1
|
Latour YL, Allaman MM, Barry DP, Smith TM, Williams KJ, McNamara KM, Jacobse J, Goettel JA, Delgado AG, Piazuelo MB, Zhao S, Gobert AP, Wilson KT. Epithelial talin-1 protects mice from citrobacter rodentium-induced colitis by restricting bacterial crypt intrusion and enhancing t cell immunity. Gut Microbes 2023; 15:2192623. [PMID: 36951501 PMCID: PMC10038039 DOI: 10.1080/19490976.2023.2192623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Pathogenic enteric Escherichia coli present a significant burden to global health. Food-borne enteropathogenic E. coli (EPEC) and Shiga toxin-producing E. coli (STEC) utilize attaching and effacing (A/E) lesions and actin-dense pedestal formation to colonize the gastrointestinal tract. Talin-1 is a large structural protein that links the actin cytoskeleton to the extracellular matrix though direct influence on integrins. Here we show that mice lacking talin-1 in intestinal epithelial cells (Tln1Δepi) have heightened susceptibility to colonic disease caused by the A/E murine pathogen Citrobacter rodentium. Tln1Δepi mice exhibit decreased survival, and increased colonization, colon weight, and histologic colitis compared to littermate Tln1fl/fl controls. These findings were associated with decreased actin polymerization and increased infiltration of innate myeloperoxidase-expressing immune cells, confirmed as neutrophils by flow cytometry, but more bacterial dissemination deep into colonic crypts. Further evaluation of the immune population recruited to the mucosa in response to C. rodentium revealed that loss of Tln1 in colonic epithelial cells (CECs) results in impaired recruitment and activation of T cells. C. rodentium infection-induced colonic mucosal hyperplasia was exacerbated in Tln1Δepi mice compared to littermate controls. We demonstrate that this is associated with decreased CEC apoptosis and crowding of proliferating cells in the base of the glands. Taken together, talin-1 expression by CECs is important in the regulation of both epithelial renewal and the inflammatory T cell response in the setting of colitis caused by C. rodentium, suggesting that this protein functions in CECs to limit, rather than contribute to the pathogenesis of this enteric infection.
Collapse
Affiliation(s)
- Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret M. Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thaddeus M. Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kamery J. Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M. McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
2
|
Yamaguchi N, Knaut H. Focal adhesion-mediated cell anchoring and migration: from in vitro to in vivo. Development 2022; 149:dev200647. [PMID: 35587444 PMCID: PMC9188754 DOI: 10.1242/dev.200647] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.
Collapse
Affiliation(s)
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Protein expression reveals a molecular sexual identity of avian primordial germ cells at pre-gonadal stages. Sci Rep 2021; 11:19236. [PMID: 34584135 PMCID: PMC8478952 DOI: 10.1038/s41598-021-98454-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022] Open
Abstract
In poultry, in vitro propagated primordial germ cells (PGCs) represent an important tool for the cryopreservation of avian genetic resources. However, several studies have highlighted sexual differences exhibited by PGCs during in vitro propagation, which may compromise their reproductive capacities. To understand this phenomenon, we compared the proteome of pregonadal migratory male (ZZ) and female (ZW) chicken PGCs propagated in vitro by quantitative proteomic analysis using a GeLC-MS/MS strategy. Many proteins were found to be differentially abundant in chicken male and female PGCs indicating their early sexual identity. Many of the proteins more highly expressed in male PGCs were encoded by genes localised to the Z sex chromosome. This suggests that the known lack of dosage compensation of the transcription of Z-linked genes between sexes persists at the protein level in PGCs, and that this may be a key factor of their autonomous sex differentiation. We also found that globally, protein differences do not closely correlate with transcript differences indicating a selective translational mechanism in PGCs. Male and female PGC expressed protein sets were associated with differential biological processes and contained proteins known to be biologically relevant for male and female germ cell development, respectively. We also discovered that female PGCs have a higher capacity to uptake proteins from the cell culture medium than male PGCs. This study presents the first evidence of an early predetermined sex specific cell fate of chicken PGCs and their sexual molecular specificities which will enable the development of more precise sex-specific in vitro culture conditions for the preservation of avian genetic resources.
