1
|
Sánchez-Cazorla E, Carrera N, García-González MÁ. HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis. Int J Mol Sci 2024; 25:10609. [PMID: 39408938 PMCID: PMC11476927 DOI: 10.3390/ijms251910609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Miguel Ángel García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Hu X, Sun J, Wan M, Zhang B, Wang L, Zhong TP. Expression levels and stoichiometry of Hnf1β, Emx2, Pax8 and Hnf4 influence direct reprogramming of induced renal tubular epithelial cells. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:19. [PMID: 39347883 PMCID: PMC11442758 DOI: 10.1186/s13619-024-00202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Generation of induced renal epithelial cells (iRECs) from fibroblasts offers great opportunities for renal disease modeling and kidney regeneration. However, the low reprogramming efficiency of the current approach to generate iRECs has hindered potential therapeutic application and regenerative approach. This could be in part attributed to heterogeneous and unbalanced expression of reprogramming factors (RFs) Hnf1β (H1), Emx2 (E), Pax8 (P), and Hnf4α (H4) in transduced fibroblasts. Here, we establish an advanced retroviral vector system that expresses H1, E, P, and H4 in high levels and distinct ratios from bicistronic transcripts separated by P2A. Mouse embryonic fibroblasts (MEFs) harboring Cdh16-Cre; mT/mG allele are utilized to conduct iREC reprogramming via directly monitoring single cell fate conversion. Three sets of bicistronic RF combinations including H1E/H4P, H1H4/EP, and H1P/H4E have been generated to induce iREC reprogramming. Each of the RF combinations gives rise to distinct H1, E, P, and H4 expression levels and different reprogramming efficiencies. The desired H1E/H4P combination that results in high expression levels of RFs with balanced stoichiometry. substantially enhances the efficiency and quality of iRECs compared with transduction of separate H1, E, P, and H4 lentiviruses. We find that H1E/H4P-induced iRECs exhibit the superior features of renal tubular epithelial cells, as evidenced by expressing renal tubular-specific genes, possessing endocytotic arrogation activity and assembling into tubules along decellularized kidney scaffolds. This study establishes H1E/H4P cassette as a valuable platform for future iREC studies and regenerative medicine.
Collapse
Affiliation(s)
- Xueli Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Meng Wan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Shanghai, 200433, China.
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Jankowski J, Lee HK, Liu C, Wilflingseder J, Hennighausen L. Sexually dimorphic renal expression of mouse Klotho is directed by a kidney-specific distal enhancer responsive to HNF1b. Commun Biol 2024; 7:1142. [PMID: 39277686 PMCID: PMC11401919 DOI: 10.1038/s42003-024-06855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Transcription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. Klotho, a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of Klotho is not understood. Here, we characterize two candidate Klotho enhancers using H3K27ac epigenetic marks and transcription factor binding and investigate their functions, individually and combined, through CRISPR-Cas9 genome engineering. We discovered that only the distal (E1), but not the proximal (E2) candidate region constitutes a functional enhancer, with the double deletion not causing Klotho expression to further decrease. E1 activity is dependent on HNF1b transcription factor binding site within the enhancer. Further, E1 controls the sexual dimorphism of Klotho as evidenced by qPCR and RNA-seq. Despite the sharp reduction of Klotho mRNA, unlike germline Klotho knockouts, mutant mice present normal phenotype, including weight, lifespan, and serum biochemistry. Lastly, only males lacking E1 display more prominent acute, but not chronic kidney injury responses, indicating a remarkable range of potential adaptation to isolated Klotho loss, especially in female E1 knockouts, retaining renoprotection despite over 80% Klotho reduction.
Collapse
Affiliation(s)
- Jakub Jankowski
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA.
- , 8 Center Drive, Room 107, 20892, Bethesda, MD, USA.
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia Wilflingseder
- Department of Physiology and Pathophysiology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Jankowski J, Lee HK, Liu C, Wilflingseder J, Hennighausen L. Sexually dimorphic renal expression of Klotho is directed by a kidney-specific distal enhancer responsive to HNF1b. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582831. [PMID: 38529500 PMCID: PMC10962737 DOI: 10.1101/2024.02.29.582831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Transcription enhancers are genomic sequences regulating common and tissue-specific genes and their disruption can contribute to human disease development and progression. Klotho, a sexually dimorphic gene specifically expressed in kidney, is well-linked to kidney dysfunction and its deletion from the mouse genome leads to premature aging and death. However, the sexually dimorphic regulation of Klotho is not understood. Here, we characterize two candidate Klotho enhancers using H3K27ac epigenetic marks and transcription factor binding and investigate their functions, individually and combined, through CRISPR-Cas9 genome engineering. We discovered that only the distal (E1), but not the proximal (E2) candidate region constitutes a functional enhancer, with the double deletion not causing Klotho expression to further decrease. E1 activity is dependent on HNF1b transcription factor binding site within the enhancer. Further, E1 controls the sexual dimorphism of Klotho as evidenced by qPCR and RNA-seq. Despite the sharp reduction of Klotho mRNA, unlike germline Klotho knockouts, mutant mice presented normal phenotype, including weight, lifespan, and serum biochemistry. Lastly, only males lacking E1 display more prominent acute, but not chronic kidney injury responses, indicating a remarkable range of potential adaptation to isolated Klotho loss, especially in female E1 knockouts, retaining renoprotection despite over 80% Klotho reduction.
