1
|
Konopová B. Evolution of insect metamorphosis - an update. CURRENT OPINION IN INSECT SCIENCE 2024:101289. [PMID: 39490982 DOI: 10.1016/j.cois.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Metamorphosis endowed the insects with properties that enabled them to conquer the Earth. It is a hormonally controlled morphogenetic process that transforms the larva into the adult. Metamorphosis appeared with the origin of wings and flight. The sesquiterpenoid juvenile hormone (JH) suppresses wing morphogenesis and ensures that metamorphosis takes place in the right ontogenetic time. This review explores the origin of insect metamorphosis and the ancestral function of JH. Fossil record shows that the first Paleozoic winged insects had (hemimetabolous) metamorphosis and their larvae were likely aquatic. In the primitive wingless silverfish that lacks metamorphosis JH is essential for late embryogenesis and reproduction. JH production after the embryo dorsal closure promotes hatching and terminal tissue maturation.
Collapse
Affiliation(s)
- Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Lv YN, Zeng M, Yan ZY, Zhang PY, Ban N, Yuan DW, Li S, Luan YX, Bai Y. Juvenile hormone signaling is indispensable for late embryogenesis in ametabolous and hemimetabolous insects. BMC Biol 2024; 22:232. [PMID: 39394161 PMCID: PMC11470741 DOI: 10.1186/s12915-024-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Juvenile hormone (JH) is an insect-exclusive hormone involved in regulating diverse aspects of insect physiology, and the evolution of its diverse function is widely interesting. Studying embryogenesis in basal wingless insects is important to understand the functional evolution of JH; however, experimental studies in this regard are scarce. In this study, we conducted CRISPR/Cas9-mediated knockout (KO) of genes involved in JH biosynthesis and signaling cascades in the ametabolous firebrat, Thermobia domestica. Additionally, we investigated whether the primitive action of JH is conserved in the hemimetabolous cricket, Gryllus bimaculatus. RESULTS We observed that KO of JHAMT, CYP15A1, Met, and Kr-h1 resulted in embryonic lethality in T. domestica. Deprivation of JH or JH signaling arrested the progression of extraembryonic fluid resorption after dorsal closure and hatching, which is consistent with the gene expression pattern showing high Kr-h1 expression in the late embryos of T. domestica. The embryos deficient in JH signaling displayed wrinkled and weak legs. Comparative transcriptome analysis revealed that JH signaling promotes embryonic leg maturation through inducing energy supply and muscle activity, as validated by transmission electron microscopy (TEM). In addition, JH signaling exhibited similar embryonic effects in G. bimaculatus. CONCLUSIONS This study reveals the indispensable role of JH signaling in facilitating the maturation of terminal tissues during late embryogenesis, as demonstrated by the regulation of leg development, in ametabolous and hemimetabolous insects. These findings further indicate that the embryonic functions of JH evolved earlier than its anti-metamorphic functions during postembryonic development.
Collapse
Affiliation(s)
- Ya-Nan Lv
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Zi-Yu Yan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Pei-Yan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Ning Ban
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yun-Xia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510000, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514000, China.