Collapse
|
4
|
Han SJ, Azarova EV, Whitewood AJ, Bachir A, Guttierrez E, Groisman A, Horwitz AR, Goult BT, Dean KM, Danuser G. Pre-complexation of talin and vinculin without tension is required for efficient nascent adhesion maturation. eLife 2021; 10:66151. [PMID: 33783351 PMCID: PMC8009661 DOI: 10.7554/elife.66151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Talin and vinculin are mechanosensitive proteins that are recruited early to integrin-based nascent adhesions (NAs). In two epithelial cell systems with well-delineated NA formation, we find these molecules concurrently recruited to the subclass of NAs maturing to focal adhesions. After the initial recruitment under minimal load, vinculin accumulates in maturing NAs at a ~ fivefold higher rate than in non-maturing NAs, and is accompanied by a faster traction force increase. We identify the R8 domain in talin, which exposes a vinculin-binding-site (VBS) in the absence of load, as required for NA maturation. Disruption of R8 domain function reduces load-free vinculin binding to talin, and reduces the rate of additional vinculin recruitment. Taken together, these data show that the concurrent recruitment of talin and vinculin prior to mechanical engagement with integrins is essential for the traction-mediated unfolding of talin, exposure of additional VBSs, further recruitment of vinculin, and ultimately, NA maturation.
Collapse
Affiliation(s)
- Sangyoon J Han
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biomedical Engineering, Michigan Technological University, Houghton, United States
| | - Evgenia V Azarova
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | | | - Alexia Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Edgar Guttierrez
- Department of Physics, University of California San Diego, San Diego, United States
| | - Alex Groisman
- Department of Physics, University of California San Diego, San Diego, United States
| | - Alan R Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
5
|
Lee JM, Ko Y, Lee CH, Jeon N, Lee KH, Oh J, Kronbichler A, Saleem MA, Lim BJ, Shin JI. The Effect of Interleukin-4 and Dexamethasone on RNA-Seq-Based Transcriptomic Profiling of Human Podocytes: A Potential Role in Minimal Change Nephrotic Syndrome. J Clin Med 2021; 10:jcm10030496. [PMID: 33535372 PMCID: PMC7866993 DOI: 10.3390/jcm10030496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Interleukin-4 (IL-4) expression is implicated in the pathogenesis of nephrotic syndrome (NS). This study aimed to investigate the changes in the transcriptomes of human podocytes induced by IL-4 treatment and to analyze whether these changes could be affected by simultaneous steroid treatment. Three groups of human podocytes were treated with control, IL-4, and IL-4 plus dexamethasone (DEX), respectively. We performed whole-transcriptome sequencing to identify differentially expressed genes (DEGs) between the groups. We investigated relevant biological pathways using Gene Ontology (GO) enrichment analyses. We also attempted to compare and validate the DEGs with the genes listed in PodNet, a literature-based database on mouse podocyte genes. A total of 176 genes were differentially expressed among the three groups. GO analyses showed that pathways related to cytoskeleton organization and cell signaling were significantly enriched. Among them, 24 genes were listed in PodNet, and 12 of them were previously reported to be associated with IL-4-induced changes in human podocytes. Of the 12 genes, the expression levels of BMP4, RARB, and PLCE1 were reversed when podocytes were simultaneously treated with DEX. In conclusion, this study explored changes in the transcriptome profiles of human podocytes treated with IL-4. Few genes were reported in previous studies and were previously validated in experiments with human podocytes. We speculate that IL-4 may exert pathogenic effects on the transcriptome of human podocytes, and a few genes may be involved in the pathogenesis.
Collapse
Affiliation(s)
- Jiwon M. Lee
- Department of Pediatrics, Chungnam National University Hospital and College of Medicine, Daejeon 35015, Korea;
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 17035, Korea;
| | - Chul Ho Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.L.); (K.H.L.)
- Division of Clinical Genetics, Severance Children’s Hospital, Seoul 03722, Korea
| | - Nara Jeon
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.L.); (K.H.L.)
| | - Jun Oh
- Department of Pediatrics, University Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Moin A. Saleem
- Children’s and Renal Unit and Bristol Renal, University of Bristol, Bristol BS2 8BJ, UK;
| | - Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: (B.J.L.); (J.I.S.)