Collapse
Affiliation(s)
- Jakub Jankowski
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Wilflingseder
- Department of Physiology and Pathophysiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
5
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS. HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes. J Am Soc Nephrol 2023; 34:412-432. [PMID: 36522156 PMCID: PMC10103355 DOI: 10.1681/asn.2022010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
SIGNIFICANCE STATEMENT Mutations in hepatocyte nuclear factor-1 β ( HNF1B ) are the most common monogenic causes of congenital renal malformations. HNF1B is necessary to directly reprogram fibroblasts to induced renal tubule epithelial cells (iRECs) and, as we demonstrate, can induce ectopic pronephric tissue in Xenopus ectodermal organoids. Using these two systems, we analyzed the effect of HNF1B mutations found in patients with cystic dysplastic kidney disease. We found cross-species conserved targets of HNF1B, identified transcripts that are differentially regulated by the patient-specific mutant protein, and functionally validated novel HNF1B targets in vivo . These results highlight evolutionarily conserved transcriptional mechanisms and provide insights into the genetic circuitry of nephrogenesis. BACKGROUND Hepatocyte nuclear factor-1 β (HNF1B) is an essential transcription factor during embryogenesis. Mutations in HNF1B are the most common monogenic causes of congenital cystic dysplastic renal malformations. The direct functional consequences of mutations in HNF1B on its transcriptional activity are unknown. METHODS Direct reprogramming of mouse fibroblasts to induced renal tubular epithelial cells was conducted both with wild-type HNF1B and with patient mutations. HNF1B was expressed in Xenopus ectodermal explants. Transcriptomic analysis by bulk RNA-Seq identified conserved targets with differentially regulated expression by the wild-type or R295C mutant. CRISPR/Cas9 genome editing in Xenopus embryos evaluated transcriptional targets in vivo . RESULTS HNF1B is essential for reprogramming mouse fibroblasts to induced renal tubular epithelial cells and induces development of ectopic renal organoids from pluripotent Xenopus cells. The mutation R295C retains reprogramming and inductive capacity but alters the expression of specific sets of downstream target genes instead of diminishing overall transcriptional activity of HNF1B. Surprisingly, targets associated with polycystic kidney disease were less affected than genes affected in congenital renal anomalies. Cross-species-conserved transcriptional targets were dysregulated in hnf1b CRISPR-depleted Xenopus embryos, confirming their dependence on hnf1b . CONCLUSIONS HNF1B activates an evolutionarily conserved program of target genes that disease-causing mutations selectively disrupt. These findings provide insights into the renal transcriptional network that controls nephrogenesis.
Collapse
Affiliation(s)
- Kelli Grand
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Martine Stoltz
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludovica Rizzo
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Ruth Röck
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Michael M. Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | | | - Maike Getwan
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Roman Pichler
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soeren S. Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- The University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Tholen LE, Latta F, Martens JHA, Hoenderop JGJ, de Baaij JHF. Transcription factor HNF1β controls a transcriptional network regulating kidney cell structure and tight junction integrity. Am J Physiol Renal Physiol 2023; 324:F211-F224. [PMID: 36546837 DOI: 10.1152/ajprenal.00199.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutations in the hepatocyte nuclear factor (HNF)1β gene (HNF1B) cause autosomal dominant tubulointerstitial kidney disease, a rare and heterogeneous disease characterized by renal cysts and/or malformation, maturity-onset diabetes of the young, hypomagnesemia, and hypokalemia. The electrolyte disturbances may develop in the distal part of the nephron, which is important for fine-tuning of Mg2+ and Ca2+ reabsorption. Therefore, we aimed to study the transcriptional network directed by HNF1β in the distal part of the nephron. We combined HNF1β chromatin immunoprecipitation-sequencing and mRNA expression data to identify direct targets of HNF1β in a renal distal convoluted tubule cell line (mpkDCT). Gene Ontology term pathway analysis demonstrated enrichment of cell polarity, cell-cell junction, and cytoskeleton pathways in the dataset. Genes directly and indirectly regulated by HNF1β within these pathways included members of the apical and basolateral polarity complexes including Crumbs protein homolog 3 (Crb3), partitioning defective 6 homolog-β (Pard6b), and LLGL Scribble cell polarity complex component 2 (Llgl2). In monolayers of mouse inner medullary collecting duct 3 cells expressing dominant negative Hnf1b, tight junction integrity was compromised, as observed by reduced transepithelial electrical resistance values and increased permeability for fluorescein (0.4 kDa) compared with wild-type cells. Expression of dominant negative Hnf1b also led to a decrease in height (30%) and an increase in surface (58.5%) of cells grown on membranes. Moreover, three-dimensional spheroids formed by cells expressing dominant negative Hnf1b were reduced in size compared with wild-type spheroids (30%). Together, these findings demonstrate that HNF1β directs a transcriptional network regulating tight junction integrity and cell structure in the distal part of the nephron.NEW & NOTEWORTHY Genetic defects in transcription factor hepatocyte nuclear factor (HNF)1β cause a heterogeneous disease characterized by electrolyte disturbances, kidney cysts, and diabetes. By combining RNA-sequencing and HNF1β chromatin immunoprecipitation-sequencing data, we identified new HNF1β targets that were enriched for cell polarity pathways. Newly discovered targets included members of polarity complexes Crb3, Pard6b, and Llgl2. Functional assays in kidney epithelial cells demonstrated decreased tight junction integrity and a loss of typical cuboidal morphology in mutant Hnf1b cells.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Latta
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Tholen LE, Schigt H, Kleuskens SGE, Bos C, Spruijt CG, Willemsen B, Vermeulen M, Hoenderop JGJ, de Baaij JHF. HNF1β-associated cyst development and electrolyte disturbances are not explained by BAIAP2L2 expression. FASEB J 2023; 37:e22696. [PMID: 36520027 DOI: 10.1096/fj.202201121r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022]
Abstract
Mutations or deletions in transcription factor hepatocyte nuclear factor 1 homeobox β (HNF1β) cause renal cysts and/or malformation, maturity-onset diabetes of the young and electrolyte disturbances. Here, we applied a comprehensive bioinformatic approach on ChIP-seq, RNA-seq, and gene expression array studies to identify novel transcriptional targets of HNF1β explaining the kidney phenotype of HNF1β patients. We identified BAR/IMD Domain Containing Adaptor Protein 2 Like 2 (BAIAP2L2), as a novel transcriptional target of HNF1β and validated direct transcriptional activation of the BAIAP2L2 promoter by a reporter luciferase assay. Using mass spectrometry analysis, we show that BAIAP2L2 binds to other members of the I-BAR domain-containing family: BAIAP2 and BAIAP2L1. Subsequently, the role of BAIAP2L2 in maintaining epithelial cell integrity in the kidney was assessed using Baiap2l2 knockout cell and mouse models. Kidney epithelial cells lacking functional BAIAP2L2 displayed normal F-actin distribution at cell-cell contacts and formed polarized three-dimensional spheroids with a lumen. In vivo, Baiap2l2 knockout mice displayed normal kidney and colon tissue morphology and serum and urine electrolyte concentrations were not affected. Altogether, our study is the first to characterize the function of BAIAP2L2 in the kidney in vivo and we report that mice lacking BAIAP2L2 exhibit normal electrolyte homeostasis and tissue morphology under physiological conditions.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heidi Schigt
