1
|
Kang Z, Xu C, Lu S, Gong J, Yan R, Luo G, Wang Y, He Q, Wu Y, Yan Y, Qian B, Han S, Bu Z, Zhang J, Xia X, Chen L, Hu Z, Lin M, Sun Z, Gu Y, Ye L. NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit. Nat Commun 2025; 16:791. [PMID: 39824811 DOI: 10.1038/s41467-024-55579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes. NKAPL binds to promoter-associated nascent transcripts and co-localizes with DNA-RNA hybrid R-loop structures at GAA-rich loci to enhance R-loop formation and facilitate Pol II pause-release. NKAPL depletion prolongs Pol II pauses and stalls the SOX30/HDAC3 transcription initiation complex on the chromatin. Genetic variants in NKAPL are associated with azoospermia in humans, while mice carrying an NKAPL frameshift mutation (M349fs) show defective meiotic exit and transcriptomic changes similar to NKAPL depletion. These findings identify NKAPL as an R-loop-recognizing factor that regulates transcription elongation, which coordinates the meiotic-to-postmeiotic transcriptome switch in alliance with the SOX30/HDAC3-mediated transcription initiation.
Collapse
Affiliation(s)
- Zhenlong Kang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jie Gong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Gan Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qing He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zhiwen Bu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xian Xia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Suzhou, Jiangsu, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Chu WK, Huang SC, Chang CF, Wu JL, Gong HY. Migration of primordial germ cells and their relationship of PGCs with sex development in transgenic germline-specific fluorescent freshwater angelfish (Pterophyllum scalare). Sci Rep 2025; 15:1308. [PMID: 39779963 PMCID: PMC11711190 DOI: 10.1038/s41598-025-85480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Primordial germ cells (PGCs), the progenitors of gametes, are essential for teleost reproduction. While their formation is conserved across teleosts, the activation, migration routes, and localization periods vary among species. In this study, we developed a novel transgenic line, Tg(ddx4:TcCFP13-nanos3), based on the Nile tilapia genome, to label PGCs with clear fluorescent signals in the freshwater angelfish (Pterophyllum scalare). Our findings reveal a complex, multistage PGCs migration process in angelfish, with a significantly extended localization period (168 hpf) compared to zebrafish (24 hpf). Notably, individual differences in PGCs abundance were observed during early somite development. Analysis of PGCs counts and subsequent sexual maturation demonstrate a potential correlation between PGCs abundance and sex determination: 90% of PGCs-reduced individuals developed as males, while 83% of PGCs-rich individuals developed as females. This study provides a foundation for understanding PGCs migration and sex development in freshwater angelfish, offering valuable insights into reproductive biology and ornamental fish species. Furthermore, this in vivo PGCs tracking system for Cichlids provides a versatile tool for advancing research and applications in germ cell biology.
Collapse
Affiliation(s)
- Wai-Kwan Chu
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Shih-Chin Huang
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Fisheries Research Institute, Kinmen County, 893, Taiwan
| | - Ching-Fong Chang
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
- College of Life Sciences, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Hong-Yi Gong
- Marine Molecular Genetics & Biotechnology Laboratory, Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
3
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Pieplow C, Furze A, Gregory P, Oulhen N, Wessel GM. Sex specific gene expression is present prior to metamorphosis in the sea urchin. Dev Biol 2025; 517:217-233. [PMID: 39427857 DOI: 10.1016/j.ydbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A profound collaboration between the germline and somatic cells of an organism is the creation of a functional gonad. Here we establish a foundation for studying molecular gonadogenesis in the sea urchin by use of RNA-seq, quantitative mRNA measurements, and in-situ hybridizations throughout the life cycle of the variegated sea urchin, Lytechinus variegatus (Lv). We found through three distinct analyses that the ovary and testis of this echinoderm expresses unique transcripts involved in gametogenesis, and also discovered uncharacterized gene products unique to each gonad. We further developed a pipeline integrating timepoint RNA-seq data throughout development to identify hallmark gene expression in gonads. We found that meiotic and candidate genes involved in sex determination are first expressed surprisingly early during larval growth, and well before metamorphosis. We further discovered that individual larvae express varying amounts of male- or female-hallmarks before metamorphosis, including germline, oocyte, sperm, and meiotic related genes. These distinct male- or female-gonad gene profiles may indicate the onset of, and commitment to, development of a bipotential gonad primordium, and may include metabolic differences, supported by the observation that transcripts involved in glycolysis are highly enriched in the ovary compared to the testis. Together these data support a hypothesis that sex determination is initiated prior to metamorphosis in the sea urchin and that the many uncharacterized genes unique to each gonad type characterized herein may reveal unique pathways and mechanisms in echinoderm reproduction.