| |
Collapse
|
3
|
Truman JW, Riddiford LM, Konopova B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. eLife 2024; 12:RP92643. [PMID: 38568859 PMCID: PMC10994664 DOI: 10.7554/elife.92643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Barbora Konopova
- Department of Zoology, Faculty of Science, University of South BohemiaCeske BudejoviceCzech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and BSI, Florida International UniversityMiamiUnited States
- Department of Parasitology, Faculty of Science, University of South BohemiaCeské BudejoviceCzech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| |
Collapse
|
4
|
Truman JW, Riddiford LM, Konopová B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561279. [PMID: 37873170 PMCID: PMC10592639 DOI: 10.1101/2023.10.06.561279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Lynn M. Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Barbora Konopová
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and BSI, Florida International University, FL ,USA
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceské Budejovice, Czech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| |
Collapse
|
5
|
Zhao J, Tan Y, Jiang Y, Zhu-Salzman K, Xiao L. CRISPR/Cas9-mediated methoprene-tolerant 1 knockout results in precocious metamorphosis of beet armyworm (Spodoptera exigua) only at the late larval stage. INSECT MOLECULAR BIOLOGY 2023; 32:132-142. [PMID: 36371609 DOI: 10.1111/imb.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormone (JH) controls almost every aspect of an insect, especially metamorphosis. Since RNA interference works on transcripts and is often insufficient in Lepidoptera, how JH affects larval development in these insects is not well studied. Using the CRISPR/Cas9 technique, we knocked out Spodoptera exigua methoprene-tolerant 1 (SeMet1) gene of beet armyworm by modifying two sites in the coding region. However, SeMet1 knockout did not affect egg hatch rate or larval development at L1-L3 stages. In contrast to the consistent five larval instars of the control group, L4 SeMet1 mutants began to show signs of precocious metamorphosis, that is, small patches of pupal cuticle. Most L4 and all L5 SeMet1 mutants died for failing to shed their mosaic cuticles. RNA-seq indicated that most genes encoding pupal cuticle proteins and chitinase genes were altered in SeMet1 mutant L4 larvae. SeKr-h1, a key transcription factor in JH action was significantly down-regulated in L3-L5 larvae, while SeBR-C, a pupal indicator was only upregulated in L4-L5 larvae. These results suggested that S. exigua larvae may initially develop independently of JH, and involve SeMet1 in transducing JH signalling, leading to controlled larval metamorphosis at the late larval stage. We believe our findings will enhance better understanding of JH regulation of larval development.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A & MUniversity, College Station, Texas, USA
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
6
|
Leyria J, Orchard I, Lange AB. Impact of JH Signaling on Reproductive Physiology of the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 23:ijms232213832. [PMID: 36430311 PMCID: PMC9692686 DOI: 10.3390/ijms232213832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago.
Collapse
|
7
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
8
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|
9
|
Epoxidation of juvenile hormone was a key innovation improving insect reproductive fitness. Proc Natl Acad Sci U S A 2021; 118:2109381118. [PMID: 34697248 DOI: 10.1073/pnas.2109381118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Methyl farnesoate (MF) plays hormonal regulatory roles in crustaceans. An epoxidated form of MF, known as juvenile hormone (JH), controls metamorphosis and stimulates reproduction in insects. To address the evolutionary significance of MF epoxidation, we generated mosquitoes completely lacking either of the two enzymes that catalyze the last steps of MF/JH biosynthesis and epoxidation, respectively: the JH acid methyltransferase (JHAMT) and the P450 epoxidase CYP15 (EPOX). jhamt -/- larvae lacking both MF and JH died at the onset of metamorphosis. Strikingly, epox -/- mutants, which synthesized MF but no JH, completed the entire life cycle. While epox -/- adults were fertile, the reproductive performance of both sexes was dramatically reduced. Our results suggest that although MF can substitute for the absence of JH in mosquitoes, it is with a significant fitness cost. We propose that MF can fulfill most roles of JH, but its epoxidation to JH was a key innovation providing insects with a reproductive advantage.
Collapse
|
10
|
Naruse S, Ogino M, Nakagawa T, Yasuno Y, Jouraku A, Shiotsuki T, Shinada T, Miura K, Minakuchi C. Ovicidal activity of juvenile hormone mimics in the bean bug, Riptortus pedestris. JOURNAL OF PESTICIDE SCIENCE 2021; 46:60-67. [PMID: 33746547 PMCID: PMC7953026 DOI: 10.1584/jpestics.d20-075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Insect juvenile hormone (JH) mimics (JHMs) are known to have ovicidal effects if applied to adult females or eggs. Here, we examined the effects of exogenous JHMs on embryonic development of the bean bug, Riptortus pedestris. The expression profiles of JH early response genes and JH biosynthetic enzymes indicated that JH titer was low for the first 3 days of the egg stage and increased thereafter. Application of JH III skipped bisepoxide (JHSB3) or JHM on Day 0 eggs when JH titer was low caused reduced hatchability, and the embryos mainly arrested in mid- or late embryonic stage. Application of JHMs on Day 5 eggs also resulted in an arrest, but this was less effective compared with Day 0 treatment. Interestingly, ovicidal activity of synthetic JHMs was much lower than that of JHSB3. This study will contribute to developing novel insecticides that are selective among insect species.