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne G E Kleuskens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Shao A, Gearhart MD, Chan SC, Miao Z, Susztak K, Igarashi P. Multiomics analysis reveals that hepatocyte nuclear factor 1β regulates axon guidance genes in the developing mouse kidney. Sci Rep 2022; 12:17586. [PMID: 36266461 PMCID: PMC9585060 DOI: 10.1038/s41598-022-22327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
The transcription factor hepatocyte nuclear factor 1β (HNF-1β) is essential for normal development of the kidney and other epithelial organs. In the developing mouse kidney, HNF-1β is required for the differentiation and patterning of immature nephrons and branching morphogenesis of the ureteric bud (UB). Here, we used ChIP-sequencing (ChIP-seq) and RNA sequencing (RNA-seq) to identify genes that are regulated by HNF-1β in embryonic mouse kidneys. ChIP-seq revealed that HNF-1β binds to 8284 sites in chromatin from E14.5 mouse kidneys. Comparison with previous ATAC-seq and histone modification studies showed that HNF-1β binding peaks colocalized with open chromatin and epigenetic marks of transcriptional activation (H3K27 acetylation, H3K4 trimethylation, H3K4 monomethylation), indicating that the binding sites were functional. To investigate the relationship between HNF-1β binding and HNF-1β-dependent gene regulation, RNA-seq was performed on UB cells purified from wild-type and HNF-1β mutant embryonic kidneys. A total of 1632 genes showed reduced expression in HNF-1β-deficient UB cells, and 485 genes contained nearby HNF-1β binding sites indicating that they were directly activated by HNF-1β. Conversely, HNF-1β directly repressed the expression of 526 genes in the UB. Comparison with snATAC-seq analysis of UB-derived cells showed that both HNF-1β-dependent activation and repression correlated with chromatin accessibility. Pathway analysis revealed that HNF-1β binds near 68 axon guidance genes in the developing kidney. RNA-seq analysis showed that Nrp1, Sema3c, Sema3d, Sema6a, and Slit2 were activated by HNF-1β, whereas Efna1, Epha3, Epha4, Epha7, Ntn4, Plxna2, Sema3a, Sema4b, Slit3, Srgap1, Unc5c and Unc5d were repressed by HNF-1β. RNAscope in situ hybridization showed that Nrp1, Sema3c, Sema3d, Sema6a, and Slit2 were expressed in wild-type UB and were dysregulated in HNF-1β mutant UB. These studies show that HNF-1β directly regulates the expression of multiple axon guidance genes in the developing mouse kidney. Dysregulation of axon guidance genes may underlie kidney defects in HNF-1β mutant mice.
Collapse
Affiliation(s)
- Annie Shao
- grid.17635.360000000419368657Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC 194, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN USA
| | - Micah D. Gearhart
- grid.17635.360000000419368657Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN USA
| | - Siu Chiu Chan
- grid.17635.360000000419368657Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC 194, Minneapolis, MN 55455 USA
| | - Zhen Miao
- grid.25879.310000 0004 1936 8972Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA USA
| | - Katalin Susztak
- grid.25879.310000 0004 1936 8972Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA USA
| | - Peter Igarashi
- grid.17635.360000000419368657Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, MMC 194, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
10
|
Kyei-Barffour I, Margetts M, Vash-Margita A, Pelosi E. The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:657-672. [PMID: 34970104 PMCID: PMC8686787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder caused by Müllerian ducts dysgenesis affecting 1 in 5000 women with a typical 46,XX karyotype. The etiology of MRKH syndrome is complex and largely unexplained. Familial clustering suggests a genetic component and the spectrum of clinical presentations seems consistent with an inheritance pattern characterized by incomplete penetrance and variable expressivity. Mutations of several candidate genes have been proposed as possible causes based on genetic analyses of human patients and animal models. In addition, studies of monozygotic twins with discordant phenotypes suggest a role for epigenetic changes following potential exposure to environmental compounds. The spectrum of clinical presentations is consistent with intricate disruptions of shared developmental pathways or signals during early organogenesis. However, the lack of functional validation and translational studies have limited our understanding of the molecular mechanisms involved in this condition. The clinical management of affected women, including early diagnosis, genetic testing of MRKH syndrome, and the implementation of counseling strategies, is significantly impeded by these knowledge gaps. Here, we illustrate the embryonic development of tissues and organs affected by MRKH syndrome, highlighting key pathways that could be involved in its pathogenesis. In addition, we will explore the genetics of this condition, as well as the potential role of environmental factors, and discuss their implications to clinical practice.
Collapse
Affiliation(s)
- Isaac Kyei-Barffour
- Department of Biomedical Sciences, University of Cape
Coast, Cape Coast, Ghana
| | - Miranda Margetts
- Center for American Indian and Rural Health Equity,
Montana State University, Bozeman, MT, USA
| | - Alla Vash-Margita
- Department of Obstetrics, Gynecology and Reproductive
Sciences, Division of Pediatric and Adolescent Gynecology, Yale University
School of Medicine, New Haven, CT, USA
| | - Emanuele Pelosi
- Centre for Clinical Research, The University of
Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Piedrafita A, Balayssac S, Casemayou A, Saulnier-Blache JS, Lucas A, Iacovoni JS, Breuil B, Chauveau D, Decramer S, Malet-Martino M, Schanstra JP, Faguer S. Hepatocyte nuclear factor-1β shapes the energetic homeostasis of kidney tubule cells. FASEB J 2021; 35:e21931. [PMID: 34653285 DOI: 10.1096/fj.202100782rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
Energetic metabolism controls key steps of kidney development, homeostasis, and epithelial repair following acute kidney injury (AKI). Hepatocyte nuclear factor-1β (HNF-1β) is a master transcription factor that controls mitochondrial function in proximal tubule (PT) cells. Patients with HNF1B pathogenic variant display a wide range of kidney developmental abnormalities and progressive kidney fibrosis. Characterizing the metabolic changes in PT cells with HNF-1β deficiency may help to identify new targetable molecular hubs involved in HNF1B-related kidney phenotypes and AKI. Here, we combined 1 H-NMR-based metabolomic analysis in a murine PT cell line with CrispR/Cas9-induced Hnf1b invalidation (Hnf1b-/- ), clustering analysis, targeted metabolic assays, and datamining of published RNA-seq and ChIP-seq dataset to identify the role of HNF-1β in metabolism. Hnf1b-/- cells grown in normoxic conditions display intracellular ATP depletion, increased cytosolic lactate concentration, increased lipid droplet content, failure to use pyruvate for energetic purposes, increased levels of tricarboxylic acid (TCA) cycle intermediates and oxidized glutathione, and a reduction of TCA cycle byproducts, all features consistent with mitochondrial dysfunction and an irreversible switch toward glycolysis. Unsupervised clustering analysis showed that Hnf1b-/- cells mimic a hypoxic signature and that they cannot furthermore increase glycolysis-dependent energetic supply during hypoxic challenge. Metabolome analysis also showed alteration of phospholipid biosynthesis in Hnf1b-/- cells leading to the identification of Chka, the gene coding for choline kinase α, as a new putative target of HNF-1β. HNF-1β shapes the energetic metabolism of PT cells and HNF1B deficiency in patients could lead to a hypoxia-like metabolic state precluding further adaptation to ATP depletion following AKI.