Collapse
Affiliation(s)
- Cosmo Pieplow
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Aidan Furze
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Pauline Gregory
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular, Cellular Biology and Biochemistry, BioMed Division, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
5
|
Carroll SH, Schafer S, Kawasaki K, Tsimbal C, Julé AM, Hallett SA, Li E, Liao EC. Genetic requirement of dact1/2 to regulate noncanonical Wnt signaling and calpain 8 during embryonic convergent extension and craniofacial morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566024. [PMID: 37986847 PMCID: PMC10659360 DOI: 10.1101/2023.11.07.566024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar convergent extension defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2 specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Over-expression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
| | - Kenta Kawasaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Casey Tsimbal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shawn A Hallett
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Edward Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| |
Collapse
|
6
|
Wang Y, Xiang M, Zhou Y, Zheng N, Zhang J, Zha X, Duan Z, Wang F, Zhang Y, Wang Z, Cao Y, Zhu F. Novel and recurrent hemizygous variants in BCORL1 cause oligoasthenoteratozoospermia by interfering transcription. Andrology 2024. [PMID: 39189935 DOI: 10.1111/andr.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Oligoasthenoteratozoospermia (OAT) is a common cause of male infertility, of which the causes remain largely unknown. Recently, BCORL1 was identified as a contributor to male infertility from non-obstructive azoospermia (NOA) to OAT. OBJECTIVES To identify novel and hotspot variants in BCORL1 from infertile men with OAT and reveal their outcomes of assisted reproductive treatments (ARTs). MATERIALS AND METHODS Forty-six infertile men characterized by OAT were recruited from 2017 to 2022. Variants in OAT patients were identified by whole-exome sequencing (WES) and verified by Sanger sequencing. Papanicolaou staining was used for sperm morphology analysis. Pathogenicity of BCORL1 variants were analyzed by bioinformatics analysis, and further confirmed in vitro by using recombinant plasmids and cells. Meanwhile, ARTs were performed on these patients to investigate the appropriate clinical treatment strategy. RESULTS We identified a novel hemizygous missense variant (NM_021946: c.G4171A; p.G1391R) and a recurrent variant (NM_021946: c.T2615G; p.V872G) in BCORL1 from four OAT patients. Notably, routine semen assessment and Papanicolaou staining revealed a special OAT phenotype of patients with BCORL1 variants, whose rare mature sperm characterized by acephalic and abnormal acrosome. Pathogenicity analysis showed the interaction between BCORL1 with histone deacetylases (HDACs) were disrupted after variance, accompanied with epigenetic alterations and finally the orderly transcriptions of spermatogenetic genes were interfering. Besides, clinical record presented the poor outcomes of ARTs in these patients with BCORL1 variants. DISCUSSION AND CONCLUSIONS Our findings further expand the variant spectrum of BCORL1 related to OAT, and provide new evidences that BCORL1 acts as an important transcriptional regulator, participating in epigenetic regulation and directing the expression of key genes throughout spermatogenesis. The outcomes of ARTs will facilitate the genetic counseling and clinical treatment of infertile men with BCORL1 variants in the future.
Collapse
Affiliation(s)
- Yu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Mingfei Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yiru Zhou
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Na Zheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Zha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhongxin Wang
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| |
Collapse
|
7
|
Zhang Y, Yang A, Zhao Z, Chen F, Yan X, Han Y, Wu D, Wu Y. Protein disulfide isomerase is essential for spermatogenesis in mice. JCI Insight 2024; 9:e177743. [PMID: 38912589 PMCID: PMC11383184 DOI: 10.1172/jci.insight.177743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.
Collapse
Affiliation(s)
- Yaqiong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Zhenzhen Zhao
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Xiaofeng Yan
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Arefnejad B, Zeinalabedini M, Talebi R, Mardi M, Ghaffari MR, Vahidi MF, Nekouei MK, Szmatoła T, Salekdeh GH. Unveiling the population genetic structure of Iranian horses breeds by whole-genome resequencing analysis. Mamm Genome 2024; 35:201-227. [PMID: 38520527 DOI: 10.1007/s00335-024-10035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Preserving genetic diversity is pivotal for enhancing genetic improvement and facilitating adaptive responses to selection. This study focuses on identifying key genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs), while exploring the genomic evolutionary connectedness among seven Iranian horses representing five indigenous breeds: Caspian, Turkemen, DareShuri, Kurdish, and Asil. Using whole-genome resequencing, we generated 2.7 Gb of sequence data, with raw reads ranging from 1.2 Gb for Caspian horses to 0.38 Gb for Turkoman horses. Post-filtering, approximately 1.9 Gb of reads remained, with ~ 1.5 Gb successfully mapped to the horse reference genome (EquCab3.0), achieving mapping rates between 76.4% (Caspian) and 98.35% (Turkoman). We identified 2,909,816 SNPs in Caspian horses, constituting around 0.1% of the genome. Notably, 71% of these SNPs were situated in intergenic regions, while 8.5 and 6.8% were located upstream and downstream, respectively. A comparative analysis of SNPs between Iranian and non-Iranian horse breeds showed that Caspian horses had the lowest number of shared SNPs with Turkoman horses. Instead, they showed a closer genetic relationship with DareShuri, Quarter, Arabian, Standardbred, and Asil breeds. Hierarchical clustering highlighted Caspian horses as a distinct cluster, underscoring their distinctive genomic signature. Caspian horses exhibit a unique genetic profile marked by an enrichment of private mutations in neurological genes, influencing sensory perception and awareness. This distinct genetic makeup shapes mating preferences and signifies a separate evolutionary trajectory. Additionally, significant non-synonymous single nucleotide polymorphisms (nsSNPs) in reproductive genes offer intervention opportunities for managing Caspian horses. These findings reveal the population genetic structure of Iranian horse breeds, contributing to the advancement of knowledge in areas such as conservation, performance traits, climate adaptation, reproduction, and resistance to diseases in equine science.
