obtained from studies using Arabidopsis thaliana as a model. In this context, the membrane steroid receptor BRI1 (BRASSINOSTEROID INSENSITIVE 1) binds directly to the BR ligand, triggering a signal cascade in the cytoplasm that leads to the transcription of BR-responsive genes that drive cellular growth. However, recent studies of the primary root have revealed distinct BR signaling pathways in different cell types and have highlighted cell-specific roles for BR signaling in controlling adaptation to stress. In this Review, we summarize our current knowledge of the spatiotemporal control of BR action in plant growth and development, focusing on BR functions in primary root development and growth, in stem cell self-renewal and death, and in plant adaption to environmental stress. Summary: This Review summarizes current knowledge of the spatiotemporal control of brassinosteroid function in plants, focusing on primary root development and growth, stem cell self-renewal and death, and adaptation to environmental stress.
Collapse
Affiliation(s)
- Ainoa Planas-Riverola
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Aditi Gupta
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Isabel Betegón-Putze
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Nadja Bosch
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| |
Collapse
|
25
|
Dissecting the pathways coordinating patterning and growth by plant boundary domains. PLoS Genet 2019; 15:e1007913. [PMID: 30677017 PMCID: PMC6363235 DOI: 10.1371/journal.pgen.1007913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/05/2019] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Boundary domains play important roles during morphogenesis in plants and animals, but how they contribute to patterning and growth coordination in plants is not understood. The CUC genes determine the boundary domains in the aerial part of the plants and, in particular, they have a conserved role in regulating leaf complexity across Angiosperms. Here, we used tooth formation at the Arabidopsis leaf margin controlled by the CUC2 transcription factor to untangle intertwined events during boundary-controlled morphogenesis in plants. Combining conditional restoration of CUC2 function with morphometrics as well as quantification of gene expression and hormone signaling, we first established that tooth morphogenesis involves a patterning phase and a growth phase. These phases can be separated, as patterning requires CUC2 while growth can occur independently of CUC2. Next, we show that CUC2 acts as a trigger to promote growth through the activation of three functional relays. In particular, we show that KLUH acts downstream of CUC2 to modulate auxin response and that expressing KLUH can compensate for deficient CUC2 expression during tooth growth. Together, we reveal a genetic and molecular network that allows coordination of patterning and growth by CUC2-defined boundaries during morphogenesis at the leaf margin. During organogenesis, patterning, the definition of functional subdomains, has to be strictly coordinated with growth. How this is achieved is still an open question. In plants, boundary domains are established between neighboring outgrowing structures and play a role not only in the separation of these structures but also in their formation. To further understand how these boundary domains control morphogenesis, we used as a model system the formation of small teeth along the leaf margin of Arabidopsis, which is controlled by the CUP-SHAPED COTYLEDON2 (CUC2) boundary gene. The CUC genes determine the boundary domains in the aerial part of the plants and in particular they have been shown to have a conserved role in regulating serration and leaflet formation across Angiosperms and thus are at the root of patterning in diverse leaf types. We manipulated the expression of this gene using an inducible gene expression that allowed restoration of CUC2 expression in its own domain at different developmental stages and for different durations, and followed the effects on patterning and growth. Thus, we showed that while CUC2 is required for patterning it is dispensable for sustained growth of the teeth, acting as a trigger for growth by the activation of several functional relays. We further showed that these findings are not specific to the inducible restoration of CUC2 function by analyzing multiple mutants.