Collapse
Affiliation(s)
- Alexis Piedrafita
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB, UMR CNRS 5068, Université Paul Sabatier, Centre National de la Recherche Scientifique, Toulouse, France.,Laboratoire des Interaction Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France
| | - Jason S Iacovoni
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France
| | - Dominique Chauveau
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Service de Néphrologie, Médecine interne et Hypertension artérielle, Hôpital des Enfants, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB, UMR CNRS 5068, Université Paul Sabatier, Centre National de la Recherche Scientifique, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France
| | - Stanislas Faguer
- Institut National de la Santé et de la Recherche Médicale, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Hôpital Rangueil, Toulouse, France.,Université Paul Sabatier - Toulouse 3, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre de Référence des Maladies Rénales Rares, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Assmus A, Mullins L, Ward M, Dobie R, Hunter R, Henderson NC, Mullins JJ. Loss of Adam10 Disrupts Ion Transport in Immortalized Kidney Collecting Duct Cells. FUNCTION 2021; 2:zqab024. [PMID: 34131651 PMCID: PMC8187228 DOI: 10.1093/function/zqab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
The kidney cortical collecting duct (CCD) comprises principal cells (PCs), intercalated cells (IC), and the recently discovered intermediate cell type. Kidney pathology in a mouse model of the syndrome of apparent aldosterone excess revealed plasticity of the CCD, with altered PC:intermediate cell:IC ratio. The self-immortalized mouse CCD cell line, mCCDcl1, shows functional characteristics of PCs, but displays a range of cell types, including intermediate cells, making it ideal to study plasticity. We knocked out Adam10, a key component of the Notch pathway, in mCCDcl1 cells, using CRISPR-Cas9 technology, and isolated independent clones, which exhibited severely affected sodium transport capacity and loss of aldosterone response. Single-cell RNA sequencing revealed significantly reduced expression of major PC-specific markers, such as Scnn1g (γ-ENaC) and Hsd11b2 (11βHSD2), but no significant changes in transcription of components of the Notch pathway were observed. Immunostaining in the knockout clone confirmed the decrease in expression of γ-ENaC and importantly, showed an altered, diffuse distribution of PC and IC markers, suggesting altered trafficking in the Adam10 knockout clone as an explanation for the loss of polarization.
Collapse
Affiliation(s)
- Adrienne Assmus
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Linda Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mairi Ward
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ross Dobie
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Robert Hunter
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil C Henderson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
13
|
Przepiorski A, Crunk AE, Espiritu EB, Hukriede NA, Davidson AJ. The Utility of Human Kidney Organoids in Modeling Kidney Disease. Semin Nephrol 2021; 40:188-198. [PMID: 32303281 DOI: 10.1016/j.semnephrol.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of three-dimensional kidney tissue (organoids) from human pluripotent stem cell lines provides a valuable tool to examine kidney function in an in vitro model and could be used for regenerative medicine approaches. Kidney organoids have the potential to model kidney diseases and congenital defects, be used for drug development, and to further our understanding of acute kidney injury, fibrosis, and chronic kidney disease. In this review, we examine the current stage of pluripotent stem cell-derived kidney organoid technology, challenges, shortcomings, and regenerative potential of kidney organoids in the future.
Collapse
Affiliation(s)
- Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA.
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Center for Critical Care Nephrology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Niborski LL, Paces-Fessy M, Ricci P, Bourgeois A, Magalhães P, Kuzma-Kuzniarska M, Lesaulnier C, Reczko M, Declercq E, Zürbig P, Doucet A, Umbhauer M, Cereghini S. Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model. Dis Model Mech 2021; 14:dmm047498. [PMID: 33737325 PMCID: PMC8126479 DOI: 10.1242/dmm.047498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Heterozygous mutations in HNF1B cause the complex syndrome renal cysts and diabetes (RCAD), characterized by developmental abnormalities of the kidneys, genital tracts and pancreas, and a variety of renal, pancreas and liver dysfunctions. The pathogenesis underlying this syndrome remains unclear as mice with heterozygous null mutations have no phenotype, while constitutive/conditional Hnf1b ablation leads to more severe phenotypes. We generated a novel mouse model carrying an identified human mutation at the intron-2 splice donor site. Unlike heterozygous mice previously characterized, mice heterozygous for the splicing mutation exhibited decreased HNF1B protein levels and bilateral renal cysts from embryonic day 15, originated from glomeruli, early proximal tubules (PTs) and intermediate nephron segments, concurrently with delayed PT differentiation, hydronephrosis and rare genital tract anomalies. Consistently, mRNA sequencing showed that most downregulated genes in embryonic kidneys were primarily expressed in early PTs and the loop of Henle and involved in ion/drug transport, organic acid and lipid metabolic processes, while the expression of previously identified targets upon Hnf1b ablation, including cystic disease genes, was weakly or not affected. Postnatal analyses revealed renal abnormalities, ranging from glomerular cysts to hydronephrosis and, rarely, multicystic dysplasia. Urinary proteomics uncovered a particular profile predictive of progressive decline in kidney function and fibrosis, and displayed common features with a recently reported urine proteome in an RCAD pediatric cohort. Altogether, our results show that reduced HNF1B levels lead to developmental disease phenotypes associated with the deregulation of a subset of HNF1B targets. They further suggest that this model represents a unique clinical/pathological viable model of the RCAD disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Polarity
- Central Nervous System Diseases/genetics
- Central Nervous System Diseases/pathology
- Cilia/pathology
- Dental Enamel/abnormalities
- Dental Enamel/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Embryo, Mammalian/pathology
- Gene Dosage
- Gene Expression Profiling
- Genes, Developmental
- Haploinsufficiency/genetics
- Hepatocyte Nuclear Factor 1-beta/genetics
- Heterozygote
- Humans
- Hydronephrosis/complications
- Kidney Diseases, Cystic/genetics
- Kidney Diseases, Cystic/pathology
- Kidney Glomerulus/pathology
- Kidney Tubules/pathology
- Mice, Inbred C57BL
- Mutation/genetics
- Nephrons/pathology
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Severity of Illness Index
- Mice
Collapse
Affiliation(s)
- Leticia L. Niborski
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Mélanie Paces-Fessy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Pierbruno Ricci
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Adeline Bourgeois
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Pedro Magalhães
- Mosaiques Diagnostics, 30659 Hannover, Germany
- Department of Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany
| | - Maria Kuzma-Kuzniarska
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Celine Lesaulnier
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Martin Reczko
- Biomedical Sciences Research Center Alexander Fleming, Institute for Fundamental Biomedical Science, 16672 Athens, Greece
| | - Edwige Declercq
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | | | - Alain Doucet