Collapse
Affiliation(s)
- Babak Arefnejad
- Department of Animal Science, University of Tehran, Karaj, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Reza Talebi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Farhad Vahidi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Tomasz Szmatoła
- Centre of Experimental and Innovative Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059, Kraków, Poland
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32‑083, Balice, Poland
| | | |
Collapse
|
9
|
Han C. Gene expression programs in mammalian spermatogenesis. Development 2024; 151:dev202033. [PMID: 38691389 DOI: 10.1242/dev.202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Mammalian spermatogenesis, probably the most complex of all cellular developmental processes, is an ideal model both for studying the specific mechanism of gametogenesis and for understanding the basic rules governing all developmental processes, as it entails both cell type-specific and housekeeping molecular processes. Spermatogenesis can be viewed as a mission with many tasks to accomplish, and its success is genetically programmed and ensured by the collaboration of a large number of genes. Here, I present an overview of mammalian spermatogenesis and the mechanisms underlying each step in the process, covering the cellular and molecular activities that occur at each developmental stage and emphasizing their gene regulation in light of recent studies.
Collapse
Affiliation(s)
- Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101 Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
10
|
Diawara M, Martin LJ. Regulatory mechanisms of SoxD transcription factors and their influences on male fertility. Reprod Biol 2023; 23:100823. [PMID: 37979495 DOI: 10.1016/j.repbio.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Members of the SRY-related box (SOX) subfamily D (SoxD) of transcription factors are well conserved among vertebrate species and play important roles in different stages of male reproductive development. In mammals, the SoxD subfamily contains three members: SOX5, SOX6 and SOX13. Here, we describe their implications in testicular development and spermatogenesis, contributing to fertility. We also cover the mechanisms of action of SoxD transcription factors in gene regulation throughout male development. The specificity of activation of target genes by SoxD members depends, in part, on their post-translational modifications and interactions with other partners. Sperm production in adult males requires the coordination in the regulation of gene expression by different members of the SoxD subfamily of transcription factors in the testis. Specifically, the regulation of genes promoting adequate spermatogenesis by SoxD members is discussed in comparison between species.
Collapse
Affiliation(s)
- Mariama Diawara
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada.
| |
Collapse
|
11
|
Xu W, Yao Z, Li Y, Wang K, Kong S, Wang Y, Xiang M, Zhu F, Wang F, Zhang H. Loss of PMFBP1 Disturbs Mouse Spermatogenesis by Downregulating HDAC3 Expression. J Assist Reprod Genet 2023; 40:1865-1879. [PMID: 37423931 PMCID: PMC10371971 DOI: 10.1007/s10815-023-02874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE Polyamine modulating factor 1 binding protein (PMFBP1) acts as a scaffold protein for the maintenance of sperm structure. The aim of this study was further to identify the new role and molecular mechanism of PMFBP1 during mouse spermatogenesis. METHODS AND RESULTS We identified a profile of proteins interacting with PMFBP1 by immunoprecipitation combined with mass spectrometry and demonstrated that class I histone deacetylases, particularly HDAC3 and chaperonin-containing TCP1 subunit 3 (CCT3), were potential interaction partners of PMFBP1 based on network analysis of protein-protein interactions and co-immunoprecipitation. Immunoblotting and immunochemistry assays showed that loss of Pmfbp1 would result in a decline in HDACs and change the proteomic profile of mouse testis, in which differently expressed proteins are associated with spermatogenesis and assembly of flagella, which was proved by proteomic analysis of testis tissue obtained from Pmfbp1-/- mice. After integrating with transcriptome data for Hdac3-/- and Sox30-/- round sperm obtained from a public database, RT-qPCR confirmed ring finger protein 151 (Rnf151) and ring finger protein 133 (Rnf133) were key downstream response factors of the Pmfbp1-Hdac axis affecting mouse spermatogenesis. CONCLUSION Taken together, this study indicates a previously unidentified molecular mechanism of PMFBP1 in spermatogenesis whereby PMFBP1 interacts with CCT3, affecting the expression of HDAC3, followed by the downregulation of RNF151 and RNF133, resulting in an abnormal phenotype of sperm beyond the headless sperm tails. These findings not only advance our understanding of the function of Pmfbp1 in mouse spermatogenesis but also provide a typical case for multi-omics analysis used in the functional annotation of specific genes.