Collapse
|
26
|
A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS One 2018; 13:e0201270. [PMID: 30576311 PMCID: PMC6303091 DOI: 10.1371/journal.pone.0201270] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 01/19/2023] Open
Abstract
Yeast two-hybrid (Y2H) is a well-established genetics-based system that uses yeast to selectively display binary protein-protein interactions (PPIs). To meet the current need to unravel complex PPI networks, several adaptations have been made to establish medium- to high-throughput Y2H screening platforms, with several having successfully incorporated the use of the next-generation sequencing (NGS) technology to increase the scale and sensitivity of the method. However, these have been to date mainly restricted to the use of fully annotated custom-made open reading frame (ORF) libraries and subject to complex downstream data processing. Here, a streamlined Y2H library screening strategy, based on integration of Y2H with NGS, called Y2H-seq, was developed, which allows efficient and reliable screening of Y2H cDNA libraries. To generate proof of concept, the method was applied to screen for interaction partners of two key components of the jasmonate signaling machinery in the model plant Arabidopsis thaliana, resulting in the identification of several previously reported as well as hitherto unknown interactors. Our Y2H-seq method offers a user-friendly, specific and sensitive screening method that allows identification of PPIs without prior knowledge of the organism’s ORFs, thereby extending the method to organisms of which the genome has not entirely been annotated yet. The quantitative NGS readout allows to increase genome coverage, thereby overcoming some of the bottlenecks of current Y2H technologies, which will further strengthen the value of the Y2H technology as a discovery platform.
Collapse
|
27
|
Yang J, Liu Y, Yan H, Tian T, You Q, Zhang L, Xu W, Su Z. PlantEAR: Functional Analysis Platform for Plant EAR Motif-Containing Proteins. Front Genet 2018; 9:590. [PMID: 30555515 PMCID: PMC6283911 DOI: 10.3389/fgene.2018.00590] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motifs, which were initially identified in members of the Arabidopsis ethylene response factor (ERF) family, are transcriptional repression motifs in plants and are defined by the consensus sequence patterns of either LxLxL or DLNxxP. EAR motif-containing proteins can function as transcription repressors, thus interacting with co-repressors, such as TOPLESS and AtSAP18, affecting the structure of chromatin by histone modifications and thereby repressing gene transcription. EAR motif-containing proteins are highly conserved across diverse plant species and play important roles in hormone signal transduction, stress responses and development, but they have not been identified in most plants. In this study, we identified 20,542 EAR motif-containing proteins from 71 plant species based on a Hidden Markov Model and orthologous gene search, and then we constructed a functional analysis platform for plant EAR motif-containing proteins (PlantEAR, http://structuralbiology.cau.edu.cn/plantEAR) by integrating a variety of functional annotations and processed data. Several tools were provided as functional support for EAR motif-containing proteins, such as browse, search, co-expression and protein-protein interaction (PPI) network analysis as well as cis-element analysis and gene set enrichment analysis (GSEA). In addition, basing on the identified EAR motif-containing proteins, we also explored their distribution in various species and found that the numbers of EAR motif-containing proteins showed an increasing trend in evolution from algae to angiosperms.
Collapse
Affiliation(s)
- Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Martínez C, Espinosa-Ruíz A, de Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J 2018; 37:embj.201899552. [PMID: 30389669 DOI: 10.15252/embj.201899552] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
The Arabidopsis PIF4 and BES1/BZR1 transcription factors antagonize light signaling by facilitating co-activated expression of a large number of cell wall-loosening and auxin-related genes. While PIF4 directly activates expression of these targets, BES1 and BZR1 activity switch from a repressive to an activator function, depending on interaction with TOPLESS and other families of regulators including PIFs. However, the complexity of this regulation and its role in diurnal control of plant growth and brassinosteroid (BR) levels is little understood. We show by using a protein array that BES1, PIF4, and the BES1-PIF4 complex recognize different DNA elements, thus revealing a distinctive cis-regulatory code beneath BES1-repressive and PIF4 co-activation function. BES1 homodimers bind to conserved BRRE- and G-box elements in the BR biosynthetic promoters and inhibit their expression during the day, while elevated PIF4 competes for BES1 homodimer formation, resulting in de-repressed BR biosynthesis at dawn and in response to warmth. Our findings demonstrate a central role of PIF4 in BR synthesis activation, increased BR levels being essential to thermomorphogenic hypocotyl growth.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Ana Espinosa-Ruíz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Miguel de Lucas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Stella Bernardo-García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | | | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| |