- Sorbonne Université, Université Paris Descartes, UMRS 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Silvia Cereghini
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| |
Collapse
|
15
|
Tholen LE, Bos C, Jansen PWTC, Venselaar H, Vermeulen M, Hoenderop JGJ, de Baaij JHF. Bifunctional protein PCBD2 operates as a co-factor for hepatocyte nuclear factor 1β and modulates gene transcription. FASEB J 2021; 35:e21366. [PMID: 33749890 DOI: 10.1096/fj.202002022r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Hepatocyte nuclear factor 1β (HNF1β) is an essential transcription factor in development of the kidney, liver, and pancreas. HNF1β-mediated transcription of target genes is dependent on the cell type and the development stage. Nevertheless, the regulation of HNF1β function by enhancers and co-factors that allow this cell-specific transcription is largely unknown. To map the HNF1β interactome we performed mass spectrometry in a mouse kidney inner medullary collecting duct cell line. Pterin-4a-carbinolamine dehydratase 2 (PCBD2) was identified as a novel interaction partner of HNF1β. PCBD2 and its close homolog PCBD1 shuttle between the cytoplasm and nucleus to exert their enzymatic and transcriptional activities. Although both PCBD proteins share high sequence identity (48% and 88% in HNF1 recognition helix), their tissue expression patterns are unique. PCBD1 is most abundant in kidney and liver while PCBD2 is also abundant in lung, spleen, and adipose tissue. Using immunolocalization studies and biochemical analysis we show that in presence of HNF1β the nuclear localization of PCBD1 and PCBD2 increases significantly. Promoter luciferase assays demonstrate that co-factors PCBD1 and PCBD2 differentially regulate the ability of HNF1β to activate the promoters of transcriptional targets important in renal electrolyte homeostasis. Deleting the N-terminal sequence of PCBD2, not found in PCBD1, diminished the differential effects of the co-factors on HNF1β activity. All together these results indicate that PCBD1 and PCBD2 can exert different effects on HNF1β-mediated transcription. Future studies should confirm whether these unique co-factor activities also apply to HNF1β-target genes involved in additional processes besides ion transport in the kidney.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR, Pliner HA, Aldinger KA, Pokholok D, Zhang F, Milbank JH, Zager MA, Glass IA, Steemers FJ, Doherty D, Trapnell C, Cusanovich DA, Shendure J. A human cell atlas of fetal chromatin accessibility. Science 2020; 370:eaba7612. [PMID: 33184180 PMCID: PMC7785298 DOI: 10.1126/science.aba7612] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type-specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type-specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.
Collapse
Affiliation(s)
- Silvia Domcke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Jennifer H Milbank
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Darren A Cusanovich
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
17
|
Izzi C, Dordoni C, Econimo L, Delbarba E, Grati FR, Martin E, Mazza C, Savoldi G, Rampoldi L, Alberici F, Scolari F. Variable Expressivity of HNF1B Nephropathy, From Renal Cysts and Diabetes to Medullary Sponge Kidney Through Tubulo-interstitial Kidney Disease. Kidney Int Rep 2020; 5:2341-2350. [PMID: 33305128 PMCID: PMC7710890 DOI: 10.1016/j.ekir.2020.09.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction In humans, heterozygous mutations of hepatocyte nuclear factor 1beta (HNF1B) are responsible for a dominant inherited disease with both renal and extrarenal phenotypes. HNF1B nephropathy is the umbrella term that includes the various kidney phenotypes of the disease, ranging from congenital anomalies of the kidney and urinary tract (CAKUT), to tubular transport abnormalities, to chronic tubulointerstitial and cystic renal disease. Methods We describe 7 families containing 13 patients with ascertained HNF1B nephropathy. All patients underwent genetic testing and clinical, laboratory, and instrumental assessment, including renal imaging and evaluation of extrarenal HNF1B manifestations. Results Significant inter- and intrafamilial variability of HNF1B nephropathy has been observed. In our cohort, HNF1B pathogenic variants presented with renal cysts and diabetes syndrome (RCAD); renal cystic phenotype mimicking autosomal dominant polycystic kidney disease (ADPKD); autosomal dominant tubulointerstitial kidney disease (ADTKD) with or without hyperuricemia and gout; CAKUT; and nephrogenic diabetes insipidus (NDI). Of note, for the first time, we describe the occurrence of medullary sponge kidney (MSK) in a family harboring the HNF1B whole-gene deletion at chromosome 17q12. Genotype characterization led to the identification of an additional 6 novel HNF1B pathogenic variants, 3 frameshift, 2 missense, and 1 nonsense. Conclusion HNF1B nephropathy may present with a highly variable renal phenotype in adult patients. We expand the HNF1B renal clinical picture to include MSK as a potential new finding. Finally, we expand the allelic repertoire of the disease by adding novel HNF1B pathogenic variants.
Collapse
Affiliation(s)
- Claudia Izzi
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili of Brescia, Brescia Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST Spedali Civili, Brescia, Italy
| | - Chiara Dordoni
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili of Brescia, Brescia Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST Spedali Civili, Brescia, Italy
| | - Laura Econimo
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili of Brescia, Brescia Italy
| | - Elisa Delbarba
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili of Brescia, Brescia Italy
| | - Francesca Romana Grati
- Cytogenetics and Medical Genetics Unit TOMA Advanced Biomedical Assays (Impact Lab Group), Busto Arsizio, Italy
| | - Eva Martin
- Radiology Unit, Montichiari Hospital, ASST Spedali Civili, Brescia, Italy
| | - Cinzia Mazza
- Medical Genetics Laboratory, ASST-Spedali Civili, Brescia, Italy
| | | | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Alberici
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili of Brescia, Brescia Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili of Brescia, Brescia Italy
| |
Collapse
|
18
|
Dundr P, Bártů M, Hojný J, Michálková R, Hájková N, Stružinská I, Krkavcová E, Hadravský L, Kleissnerová L, Kopejsková J, Hiep BQ, Němejcová K, Jakša R, Čapoun O, Řezáč J, Jirsová K, Franková V. HNF1B, EZH2 and ECI2 in prostate carcinoma. Molecular, immunohistochemical and clinico-pathological study. Sci Rep 2020; 10:14365. [PMID: 32873863 PMCID: PMC7463257 DOI: 10.1038/s41598-020-71427-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 1 beta (HNF1B) is a tissue specific transcription factor, which seems to play an important role in the carcinogenesis of several tumors. In our study we focused on analyzing HNF1B in prostate carcinoma (PC) and adenomyomatous hyperplasia (AH), as well as its possible relation to the upstream gene EZH2 and downstream gene ECI2. The results of our study showed that on an immunohistochemical level, the expression of HNF1B was low in PC, did not differ between PC and AH, and did not correlate with any clinical outcomes. In PC, mutations of HNF1B gene were rare, but the methylation of its promotor was a common finding and was positively correlated with Gleason score and stage. The relationship between HNF1B and EZH2/ECI2 was equivocal, but EZH2 and ECI2 were positively correlated on both mRNA and protein level. The expression of EZH2 was associated with poor prognosis. ECI2 did not correlate with any clinical outcomes. Our results support the oncosuppressive role of HNF1B in PC, which may be silenced by promotor methylation and other mechanisms, but not by gene mutation. The high expression of EZH2 (especially) and ECI2 in PC seems to be a potential therapeutic target.