Collapse
Affiliation(s)
- Weilong Xu
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Zhoujuan Yao
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yunzhi Li
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Ke Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
- Reproductive Medicine Center, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Mingfei Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
| | - Hui Zhang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
12
|
Zhang GW, Wang L, Wu J, Ye Y, Zhao J, Du Y, Tu Y, Luo Z, Fu S, Zuo F. Evaluation of MYBL1 as the master regulator for pachytene spermatocyte genes dysregulated in interspecific hybrid dzo. J Dairy Sci 2023; 106:4366-4379. [PMID: 37059660 DOI: 10.3168/jds.2022-22963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 04/16/2023]
Abstract
Misregulation of spermatogenesis transcription factors (TF) in hybrids can lead to misexpression, which is a mechanism for hybrid male sterility (HMS). We used dzo (male offspring of Bos taurus ♂ × Bos grunniens ♀) in bovines to investigate the relationship of the key TF with HMS via RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses. RNA sequencing showed that the widespread misexpression in dzo was associated with spermatogenesis-related genes and somatic or progenitor genes. The transition from leptotene or zygotene spermatocytes to pachytene spermatocytes may be the key stage for meiosis arrest in dzo. The analysis of TF-binding motif enrichment revealed that the male meiosis-specific master TF MYB proto-oncogene like 1 (MYBL1, known as A-MYB) motif was enriched on the promoters of downregulated pachytene spermatocyte genes in dzo. Assay for transposase-accessible chromatin with high-throughput sequencing revealed that TF-binding sites for MYBL1, nuclear transcription factor Y, and regulatory factor X were enriched in the low-chromatin accessibility region of dzo. The target genes of the MYBL1-binding motif were associated with meiosis-specific genes and significantly downregulated in dzo testis. The transcription factor MYBL1 may be the candidate master regulator for pachytene spermatocyte genes dysregulated in interspecific HMS dzo. This study reported that a few upstream TF regulation changes might exert a cascading effect downstream in a regulatory network as a mechanism for HMS.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China.
| | - Ling Wang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China
| | - Jingjing Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yiru Ye
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yanan Du
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yun Tu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Zonggang Luo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Shubing Fu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China.
| |
Collapse
|
13
|
Testis-expressed gene 11 inhibits cisplatin-induced DNA damage and contributes to chemoresistance in testicular germ cell tumor. Sci Rep 2022; 12:18423. [PMID: 36319719 PMCID: PMC9626550 DOI: 10.1038/s41598-022-21856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Testicular germ cell tumor (TGCT) is a rare cancer but the most common tumor among adolescent and young adult males. Patients with advanced TGCT often exhibit a worse prognosis due to the acquisition of therapeutic resistance. Cisplatin-based chemotherapy is a standard treatment for advanced TGCTs initially sensitive to cisplatin, as exemplified by embryonal carcinoma. The acquisition of cisplatin resistance, however, could be a fatal obstacle for TGCT management. To identify cisplatin resistance-related genes, we performed transcriptome analysis for cisplatin-resistant TGCT cells compared to parental cells. In two types of cisplatin-resistant TGCT cell models that we established from patient-derived TGCT cells, and from the NEC8 cell line, we found that mRNA levels of the high-mobility-group nucleosome-binding gene HMGN5 and meiosis-related gene TEX11 were remarkably upregulated compared to those in the corresponding parental cells. We showed that either HMGN5 or TEX11 knockdown substantially reduced the viability of cisplatin-resistant TGCT cells in the presence of cisplatin. Notably, TEX11 silencing in cisplatin-resistant TGCT cells increased the level of cleaved PARP1 protein, and the percentage of double-strand break marker γH2AX-positive cells. We further demonstrated the therapeutic efficiency of TEX11-specific siRNA on in vivo xenograft models derived from cisplatin-resistant patient-derived TGCT cells. Taken together, the present study provides a potential insight into a mechanism of cisplatin resistance via TEX11-dependent pathways that inhibit apoptosis and DNA damage. We expect that our findings can be applied to the improvement of cisplatin-based chemotherapy for TGCT, particularly for TEX11-overexpressing tumor.