Collapse
Affiliation(s)
- Shouya Naruse
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan
| | - Mayuko Ogino
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan
| | - Takao Nakagawa
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, Osaka 558–8585, Japan
| | - Akiya Jouraku
- National Agriculture and Food Research Organization, Tsukuba 305–8634, Japan
| | - Takahiro Shiotsuki
- National Agriculture and Food Research Organization, Tsukuba 305–8634, Japan
- Faculty of Life and Environmental Science, Shimane University, Matsue 690–8504, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Osaka 558–8585, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan
| | - Chieka Minakuchi
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464–8601, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Ventós-Alfonso A, Ylla G, Montañes JC, Belles X. DNMT1 Promotes Genome Methylation and Early Embryo Development in Cockroaches. iScience 2020; 23:101778. [PMID: 33294787 PMCID: PMC7691181 DOI: 10.1016/j.isci.2020.101778] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/08/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
The influence of DNA methylation on gene behavior and its consequent phenotypic effects appear to be very important, but the details are not well understood. Insects offer a diversity of DNA methylation modes, making them an excellent lineage for comparative analyses. However, functional studies have tended to focus on quite specialized holometabolan species, such as wasps, bees, beetles, and flies. Here, we have studied DNA methylation in the hemimetabolan insect Blattella germanica. In this cockroach, a gene involved in DNA methylation, DNA methyltransferase 1 (DNMT1), is expressed in early embryogenesis. In our experiments, RNAi of DNMT1 reduces DNA methylation and impairs blastoderm formation. Using reduced representation bisulfite sequencing and transcriptome analyses, we observed that methylated genes are associated with metabolism and are highly expressed, whereas unmethylated genes are related to signaling and show low expression. Moreover, methylated genes show greater expression change and less expression variability than unmethylated genes.
Collapse
Affiliation(s)
- Alba Ventós-Alfonso
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| | - Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| | - Jose-Carlos Montañes
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003, Barcelona, Spain
| |
Collapse
|
12
|
Adhitama N, Kato Y, Matsuura T, Watanabe H. Roles of and cross-talk between ecdysteroid and sesquiterpenoid pathways in embryogenesis of branchiopod crustacean Daphnia magna. PLoS One 2020; 15:e0239893. [PMID: 33035251 PMCID: PMC7546464 DOI: 10.1371/journal.pone.0239893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 11/19/2022] Open
Abstract
The ecdysteroid and sesquiterpenoid pathways control growth, developmental transition, and embryogenesis in insects. However, the function of orthologous genes and the cross-talk between both pathways remain largely uncharacterized in non-insect arthropods. Spook (Spo) and Juvenile hormone acid o-methyltransferase (Jhamt) have been suggested to function as rate-limiting factors in ecdysteroid and sesquiterpenoid biosynthesis, respectively, in insects. In this study, we report on the functions of Spo and Jhamt and the cross-talk between them in embryos of the branchiopod crustacean Daphnia magna. Spo expression was activated at the onset of gastrulation, with the depletion of Spo transcript by RNAi resulting in developmental arrest at this stage. This phenotype could be partially rescued by supplementation with 20-hydroxyecdysone, indicating that Spo may play the same role in ecdysteroid biosynthesis in early embryos, as reported in insects. After hatching, Spo expression was repressed, while Jhamt expression was activated transiently, despite its silencing during other embryonic stages. Jhamt RNAi showed little effect on survival, but shortened the embryonic period. Exposure to the sesquiterpenoid analog Fenoxycarb extended the embryonic period and rescued the Jhamt RNAi phenotype, demonstrating a previously unidentified role of sesquiterpenoid in the repression of precocious embryogenesis. Interestingly, the knockdown of Jhamt resulted in the derepression of ecdysteroid biosynthesis genes, including Spo, similar to regulation during insect hormonal biosynthesis. Sesquiterpenoid signaling via the Methoprene-tolerant gene was found to be responsible for the repression of ecdysteroid biosynthesis genes. It upregulated an ortholog of CYP18a1 that degrades ecdysteroid in insects. These results illuminate the conserved and specific functions of the ecdysteroid and sesquiterpenoid pathways in Daphnia embryos. We also infer that the common ancestor of branchiopod crustaceans and insects exhibited antagonism between the two endocrine hormones before their divergence 400 million years ago.