Collapse
Affiliation(s)
- Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| | - Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jan Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Nikola Hájková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Ivana Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Eva Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Ladislav Hadravský
- Institute of Pathology, First Faculty of Medicine, Charles University, Prague 2, Czech Republic
| | - Lenka Kleissnerová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jana Kopejsková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Bui Quang Hiep
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Radek Jakša
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Otakar Čapoun
- Department of Urology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jakub Řezáč
- Department of Urology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Kateřina Jirsová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Věra Franková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| |
Collapse
|
19
|
Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec (Hoboken) 2020; 303:2578-2587. [PMID: 32790143 DOI: 10.1002/ar.24486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Branching morphogenesis is an integral developmental mechanism central to the formation of a range of organs including the kidney, lung, pancreas and mammary gland. The ramified networks of epithelial tubules it establishes are critical for the processes of secretion, excretion and exchange mediated by these tissues. In the kidney, branching serves to establish the collecting duct system that transports urine from the nephrons into the renal pelvis, ureter and finally the bladder. Generally speaking, the formation of these networks in different organs begins with the specification and differentiation of simple bud-like organ anlage, which then undergo a process of elaboration, typically by bifurcation. This process is often governed by the interaction of progenitor cells at the tips of the epithelia with neighboring mesenchymal cell populations which direct the branching process and which often themselves differentiate to form part of the adult organ. In the kidney, the tips of ureteric bud elaborate through a dynamic cell signaling relationship with overlying nephron progenitor cell populations. These cells sequentially commit to differentiation and the resulting nephrons reintegrate with the ureteric epithelium as development progresses. This review will describe recent advances in understanding the how the elaboration of the ureteric bud is patterned and consider the extent to which this process is shared with other organs.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
21
|
Mae SI, Ryosaka M, Sakamoto S, Matsuse K, Nozaki A, Igami M, Kabai R, Watanabe A, Osafune K. Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential. Cell Rep 2020; 32:107963. [DOI: 10.1016/j.celrep.2020.107963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/21/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022] Open
|
22
|
Little MH, Quinlan C. Advances in our understanding of genetic kidney disease using kidney organoids. Pediatr Nephrol 2020; 35:915-926. [PMID: 31065797 DOI: 10.1007/s00467-019-04259-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
A significant proportion of kidney disease presenting in childhood is likely genetic in origin with a growing number of genes implicated in its development. However, many children may have changes in previously undescribed or unrecognised genes. The recent development of methods for generating human kidney organoids from human pluripotent stem cells has the potential to substantially change the rate of diagnosis and the development of new treatments for some forms of genetic kidney disease. In this review, we discuss how accurately a kidney organoid models the human kidney, identifying the strengths and weaknesses of these potentially patient-derived models of renal disease.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.
| | - Catherine Quinlan
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Nephrology, Royal Children's Hospital, Flemington Rd., Parkville, VIC, Australia
| |
Collapse
|
23
|
Shao A, Chan SC, Igarashi P. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Cell Signal 2020; 71:109568. [PMID: 32068086 DOI: 10.1016/j.cellsig.2020.109568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a DNA-binding transcription factor that is essential for normal kidney development. Mutations of HNF1B in humans produce cystic kidney diseases, including renal cysts and diabetes, multicystic dysplastic kidneys, glomerulocystic kidney disease, and autosomal dominant tubulointerstitial kidney disease. Expression of HNF1B is reduced in cystic kidneys from humans with ADPKD, and HNF1B has been identified as a modifier gene in PKD. Genome-wide analysis of chromatin binding has revealed that HNF-1β directly regulates the expression of known PKD genes, such as PKHD1 and PKD2, as well as genes involved in PKD pathogenesis, including cAMP-dependent signaling, renal fibrosis, and Wnt signaling. In addition, a role of HNF-1β in regulating the expression of noncoding RNAs (microRNAs and long noncoding RNAs) has been identified. These findings indicate that HNF-1β regulates a transcriptional and post-transcriptional network that plays a central role in renal cystogenesis.
Collapse
Affiliation(s)
- Annie Shao
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Siu Chiu Chan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
24
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
25
|
PAX8 activates metabolic genes via enhancer elements in Renal Cell Carcinoma. Nat Commun 2019; 10:3739. [PMID: 31431624 PMCID: PMC6702156 DOI: 10.1038/s41467-019-11672-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Transcription factor networks shape the gene expression programs responsible for normal cell identity and pathogenic state. Using Core Regulatory Circuitry analysis (CRC), we identify PAX8 as a candidate oncogene in Renal Cell Carcinoma (RCC) cells. Validation of large-scale functional genomic screens confirms that PAX8 silencing leads to decreased proliferation of RCC cell lines. Epigenomic analyses of PAX8-dependent cistrome demonstrate that PAX8 largely occupies active enhancer elements controlling genes involved in various metabolic pathways. We selected the ferroxidase Ceruloplasmin (CP) as an exemplary gene to dissect PAX8 molecular functions. PAX8 recruits histone acetylation activity at bound enhancers looping onto the CP promoter. Importantly, CP expression correlates with sensitivity to PAX8 silencing and identifies a subset of RCC cases with poor survival. Our data identifies PAX8 as a candidate oncogene in RCC and provides a potential biomarker to monitor its activity. Transcription factors are critical regulators of cell identity. Here, the authors use computational and functional genomic approaches to show an oncogenic role of PAX8 in renal cancer. Mechanistic dissection of PAX8 functions reveal its role in activating genes associated with metabolic pathways.