Collapse
|
14
|
Sakamoto M, Ito D, Inoue R, Wakayama S, Kikuchi Y, Yang L, Hayashi E, Emura R, Shiura H, Kohda T, Namekawa SH, Ishiuchi T, Wakayama T, Ooga M. Paternally inherited H3K27me3 affects chromatin accessibility in mouse embryos produced by round spermatid injection. Development 2022; 149:276384. [DOI: 10.1242/dev.200696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Daiyu Ito
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rei Inoue
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Yasuyuki Kikuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Li Yang
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Erika Hayashi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rina Emura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Hirosuke Shiura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Takashi Kohda
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Satoshi H. Namekawa
- University of California Davis 3 Department of Microbiology and Molecular Genetics , , Davis, CA 95616 , USA
| | - Takashi Ishiuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Masatoshi Ooga
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| |
Collapse
|
15
|
Wei L, Tang Y, Zeng X, Li Y, Zhang S, Deng L, Wang L, Wang D. The transcription factor Sox30 is involved in Nile tilapia spermatogenesis. J Genet Genomics 2021; 49:666-676. [PMID: 34801758 DOI: 10.1016/j.jgg.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
Spermatogenesis is a complex process in which spermatogonial stem cells differentiate and develop into mature spermatozoa. The transcriptional regulatory network involved in fish spermatogenesis remains poorly understood. Here, we demonstrate in Nile tilapia that the Sox transcription factor family member Sox30 is specifically expressed in the testes and mainly localizes to spermatocytes and spermatids. CRISPR/Cas9-mediated sox30 mutation results in abnormal spermiogenesis, reduction of sperm motility, and male subfertility. Comparative transcriptome analysis shows that sox30 mutation alters the expression of genes involved in spermatogenesis. Further chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), ChIP-PCR, and luciferase reporter assays reveal that Sox30 positively regulates the transcription of ift140 and ptprb, two genes involved in spermiogenesis, by directly binding to their promoters. Taken together, our data indicate that Sox30 plays essential roles in Nile tilapia spermatogenesis by directly regulating the transcription of the spermiogenesis-related genes ift140 and ptprb.
Collapse
Affiliation(s)
- Ling Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yaohao Tang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianhai Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yueqin Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Song Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Deng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingsong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Ho UY, Feng CWA, Yeap YY, Bain AL, Wei Z, Shohayeb B, Reichelt ME, Homer H, Khanna KK, Bowles J, Ng DCH. WDR62 is required for centriole duplication in spermatogenesis and manchette removal in spermiogenesis. Commun Biol 2021; 4:645. [PMID: 34059773 PMCID: PMC8167107 DOI: 10.1038/s42003-021-02171-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction. Uda Ho et al find that loss of centriolar scaffold protein WDR62 in mouse testis leads to defects in spermatogenesis. They find that WDR62 deficiency leads to centriole underduplication in spermatocytes and delayed manchette removal in spermatids due to delayed Katanin p80 accumulation.
Collapse
Affiliation(s)
- Uda Y Ho
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Chun-Wei Allen Feng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Y Yeap
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda L Bain
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zhe Wei
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hayden Homer
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Yin H, Kang Z, Zhang Y, Gong Y, Liu M, Xue Y, He W, Wang Y, Zhang S, Xu Q, Fu K, Zheng B, Xie J, Zhang J, Wang Y, Lin M, Zhang Y, Feng H, Xin C, Guan Y, Huang C, Guo X, Wang P, Baur JA, Zheng K, Sun Z, Ye L. HDAC3 controls male fertility through enzyme-independent transcriptional regulation at the meiotic exit of spermatogenesis. Nucleic Acids Res 2021; 49:5106-5123. [PMID: 33939832 PMCID: PMC8136829 DOI: 10.1093/nar/gkab313] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome. Among histone deacetylases (HDACs) and acetyltransferases, we find that HDAC3 is selectively expressed in the late meiotic and early haploid stages. Three independent mouse lines with the testis-specific knockout of HDAC3 show infertility and defects in meiotic exit with an arrest at the late stage of meiosis or early stage of round spermatids. Stage-specific RNA-seq and histone acetylation ChIP-seq analyses reveal that HDAC3 represses meiotic/spermatogonial genes and activates postmeiotic haploid gene programs during meiotic exit, with associated histone acetylation alterations. Unexpectedly, abolishing HDAC3 catalytic activity by missense mutations in the nuclear receptor corepressor (NCOR or SMRT) does not cause infertility, despite causing histone hyperacetylation as HDAC3 knockout, demonstrating that HDAC3 enzyme activity is not required for spermatogenesis. Motif analysis of the HDAC3 cistrome in the testes identified SOX30, which has a similar spatiotemporal expression pattern as HDAC3 during spermatogenesis. Depletion of SOX30 in the testes abolishes the genomic recruitment of the HDAC3 to the binding sites. Collectively, these results establish the SOX30/HDAC3 signaling as a key regulator of the transcriptional program in a deacetylase-independent manner during the meiotic-to-postmeiotic transition in spermatogenesis.