Collapse
Affiliation(s)
- Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Biotechnology Global Human Resource Development Program, Division of Advanced Science and Biotechnology, Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Frontier Research Base of Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Sun SQ, Wang NM, Li JJ, Jin MH, Xue CB. Reduced fecundity and regulation of reproductive factors in flubendiamide-resistant strains of Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104668. [PMID: 32828374 DOI: 10.1016/j.pestbp.2020.104668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Diamondback moth (DBM), Plutella xylostella, is an important pest of crucifers worldwide. The extensive use of flubendiamide has led to the development of resistance in field populations and reports of control failures. In this study, the lab-selected (Rf) and field-collected (Rb) flubendiamide-resistant strains of P. xylostella with LC50 resistance ratios of 1890-fold and 1251-fold, respectively, were used, as well as a lab-reared flubendiamide-susceptible strain (S). The results showed that the fecundity of the Rf and Rb-resistant strains was significantly lower than that of S strain. The contents of vitellin and transcripts of P. xylostella vitellogenin (PxVg) and P. xylostella vitellogenin receptor (PxVgR) genes in the Rf and Rb strains were significantly higher than those of S strains at 0-48 h after adult eclosion. At 96 h after eclosion, the content of vitellin in the Rf and Rb strains did not differ significantly from those of S strains, whereas transcripts of the PxVg and PxVgR genes in the Rf and Rb strains were significantly lower than that of the S strain. The content of the juvenile hormone III (JH III), β-ecdysone (20E), and the gene expression level of P. xylostella methoprene tolerant (PxMet) in the Rf and Rb strains were significantly higher than that of the S strain. The activity of trehalase was significantly higher in the Rf and Rb strains than that of the S strain in the first to the third instar larvae, whereas in the fourth instar larvae, there was no significantly difference in the three strains. At different times after adult eclosion, the differences in trehalase activity were erratic between the strains. The transcripts of P. xylostella trehalase (PxTre) gene in the Rf and Rb strains were significantly higher than that of the S strain in most developmental stages. Here, we report differences in fecundity between flubendiamide-resistant and susceptible strains of P. xylostella and discuss gene expression of several reproductive factors, which provides a possible explanation for the mechanism of fecundity reduction concurrent with flubendiamide-resistance in P. xylostella.
Collapse
Affiliation(s)
- Shi-Qing Sun
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Nian-Meng Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jing-Jing Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ming-Hui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Chao-Bin Xue
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
14
|
Abstract
The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|
15
|
Sarwar PF, McDonald IR, Wang VR, Suzuki Y. The POU factor Ventral veins lacking regulates ecdysone and juvenile hormone biosynthesis during development and reproduction of the milkweed bug, Oncopeltus fasciatus. Dev Biol 2020; 459:181-193. [PMID: 31812605 DOI: 10.1016/j.ydbio.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Recent studies have demonstrated endocrine roles for the POU domain transcription factor Ventral veins lacking (Vvl) during larval development of holometabolous insects - insects that undergo complete metamorphosis. In this study, the role of Vvl was examined in the milkweed bug, Oncopeltus fasciatus, a hemimetabolous insect. In the embryos, vvl was found to be expressed in the presumptive prothoracic glands. When vvl expression was knocked down using RNA interference (RNAi), embryos arrested their development after dorsal closure. Vvl double-stranded RNA (dsRNA)-injected nymphs failed to molt and had reduced expression of the ecdysone response gene, hormone receptor 3 (HR3), the ecdysone biosynthesis genes, disembodied and spook, and the juvenile hormone (JH) response gene, Krüppel homolog 1 (Kr-h1). Injection of 20-hydroxyecdysone rescued the molting phenotype and HR3 expression in vvl knockdown nymphs. In adults, vvl RNAi inhibited egg laying and suppressed the expression of Kr-h1 and vitellogenin in the fat body. Application of JH III or methoprene restored oviposition in vvl knockdown adults, indicating that Vvl regulates JH biosynthesis during reproduction. Thus, Vvl functions as a critical regulator of hormone biosynthesis throughout all developmental stages of O. fasciatus. Our study demonstrates that Vvl is a critical transcription factor involved in JH and ecdysteroid biosynthesis in both hemimetabolous and holometabolous insects.