Collapse
|
26
|
Ferrè S, Igarashi P. New insights into the role of HNF-1β in kidney (patho)physiology. Pediatr Nephrol 2019; 34:1325-1335. [PMID: 29961928 PMCID: PMC6312759 DOI: 10.1007/s00467-018-3990-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022]
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is an essential transcription factor that regulates the development and function of epithelia in the kidney, liver, pancreas, and genitourinary tract. Humans who carry HNF1B mutations develop heterogeneous renal abnormalities, including multicystic dysplastic kidneys, glomerulocystic kidney disease, renal agenesis, renal hypoplasia, and renal interstitial fibrosis. In the embryonic kidney, HNF-1β is required for ureteric bud branching, initiation of nephrogenesis, and nephron segmentation. Ablation of mouse Hnf1b in nephron progenitors causes defective tubulogenesis, whereas later inactivation in elongating tubules leads to cyst formation due to downregulation of cystic disease genes, including Umod, Pkhd1, and Pkd2. In the adult kidney, HNF-1β controls the expression of genes required for intrarenal metabolism and solute transport by tubular epithelial cells. Tubular abnormalities observed in HNF-1β nephropathy include hyperuricemia with or without gout, hypokalemia, hypomagnesemia, and polyuria. Recent studies have identified novel post-transcriptional and post-translational regulatory mechanisms that control HNF-1β expression and activity, including the miRNA cluster miR17 ∼ 92 and the interacting proteins PCBD1 and zyxin. Further understanding of the molecular mechanisms upstream and downstream of HNF-1β may lead to the development of new therapeutic approaches in cystic kidney disease and other HNF1B-related renal diseases.
Collapse
Affiliation(s)
- Silvia Ferrè
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Texas, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Medicine, University of Minnesota Medical School, 420 Delaware St. SE, MMC 194, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Sander V, Salleh L, Naylor RW, Schierding W, Sontam D, O’Sullivan JM, Davidson AJ. Transcriptional profiling of the zebrafish proximal tubule. Am J Physiol Renal Physiol 2019; 317:F478-F488. [DOI: 10.1152/ajprenal.00174.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hepatocyte nuclear factor-1β (Hnf1b) transcription factor is a key regulator of kidney tubule formation and is associated with a syndrome of renal cysts and early onset diabetes. To further our understanding of Hnf1b in the developing zebrafish kidney, we performed RNA sequencing analysis of proximal tubules from hnf1b-deficient larvae. This analysis revealed an enrichment of gene transcripts encoding transporters of the solute carrier (SLC) superfamily, including multiple members of slc2 and slc5 glucose transporters. An investigation of expression of slc2a1a, slc2a2, and slc5a2 as well as a poorly studied glucose/mannose transporter encoded by slc5a9 revealed that these genes undergo dynamic spatiotemporal changes during tubule formation and maturation. A comparative analysis of zebrafish SLC genes with those expressed in mouse proximal tubules showed a substantial overlap at the level of gene families, indicating a high degree of functional conservation between zebrafish and mammalian proximal tubules. Taken together, our findings are consistent with a role for Hnf1b as a critical determinant of proximal tubule transport function by acting upstream of a large number of SLC genes and validate the zebrafish as a physiologically relevant model of the mammalian proximal tubule.
Collapse
Affiliation(s)
- Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Liam Salleh
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Richard W. Naylor
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | - Dharani Sontam
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Liu Y, Hu Y, Ni D, Liu J, Xia H, Xu L, Zhou Q, Xie Y. miR-194 regulates the proliferation and migration via targeting Hnf1β in mouse metanephric mesenchyme cells. In Vitro Cell Dev Biol Anim 2019; 55:512-521. [PMID: 31144266 DOI: 10.1007/s11626-019-00366-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Hepatocyte nuclear factor-1β (Hnf1β) is associated with early embryogenesis failure, renal cysts, and/or diabetes. However, factors regulating Hnf1β expression in metanephric mesenchyme cells remain poorly understood. Here, we analyzed the modulation relationship of Hnf1β and miR-194 in mouse metanephric mesenchyme (MM) cells. Bioinformatics analysis, luciferase assay and semi-quantitative real-time (qPCR), western blotting, 5-ethynyl-2'-deoxyuridine cell proliferation assay, wound healing assay, and flow cytometry were employed to detect the function of miR-194 by targeting on Hnf1β in mouse MM cells. Bioinformatic prediction revealed one conserved binding site (CAGTATT) of miR-194 on Hnf1β 3'-UTR and luciferase reporter assay suggested that this is an effective target site of miR-194, and mutating CAGTATT with CGTACTT had no effects on luciferase activity compared with control. Overexpression of miR-194 decreased Hnf1β mRNA and protein level in mouse MM cells. In addition, miR-194-decreased cell proliferation and miR-194-promoted cell apoptosis and migration were reversed by overexpression of Hnf1β coding region. In addition, Hnf1β-upregulated genes were decreased in miR-194 overexpression cells and rescued in miR-194 and Hnf1β CDS region co-overexpression cells. Our findings explored one new regulator of Hnf1β and revealed the function of their regulation in cell proliferation, migration, and apoptosis in mouse metanephric mesenchyme cells. For strict regulation of Hnf1β in kidney development, these findings provide theoretical guidance for kidney development study and kidney disease therapy.
Collapse
Affiliation(s)
- Yamin Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yanxia Hu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dongsheng Ni
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianing Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hua Xia
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lei Xu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qin Zhou
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yajun Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
29
|
Adalat S, Hayes WN, Bryant WA, Booth J, Woolf AS, Kleta R, Subtil S, Clissold R, Colclough K, Ellard S, Bockenhauer D. HNF1B Mutations Are Associated With a Gitelman-like Tubulopathy That Develops During Childhood. Kidney Int Rep 2019; 4:1304-1311. [PMID: 31517149 PMCID: PMC6732753 DOI: 10.1016/j.ekir.2019.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Mutations in the transcription factor hepatocyte nuclear factor 1B (HNF1B) are the most common inherited cause of renal malformations, yet also associated with renal tubular dysfunction, most prominently magnesium wasting with hypomagnesemia. The presence of hypomagnesemia has been proposed to help select appropriate patients for genetic testing. Yet, in a large cohort, hypomagnesemia was discriminatory only in adult, but not in pediatric patients. We therefore investigated whether hypomagnesemia and other biochemical changes develop with age. Methods We performed a retrospective analysis of clinical, biochemical, and genetic results of pediatric patients with renal malformations tested for HNF1B mutations, separated into 4 age groups. Values were excluded if concurrent estimated glomerular filtration rate (eGFR) was <30 ml/min per 1.73 m2, or after transplantation. Results A total of 199 patients underwent HNF1B genetic testing and mutations were identified in 52 (mut+). The eGFRs were comparable between mut+ and mut- in any age group. Although median plasma magnesium concentrations differed significantly between mut+ and mut- patients in all age groups, overt hypomagnesemia was not present until the second half of childhood in the mut+ group. There was also a significant difference in median potassium concentrations in late childhood with lower values in the mut+ cohort. Conclusions The abnormal tubular electrolyte handling associated with HNF1B mutations develops with age and is not restricted to magnesium, but consistent with a more generalized dysfunction of the distal convoluted tubule, reminiscent of Gitelman syndrome. The absence of these abnormalities in early childhood should not preclude HNF1B mutations from diagnostic considerations.