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (C.H.L.); (K.H.L.)
- Division of Pediatric Nephrology, Severance Children’s Hospital, Seoul 03722, Korea
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (B.J.L.); (J.I.S.)
| |
Collapse
|
6
|
Abstract
The Vanderbilt O'Brien Kidney Center (VOKC) is one of the eight National Institutes of Health P30-funded centers in the United States. The mission of these core-based centers is to provide technical and conceptual support to enhance and facilitate research in the field of kidney diseases. The goal of the VOKC is to provide support to understand mechanisms and identify potential therapies for acute and chronic kidney disease. The services provided by the VOKC are meant to help the scientific community to have the right support and tools as well as to select the right animal model, statistical analysis, and clinical study design to perform innovative research and translate discoveries into personalized care to prevent, diagnose, and cure kidney disease. To achieve these goals, the VOKC has in place a program to foster collaborative investigation into critical questions of kidney disease, to personalize diagnosis and treatment of kidney disease, and to disseminate information about kidney disease and the benefits of VOKC services and research. The VOKC is complemented by state-of-the-art cores and an education and outreach program whose goals are to provide an educational platform to enhance the study of kidney disease, to publicize information about services available through the VOKC, and to provide information about kidney disease to patients and other interested members of the community. In this review, we highlight the major services and contributions of the VOKC.
Collapse
Affiliation(s)
- Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Veterans Affairs, Nashville, Tennessee
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
7
|
Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB. From podocyte biology to novel cures for glomerular disease. Kidney Int 2019; 96:850-861. [PMID: 31420194 DOI: 10.1016/j.kint.2019.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The podocyte is a key component of the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including diabetic nephropathy, glomerulonephritis and genetic forms of nephrotic syndrome. Collectively, these conditions affect millions of people worldwide, and account for the majority of kidney diseases requiring dialysis and transplantation. The 12th International Podocyte Conference was held in Montreal, Canada from May 30 to June 2, 2018. The primary aim of this conference was to bring together nephrologists, clinician scientists, basic scientists and their trainees from all over the world to present their research and to establish networks with the common goal of developing new therapies for glomerular diseases based on the latest advances in podocyte biology. This review briefly highlights recent advances made in understanding podocyte structure and metabolism, experimental systems in which to study podocytes and glomerular disease, disease mediators, genetic and immune origins of glomerulopathies, and the development of novel therapeutic agents to protect podocyte and glomerular injury.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Paul R Goodyer
- Department of Pediatrics, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S 1155, and Nephrology and Dialysis Department, Hôpital Tenon, Paris France
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Volckaert T, Yuan T, Yuan J, Boateng E, Hopkins S, Zhang JS, Thannickal VJ, Fässler R, De Langhe SP. Hippo signaling promotes lung epithelial lineage commitment by curbing Fgf10 and β-catenin signaling. Development 2019; 146:146/2/dev166454. [PMID: 30651296 DOI: 10.1242/dev.166454] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022]
Abstract
Organ growth and tissue homeostasis rely on the proliferation and differentiation of progenitor cell populations. In the developing lung, localized Fgf10 expression maintains distal Sox9-expressing epithelial progenitors and promotes basal cell differentiation in the cartilaginous airways. Mesenchymal Fgf10 expression is induced by Wnt signaling but inhibited by Shh signaling, and epithelial Fgf10 signaling activates β-catenin signaling. The Hippo pathway is a well-conserved signaling cascade that regulates organ size and stem/progenitor cell behavior. Here, we show that Hippo signaling promotes lineage commitment of lung epithelial progenitors by curbing Fgf10 and β-catenin signaling. Our findings show that both inactivation of the Hippo pathway (nuclear Yap) or ablation of Yap result in increased β-catenin and Fgf10 signaling, suggesting a cytoplasmic role for Yap in epithelial lineage commitment. We further demonstrate redundant and non-redundant functions for the two nuclear effectors of the Hippo pathway, Yap and Taz, during lung development.
Collapse
Affiliation(s)
- Thomas Volckaert
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Tingting Yuan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Jie Yuan
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Eistine Boateng
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Seantel Hopkins
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Jin-San Zhang
- School of Pharmaceutical Sciences and the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, AL 35294, USA
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stijn P De Langhe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|