Collapse
|
16
|
Naruse S, Washidu Y, Miura K, Shinoda T, Minakuchi C. Methoprene-tolerant is essential for embryonic development of the red flour beetle Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104017. [PMID: 31972216 DOI: 10.1016/j.jinsphys.2020.104017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Insect juvenile hormone (JH) is well known to regulate post-embryonic development and reproduction in concert with ecdysteroids in a variety of insect species. In contrast, our knowledge on the role of JH in embryonic development is limited and inconsistent. Preceding studies indicate that JH biosynthesis or JH signaling genes are dispensable in holometabolous Drosophila melanogaster and Bombyx mori, while essential in hemimetabolous Blattella germanica. In the red flour beetle Tribolium castaneum, we performed functional analyses of key factors in JH signaling, i.e. the JH receptor Methoprene-tolerant (Met) and the early JH-response gene Krüppel homolog 1 (Kr-h1) using parental RNA interference. Knockdown of Met resulted in a significant reduction in hatching rates and survival rates in the first and second larval instars. Meanwhile, knockdown of Kr-h1 caused no significant effect on hatching or survival. The unhatched embryos under Met knockdown developed up to the late embryonic stage, but their body shape was flat and tubby compared with the controls. Attempts to suppress JH biosynthesis by parental RNA interference of JH biosynthetic enzymes were unsuccessful due to insufficient knockdown efficiency. These results suggested that Met but not Kr-h1 is essential for the embryonic development of T. castaneum, although involvement of JH still remains to be examined. Taken together, the function of Met in embryonic development seems to be diverse among insect species.
Collapse
Affiliation(s)
- Shouya Naruse
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Yumiko Washidu
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Ken Miura
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Tetsuro Shinoda
- National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba 305-8634, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Chieka Minakuchi
- Applied Entomology Laboratory, Graduate School of Bio-Agricultural Sciences, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan; National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba 305-8634, Japan.
| |
Collapse
|
17
|
Jindra M. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190064. [PMID: 31438814 DOI: 10.1098/rstb.2019.0064] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insect metamorphosis boasts spectacular cases of postembryonic development when juveniles undergo massive morphogenesis before attaining the adult form and function; in moths or flies the larvae do not even remotely resemble their adult parents. A selective advantage of complete metamorphosis (holometaboly) is that within one species the two forms with different lifestyles can exploit diverse habitats. It was the environmental adaptation and specialization of larvae, primarily the delay and internalization of wing development, that eventually required an intermediate stage that we call a pupa. It is a long-held and parsimonious hypothesis that the holometabolous pupa evolved through modification of a final juvenile stage of an ancestor developing through incomplete metamorphosis (hemimetaboly). Alternative hypotheses see the pupa as an equivalent of all hemimetabolous moulting cycles (instars) collapsed into one, and consider any preceding holometabolous larval instars free-living embryos stalled in development. Discoveries on juvenile hormone signalling that controls metamorphosis grant new support to the former hypothesis deriving the pupa from a final pre-adult stage. The timing of expression of genes that repress and promote adult development downstream of hormonal signals supports homology between postembryonic stages of hemimetabolous and holometabolous insects. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice 370 05, Czech Republic
| |
Collapse
|
18
|
Truman JW, Riddiford LM. The evolution of insect metamorphosis: a developmental and endocrine view. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190070. [PMID: 31438820 PMCID: PMC6711285 DOI: 10.1098/rstb.2019.0070] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developmental, genetic and endocrine data from diverse taxa provide insight into the evolution of insect metamorphosis. We equate the larva–pupa–adult of the Holometabola to the pronymph–nymph–adult of hemimetabolous insects. The hemimetabolous pronymph is a cryptic embryonic stage with unique endocrinology and behavioural modifications that probably served as preadaptations for the larva. It develops in the absence of juvenile hormone (JH) as embryonic primordia undergo patterning and morphogenesis, the processes that were arrested for the evolution of the larva. Embryonic