Collapse
Affiliation(s)
- Shazia Adalat
- Evelina Children’s Hospital, London, United Kingdom
- UCL Department of Renal Medicine, London, United Kingdom
| | - Wesley N. Hayes
- UCL Department of Renal Medicine, London, United Kingdom
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - William A. Bryant
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - John Booth
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, United Kingdom
- Royal Manchester Children’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Robert Kleta
- UCL Department of Renal Medicine, London, United Kingdom
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | | | - Rhian Clissold
- Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Kevin Colclough
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Detlef Bockenhauer
- UCL Department of Renal Medicine, London, United Kingdom
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- Correspondence: Detlef Bockenhauer, UCL Department of Renal Medicine, London WC1N 3JH, United Kingdom.
| |
Collapse
|
30
|
Kurtzeborn K, Cebrian C, Kuure S. Regulation of Renal Differentiation by Trophic Factors. Front Physiol 2018; 9:1588. [PMID: 30483151 PMCID: PMC6240607 DOI: 10.3389/fphys.2018.01588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Classically, trophic factors are considered as proteins which support neurons in their growth, survival, and differentiation. However, most neurotrophic factors also have important functions outside of the nervous system. Especially essential renal growth and differentiation regulators are glial cell line-derived neurotrophic factor (GDNF), bone morphogenetic proteins (BMPs), and fibroblast growth factors (FGFs). Here we discuss how trophic factor-induced signaling contributes to the control of ureteric bud (UB) branching morphogenesis and to maintenance and differentiation of nephrogenic mesenchyme in embryonic kidney. The review includes recent advances in trophic factor functions during the guidance of branching morphogenesis and self-renewal versus differentiation decisions, both of which dictate the control of kidney size and nephron number. Creative utilization of current information may help better recapitulate renal differentiation in vitro, but it is obvious that significantly more basic knowledge is needed for development of regeneration-based renal therapies.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - Cristina Cebrian
- Developmental Biology Division, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Chan SC, Zhang Y, Shao A, Avdulov S, Herrera J, Aboudehen K, Pontoglio M, Igarashi P. Mechanism of Fibrosis in HNF1B-Related Autosomal Dominant Tubulointerstitial Kidney Disease. J Am Soc Nephrol 2018; 29:2493-2509. [PMID: 30097458 DOI: 10.1681/asn.2018040437] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mutation of HNF1B, the gene encoding transcription factor HNF-1β, is one cause of autosomal dominant tubulointerstitial kidney disease, a syndrome characterized by tubular cysts, renal fibrosis, and progressive decline in renal function. HNF-1β has also been implicated in epithelial-mesenchymal transition (EMT) pathways, and sustained EMT is associated with tissue fibrosis. The mechanism whereby mutated HNF1B leads to tubulointerstitial fibrosis is not known. METHODS To explore the mechanism of fibrosis, we created HNF-1β-deficient mIMCD3 renal epithelial cells, used RNA-sequencing analysis to reveal differentially expressed genes in wild-type and HNF-1β-deficient mIMCD3 cells, and performed cell lineage analysis in HNF-1β mutant mice. RESULTS The HNF-1β-deficient cells exhibited properties characteristic of mesenchymal cells such as fibroblasts, including spindle-shaped morphology, loss of contact inhibition, and increased cell migration. These cells also showed upregulation of fibrosis and EMT pathways, including upregulation of Twist2, Snail1, Snail2, and Zeb2, which are key EMT transcription factors. Mechanistically, HNF-1β directly represses Twist2, and ablation of Twist2 partially rescued the fibroblastic phenotype of HNF-1β mutant cells. Kidneys from HNF-1β mutant mice showed increased expression of Twist2 and its downstream target Snai2. Cell lineage analysis indicated that HNF-1β mutant epithelial cells do not transdifferentiate into kidney myofibroblasts. Rather, HNF-1β mutant epithelial cells secrete high levels of TGF-β ligands that activate downstream Smad transcription factors in renal interstitial cells. CONCLUSIONS Ablation of HNF-1β in renal epithelial cells leads to the activation of a Twist2-dependent transcriptional network that induces EMT and aberrant TGF-β signaling, resulting in renal fibrosis through a cell-nonautonomous mechanism.
Collapse
Affiliation(s)
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota; and
| | | | | | | | | | - Marco Pontoglio
- Department of Development, Reproduction and Cancer, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016/Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris-Descartes, Paris, France
| | | |
Collapse
|
32
|
Kimber SJ, Woolf AS. From human pluripotent stem cells to functional kidney organoids and models of renal disease. Stem Cell Investig 2018; 5:20. [PMID: 30148153 DOI: 10.21037/sci.2018.07.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
33
|
Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, Shih JH, Wolvetang EJ, McMahon AP, Holm TM, Davidson AJ. A Simple Bioreactor-Based Method to Generate Kidney Organoids from Pluripotent Stem Cells. Stem Cell Reports 2018; 11:470-484. [PMID: 30033089 PMCID: PMC6092837 DOI: 10.1016/j.stemcr.2018.06.018] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Kidney organoids made from pluripotent stem cells have the potential to revolutionize how kidney development, disease, and injury are studied. Current protocols are technically complex, suffer from poor reproducibility, and have high reagent costs that restrict scalability. To overcome some of these issues, we have established a simple, inexpensive, and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells. Our organoids develop tubular structures by day 8 and show optimal tissue morphology at day 14. A comparison with fetal human kidneys suggests that day-14 organoid tissue most closely resembles late capillary loop stage nephrons. We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology. Taken together, our protocol provides a fast, efficient, and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development. Technically simple and cost-efficient protocol for kidney organoid generation Tubular organoids are obtained rapidly, with high efficiency, yield, and robustness Organoids contain nephrons that correspond to human fetal nephrons The applicability to model congenital kidney defects is presented
Collapse
Affiliation(s)
- Aneta Przepiorski
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer A Hollywood
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Brie Sorrenson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Jen-Hsing Shih
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Teresa M Holm
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
34
|
Systematic analysis of copy number variation associated with congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2018; 115:5247-5252. [PMID: 29712845 PMCID: PMC5960281 DOI: 10.1073/pnas.1714885115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX, LHX1, and HNF1B We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects.
Collapse
|