Collapse
Affiliation(s)
- Huiqi Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingyun Gong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Mengrou Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yanfeng Xue
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenxiu He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Bangjin Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yihan Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences
| | - Hua Feng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences
| | - Changpeng Xin
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Peoples' Republic of China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Peoples' Republic of China
| | - Chaoyang Huang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, People's Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
18
|
Takada Y, Yaman-Deveci R, Shirakawa T, Sharif J, Tomizawa SI, Miura F, Ito T, Ono M, Nakajima K, Koseki Y, Shiotani F, Ishiguro KI, Ohbo K, Koseki H. Maintenance DNA methylation in pre-meiotic germ cells regulates meiotic prophase by facilitating homologous chromosome pairing. Development 2021; 148:264927. [PMID: 33998651 DOI: 10.1242/dev.194605] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/14/2021] [Indexed: 11/20/2022]
Abstract
Heterochromatin-related epigenetic mechanisms, such as DNA methylation, facilitate pairing of homologous chromosomes during the meiotic prophase of mammalian spermatogenesis. In pro-spermatogonia, de novo DNA methylation plays a key role in completing meiotic prophase and initiating meiotic division. However, the role of maintenance DNA methylation in the regulation of meiosis, especially in the adult, is not well understood. Here, we reveal that NP95 (also known as UHRF1) and DNMT1 - two essential proteins for maintenance DNA methylation - are co-expressed in spermatogonia and are necessary for meiosis in male germ cells. We find that Np95- or Dnmt1-deficient spermatocytes exhibit spermatogenic defects characterized by synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in both mutants. Based on these observations, we propose that DNA methylation, established in pre-meiotic spermatogonia, regulates synapsis of homologous chromosomes and, in turn, quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role in ensuring faithful transmission of both genetic and epigenetic information to offspring.
Collapse
Affiliation(s)
- Yuki Takada
- RIKEN Center for Integrative Medical Sciences (IMS), Developmental Genetics Laboratory, Yokohama 230-0045, Kanagawa, Japan.,Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ruken Yaman-Deveci
- RIKEN Center for Integrative Medical Sciences (IMS), Developmental Genetics Laboratory, Yokohama 230-0045, Kanagawa, Japan
| | - Takayuki Shirakawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Kanagawa, Japan
| | - Jafar Sharif
- RIKEN Center for Integrative Medical Sciences (IMS), Developmental Genetics Laboratory, Yokohama 230-0045, Kanagawa, Japan.,AMED-CREST, Yokohama 230-0045, Kanagawa, Japan
| | - Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Kanagawa, Japan
| | - Fumihito Miura
- Department of Medical Biochemistry, Kyushu University Faculty of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Medical Biochemistry, Kyushu University Faculty of Medical Sciences, Fukuoka 812-8582, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Kanagawa, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Kanagawa, Japan
| | - Yoko Koseki
- RIKEN Center for Integrative Medical Sciences (IMS), Developmental Genetics Laboratory, Yokohama 230-0045, Kanagawa, Japan.,AMED-CREST, Yokohama 230-0045, Kanagawa, Japan
| | - Fuyuko Shiotani
- RIKEN Center for Integrative Medical Sciences (IMS), Developmental Genetics Laboratory, Yokohama 230-0045, Kanagawa, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Kanagawa, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences (IMS), Developmental Genetics Laboratory, Yokohama 230-0045, Kanagawa, Japan.,AMED-CREST, Yokohama 230-0045, Kanagawa, Japan
| |
Collapse
|
19
|
Han F, Yin L, Jiang X, Zhang X, Zhang N, Yang J, Ouyang W, Hao X, Liu W, Huang Y, Chen H, Gao F, Li Z, Guo Q, Cao J, Liu J. Identification of SRY-box 30 as an age-related essential gatekeeper for male germ-cell meiosis and differentiation. Aging Cell 2021; 20:e13343. [PMID: 33721419 PMCID: PMC8135013 DOI: 10.1111/acel.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Li Yin
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
- College of Pharmacy and Bioengineering Chongqing University of Technology Chongqing China
| | - Xiao Jiang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Xi Zhang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Ning Zhang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Jun‐tang Yang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
- College of Life Science Henan Normal University Henan China
| | - Wei‐ming Ouyang
- Office of Biotechnology Products Center for Drug Evaluation and Research U.S. Food and Drug Administration Pittsburgh PA USA
| | - Xiang‐lin Hao
- Department of Pathology Xinqiao HospitalArmy Medical University Chongqing China
| | - Wen‐bin Liu
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Yong‐sheng Huang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Hong‐qiang Chen
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Fei Gao
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen Frederiksberg DK Denmark
| | - Zhong‐tai Li
- Department of Urology Daping HospitalArmy Medical University Chongqing China
| | - Qiao‐nan Guo
- Department of Pathology Xinqiao HospitalArmy Medical University Chongqing China
| | - Jia Cao
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Jin‐yi Liu
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| |
Collapse
|
20
|