JH then drives tissue differentiation and nymph formation. Experimental treatment of pronymphs with JH terminates patterning and induces differentiation, mimicking the processes that occurred during the evolution of the larva. Unpatterned portions of primordia persist in the larva, becoming imaginal discs that form pupal and adult structures. Key transcription factors are associated with the holometabolous life stages: Krüppel-homolog 1 (Kr-h1) in the larva, broad in the pupa and E93 in the adult. Kr-h1 mediates JH action and is found whenever JH acts, while the other two genes direct the formation of their corresponding stages. In hemimetabolous forms, the pronymph has low Broad expression, followed by Broad expression through the nymphal moults, then a switch to E93 to form the adult. This article is part of the theme issue ‘The evolution of complete metamorphosis’.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
19
|
Ventos-Alfonso A, Ylla G, Belles X. Zelda and the maternal-to-zygotic transition in cockroaches. FEBS J 2019; 286:3206-3221. [PMID: 30993896 DOI: 10.1111/febs.14856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
In the endopterygote Drosophila melanogaster, Zelda is an activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), making chromatin accessible for gene transcription. Zelda has been studied in other endopterygotes: Apis mellifera and Tribolium castaneum, and the paraneopteran Rhodnius prolixus. We studied Zelda in the cockroach Blattella germanica, a hemimetabolan, short germ-band, and polyneopteran species. B. germanica Zelda has the complete set of functional domains, which is typical of species displaying ancestral features concerning embryogenesis. Interestingly, we found D. melanogaster TAGteam heptamers in the B. germanica genome. The canonical one, CAGGTAG, is present at a similar proportion in the genome of these two species and in the genome of other insects, suggesting that the genome admits as many CAGGTAG motifs as its length allows. Zelda-depleted embryos of B. germanica show defects involving blastoderm formation and abdomen development, and genes contributing to these processes are down-regulated. We conclude that in B. germanica, Zelda strictly activates the zygotic genome, within the MZT, a role conserved in more derived endopterygote insects. In B. germanica, zelda is expressed during MZT, whereas in D. melanogaster and T. castaneum it is expressed beyond this transition. In these species and A. mellifera, Zelda has functions even in postembryonic development. The expansion of zelda expression beyond the MZT in endopterygotes might be related with the evolutionary innovation of holometabolan metamorphosis. DATABASES: The RNA-seq datasets of B. germanica, D. melanogaster, and T. castaneum are accessible at the GEO databases GSE99785, GSE18068, GSE63770, and GSE84253. In addition, the RNA-seq library from T. castaneum adult females is available at SRA: SRX021963. The B. germanica reference genome is available as BioProject PRJNA203136.
Collapse
Affiliation(s)
- Alba Ventos-Alfonso
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
20
|
Ylla G, Piulachs MD, Belles X. Comparative Transcriptomics in Two Extreme Neopterans Reveals General Trends in the Evolution of Modern Insects. iScience 2018; 4:164-179. [PMID: 30240738 PMCID: PMC6147021 DOI: 10.1016/j.isci.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
The success of neopteran insects, with 1 million species described, is associated with developmental innovations such as holometaboly and the evolution from short to long germband embryogenesis. To unveil the mechanisms underlining these innovations, we compared gene expression during the ontogeny of two extreme neopterans, the cockroach Blattella germanica (polyneopteran, hemimetabolan, and short germband species) and the fly Drosophila melanogaster (endopterygote, holometabolan, and long germband species). Results revealed that genes associated with metamorphosis are predominantly expressed in late nymphal stages in B. germanica and in the early-mid embryo in D. melanogaster. In B. germanica the maternal to zygotic transition (MZT) concentrates early in embryogenesis, when juvenile hormone factors are significantly expressed. In D. melanogaster, the MZT extends throughout embryogenesis, during which time juvenile hormone factors appear to be unimportant. These differences possibly reflect broad trends in the evolution of development within neopterans, related to the germband type and the metamorphosis mode. Transcriptomes of cockroaches and flies show key differences along development Cockroaches and flies express metamorphosis factors with distinct timings in ontogeny Cockroaches methylate DNA in early embryogenesis, whereas flies do not MZT is limited to the early embryo in cockroaches, but it extends until hatching in flies
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|