Collapse
|
29
|
Castillo MC, Coego A, Costa-Broseta Á, León J. Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5265-5278. [PMID: 30085082 PMCID: PMC6184486 DOI: 10.1093/jxb/ery286] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/24/2018] [Indexed: 05/03/2023]
Abstract
Plants are often exposed to high levels of nitric oxide (NO) that affects development and stress-triggered responses. However, the way in which plants sense NO is still largely unknown. Here we combine the analysis of early changes in the transcriptome of plants exposed to a short acute pulse of exogenous NO with the identification of transcription factors (TFs) involved in NO sensing. The NO-responsive transcriptome was enriched in hormone homeostasis- and signaling-related genes. To assess events involved in NO sensing in hypocotyls, we used a functional sensing assay based on the NO-induced inhibition of hypocotyl elongation in etiolated seedlings. Hormone-related mutants and the TRANSPLANTA collection of transgenic lines conditionally expressing Arabidopsis TFs were screened for NO-triggered hypocotyl shortening. These approaches allowed the identification of hormone-related TFs, ethylene perception and signaling, strigolactone biosynthesis and signaling, and salicylate production and accumulation that are essential for or modulate hypocotyl NO sensing. Moreover, NO inhibits hypocotyl elongation through the positive and negative regulation of some abscisic acid (ABA) receptors and transcripts encoding brassinosteroid signaling components thereby also implicating these hormones in NO sensing.
Collapse
Affiliation(s)
- Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| |
Collapse
|
30
|
Martínez C, Nieto C, Prat S. Convergent regulation of PIFs and the E3 ligase COP1/SPA1 mediates thermosensory hypocotyl elongation by plant phytochromes. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:188-203. [PMID: 30273926 DOI: 10.1016/j.pbi.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 05/17/2023]
Abstract
The ability of plants to sense and integrate daily and seasonal changes in light and temperature and to adjust their growth and development accordingly, is critical to withstand severe weather oscillations in a year. While molecular mechanisms controlling light responses are relatively well established, those involved in the perception and response to temperature are just beginning to be understood. Phytochromes emerged as major temperature sensors; due to warmer temperatures accelerate the dark reversal reaction to the Pr inactive state. Downstream of phytochromes, the bHLH Phytochrome Interacting Factors, and in particular PIF4, act as central signaling hubs to growth coordination in response to light and temperature cues, and to the gibberellin and brassinosteroid pathways. Here we discuss recent findings showing that phytochromes control PIFs activity not only by signaling their destruction in the light, but by modulating transcriptional repression of these factors by the circadian clock. Together with this repression, phytochromes inactivate the COP1/SPA ubiquitin ligase, which negatively regulates light signaling through degradation of a large set of nuclear photomorphogenesis-promoting factors that suppress PIFs activity.
Collapse
Affiliation(s)
- Cristina Martínez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | - Cristina Nieto
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain
| | - Salomé Prat
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
31
|
The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:561-571. [PMID: 29673687 DOI: 10.1016/j.bbagrm.2018.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/24/2022]
Abstract
BZR1 and BES1 are key transcription factors of brassinosteroid (BR) signaling and represent the integration node of numerous signaling cascades. Their direct target genes have been identified, and BZR1/BES1-DNA interactions have been experimentally verified. Importantly, BZR1/BES1 also integrate different growth and development events via direct protein-protein interactions. For instance, DELLAs, PIFs, ARF6, and PKL, all directly interact with BZR1/BES1, forming a BZR1/BES1-centered regulatory network to coordinate cell elongation. By dissecting various BZR1/BES1-mediated BR responses, the concept that BZR1/BES1 act as an integration hub in multisignal-regulated plant growth and development was developed. The regulation of BZR1/BES1 is dynamic and multifaceted, including phosphorylation status, activity, and stability. Moreover, certain epigenetic modification mechanisms are involved in BZR1/BES1's regulation of gene expression. Herein, we review recent advances in BZR1/BES1-mediated molecular connections between BR and other pathways, highlighting the central role of the BZR1/BES1 interactome in optimizing plant growth and development.