Kim D, Hong SH, Han G, Cho C. Analysis of mouse male germ cell-specific or -predominant Tex13 family genes encoding proteins with transcriptional repressor activity. Mol Biol Rep 2021; 48:3017-3022. [PMID: 33811575 DOI: 10.1007/s11033-021-06265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Mammalian spermatogenesis is a highly organized process with successive mitotic, meiotic, and postmeiotic phases. This unique developmental process is characterized by the involvement of spermatogenic cell-specific genes. In this study, we identified and investigated testis expressed gene 13 (Tex13) family genes, consisting of Tex13a, Tex13b, Tex13c1, and Tex13d, in mice. All of these genes were transcribed specifically or predominantly in male germ cells, and their transcription was developmentally regulated. Proteins encoded by the Tex13 genes were predicted to have a conserved domain of ~ 145 amino acids. Tex13a, Tex13c1, and Tex13d encode additional C-terminal regions containing a short conserved sequence termed a zinc finger-RAN binding protein 2 (zf-RanBP2) or zf-RanBP2-like domain. As TEX13B reportedly has transcriptional repressor activity, we examined the effect of the TEX13 proteins on transcriptional regulation using a reporter assay. All of the TEX13 proteins exhibited transcriptional repressor activity. This activity was revealed to reside in the TEX13B-corresponding regions of TEX13A, TEX13C1, and TEX13D. Further, we found that the C-terminal regions of TEX13A, TEX13C1, and TEX13D also have inhibitory activities. These results suggest that male germ cell-specific or -predominant TEX13 proteins commonly function in transcriptional repression as transcription cofactors and/or RNA binding proteins.
Collapse
Affiliation(s)
- Donghyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.,Pharmbio Korea Inc, Seoul, 06775, Republic of Korea
| | - Seong Hyeon Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gwidong Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
21
|
|
22
|
Cannarella R, Salemi M, Condorelli RA, Cimino L, Giurato G, Marchese G, Cordella A, Romano C, La Vignera S, Calogero AE. SOX13 gene downregulation in peripheral blood mononuclear cells of patients with Klinefelter syndrome. Asian J Androl 2021; 23:157-162. [PMID: 33109779 PMCID: PMC7991811 DOI: 10.4103/aja.aja_37_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Klinefelter syndrome (KS) is the most common sex chromosome disorder in men. It is characterized by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of Y (SRY)-box 13 (Sox13) gene is expressed in mouse spermatogonia. In addition, it has been identified as islet cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including type 1 diabetes mellitus (DM) and primary biliary cirrhosis. Sox13 expression has never been investigated in patients with KS. In this age-matched, case-control study performed on ten patients with KS and ten controls, we found that SOX13 is significantly downregulated in peripheral blood mononuclear cells of patients with KS compared to controls. This finding might be consistent with the germ cell loss typical of patients with KS. However, the role of Sox13 in the pathogenesis of germ cell loss and humoral autoimmunity in patients with KS deserves to be further explored.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Giorgio Giurato
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Angela Cordella
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Corrado Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
23
|
Ragle JM, Aita AL, Morrison KN, Martinez-Mendez R, Saeger HN, Ashley GA, Johnson LC, Schubert KA, Shakes DC, Ward JD. The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of C. elegans spermatogenesis. Development 2020; 147:dev193862. [PMID: 33060131 PMCID: PMC7710015 DOI: 10.1242/dev.193862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
In sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Abigail L Aita
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | | | - Raquel Martinez-Mendez
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hannah N Saeger
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Guinevere A Ashley
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Londen C Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine A Schubert
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
24
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
25
|
Anitha A, Senthilkumaran B. Role of sox30 in regulating testicular steroidogenesis of common carp. J Steroid Biochem Mol Biol 2020; 204:105769. [PMID: 33065277 DOI: 10.1016/j.jsbmb.2020.105769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023]
Abstract
Expression of transcription factors is crucial for the regulation of steroidogenesis and gonadal development in fish. SRY-related box (SOX) proteins regulate gene expression of various events related to vertebrate reproduction. This study reports the role of sox30 and its influence on sox9a/b in regulating testicular steroidogenesis of the common carp, Cyprinus carpio. Tissue distribution showed predominant expression of sox30 in gonads, while gonadal ontogeny indicated significant dimorphic expression of sox30 from 120 days post hatch. Higher sox30 transcripts during the spawning season, an elevation of sox30 after human chorionic gonadotropin induction, and 11-ketotestosterone (11-KT) treatment authenticate gonadotropin dependency. Treatment of 17α-methyl-di-hydroxy-testosterone to juvenile common carp for mono-sex induction, vis-à-vis elevated sox30 expression. Sox30 protein was detected abundantly in spermatocytes and spermatid/sperm of carp testis. Transient silencing of sox30 using small interfering RNAs decreased sox9a/b expression, lead to downregulation of certain molecule/factor, transcription factor, germ/stem cell marker, and steroidogenesis-related enzyme genes. Serum testosterone and 11-KT decreased significantly upon transient silencing of sox30, in vivo. Concomitantly, a reduction in testicular microsomal 11-β hydroxysteroid dehydrogenase activity was observed. These results demonstrate the influence of sox30 as well as sox9a/b in the regulation of testicular steroidogenesis in common carp.