Collapse
|
32
|
Goralogia GS, Liu T, Zhao L, Panipinto PM, Groover ED, Bains YS, Imaizumi T. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:244-262. [PMID: 28752516 PMCID: PMC5634919 DOI: 10.1111/tpj.13649] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 05/18/2023]
Abstract
CYCLING DOF FACTOR 1 (CDF1) and its homologs play an important role in the floral transition by repressing the expression of floral activator genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) in Arabidopsis. The day-length-specific removal of CDF1-dependent repression is a critical mechanism in photoperiodic flowering. However, the mechanism by which CDF1 represses CO and FT transcription remained elusive. Here we demonstrate that Arabidopsis CDF proteins contain non-EAR motif-like conserved domains required for interaction with the TOPLESS (TPL) co-repressor protein. This TPL interaction confers a repressive function on CDF1, as mutations of the N-terminal TPL binding domain largely impair the ability of CDF1 protein to repress its targets. TPL proteins are present on specific regions of the CO and FT promoters where CDF1 binds during the morning. In addition, TPL binding increases when CDF1 expression is elevated, suggesting that TPL is recruited to these promoters in a time-dependent fashion by CDFs. Moreover, reduction of TPL activity induced by expressing a dominant negative version of TPL (tpl-1) in phloem companion cells results in early flowering and a decreased sensitivity to photoperiod in a manner similar to a cdf loss-of-function mutant. Our results indicate that the mechanism of CDF1 repression is through the formation of a CDF-TPL transcriptional complex, which reduces the expression levels of CO and FT during the morning for seasonal flowering.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Tongkun Liu
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Zhao
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Paul M. Panipinto
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Evan D. Groover
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Yashkarn S. Bains
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- For correspondence:
| |
Collapse
|
33
|
Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochem J 2017; 474:2641-2661. [PMID: 28751549 DOI: 10.1042/bcj20160633] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Plants are faced with a barrage of stresses in their environment and must constantly balance their growth and survival. As such, plants have evolved complex control systems that perceive and respond to external and internal stimuli in order to optimize these responses, many of which are mediated by signaling molecules such as phytohormones. One such class of molecules called Brassinosteroids (BRs) are an important group of plant steroid hormones involved in numerous aspects of plant life including growth, development and response to various stresses. The molecular determinants of the BR signaling pathway have been extensively defined, starting with the membrane-localized receptor BRI1 and co-receptor BAK1 and ultimately culminating in the activation of BES1/BZR1 family transcription factors, which direct a transcriptional network controlling the expression of thousands of genes enabling BRs to influence growth and stress programs. Here, we highlight recent progress in understanding the relationship between the BR pathway and plant stress responses and provide an integrated view of the mechanisms mediating cross-talk between BR and stress signaling.
Collapse
|
34
|
Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proc Natl Acad Sci U S A 2017; 114:8107-8112. [PMID: 28698367 DOI: 10.1073/pnas.1703054114] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcriptional repression involves a class of proteins called corepressors that link transcription factors to chromatin remodeling complexes. In plants such as Arabidopsis thaliana, the most prominent corepressor is TOPLESS (TPL), which plays a key role in hormone signaling and development. Here we present the crystallographic structure of the Arabidopsis TPL N-terminal region comprising the LisH and CTLH (C-terminal to LisH) domains and a newly identified third region, which corresponds to a CRA domain. Comparing the structure of TPL with the mammalian TBL1, which shares a similar domain structure and performs a parallel corepressor function, revealed that the plant TPLs have evolved a new tetramerization interface and unique and highly conserved surface for interaction with repressors. Using site-directed mutagenesis, we validated those surfaces in vitro and in vivo and showed that TPL tetramerization and repressor binding are interdependent. Our results illustrate how evolution used a common set of protein domains to create a diversity of corepressors, achieving similar properties with different molecular solutions.
Collapse
|