Collapse
Affiliation(s)
- Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
26
|
Bandara TAMK, Otsuka K, Matsubara S, Shiraishi A, Satake H, Kimura AP. A dual enhancer-silencer element, DES-K16, in mouse spermatocyte-derived GC-2spd(ts) cells. Biochem Biophys Res Commun 2020; 534:1007-1012. [PMID: 33121685 DOI: 10.1016/j.bbrc.2020.10.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/23/2022]
Abstract
The multifunctionality of genome is suggested at some loci in different species but not well understood. Here we identified a DES-K16 region in an intron of the Kctd16 gene as the chromatin highly marked with epigenetic modifications of both enhancers (H3K4me1 and H3K27ac) and silencers (H3K27me3) in mouse spermatocytes. In vitro reporter gene assay demonstrated that DES-K16 exhibited significant enhancer activity in spermatocyte-derived GC-2spd(ts) and hepatic tumor-derived Hepa1-6 cells, and a deletion of this sequence in GC-2spd(ts) cells resulted in a decrease and increase of Yipf5 and Kctd16 expression, respectively. This was consistent with increased and decreased expression of Yipf5 and Kctd16, respectively, in primary spermatocytes during testis development. While known dual enhancer-silencers exert each activity in different tissues, our data suggest that DES-K16 functions as both enhancer and silencer in a single cell type, GC-2spd(ts) cells. This is the first report on a dual enhancer-silencer element which activates and suppresses gene expression in a single cell type.
Collapse
Affiliation(s)
| | - Kai Otsuka
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Sorakugun, Kyoto, 619-0284, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Sorakugun, Kyoto, 619-0284, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seikacho, Sorakugun, Kyoto, 619-0284, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
27
|
Crespo M, Damont A, Blanco M, Lastrucci E, Kennani SE, Ialy-Radio C, Khattabi LE, Terrier S, Louwagie M, Kieffer-Jaquinod S, Hesse AM, Bruley C, Chantalat S, Govin J, Fenaille F, Battail C, Cocquet J, Pflieger D. Multi-omic analysis of gametogenesis reveals a novel signature at the promoters and distal enhancers of active genes. Nucleic Acids Res 2020; 48:4115-4138. [PMID: 32182340 PMCID: PMC7192594 DOI: 10.1093/nar/gkaa163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic regulation of gene expression is tightly controlled by the dynamic modification of histones by chemical groups, the diversity of which has largely expanded over the past decade with the discovery of lysine acylations, catalyzed from acyl-coenzymes A. We investigated the dynamics of lysine acetylation and crotonylation on histones H3 and H4 during mouse spermatogenesis. Lysine crotonylation appeared to be of significant abundance compared to acetylation, particularly on Lys27 of histone H3 (H3K27cr) that accumulates in sperm in a cleaved form of H3. We identified the genomic localization of H3K27cr and studied its effects on transcription compared to the classical active mark H3K27ac at promoters and distal enhancers. The presence of both marks was strongly associated with highest gene expression. Assessment of their co-localization with transcription regulators (SLY, SOX30) and chromatin-binding proteins (BRD4, BRDT, BORIS and CTCF) indicated systematic highest binding when both active marks were present and different selective binding when present alone at chromatin. H3K27cr and H3K27ac finally mark the building of some sperm super-enhancers. This integrated analysis of omics data provides an unprecedented level of understanding of gene expression regulation by H3K27cr in comparison to H3K27ac, and reveals both synergistic and specific actions of each histone modification.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Melina Blanco
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Sara El Kennani
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Côme Ialy-Radio
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Laila El Khattabi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Samuel Terrier
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | | | | | - Anne-Marie Hesse
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | | | - Sophie Chantalat
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Christophe Battail
- Univ. Grenoble Alpes, CEA, INSERM, Biosciences and Biotechnology Institute of Grenoble, Biology of Cancer and Infection UMR_S 1036, 38000 Grenoble, France
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS, IRIG-BGE, 38000 Grenoble, France
| |
Collapse
|
28
|
Liu Y, Wang W, Li Y, Huang Y. SOX30 confers a tumor suppressive effect in acute myeloid leukemia through inactivation of Wnt/β-catenin signaling. Mol Cell Probes 2020; 52:101578. [PMID: 32334007 DOI: 10.1016/j.mcp.2020.101578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
Recent studies suggested SRY-related high mobility group box 30 (SOX30) as a candidate tumor-promoter or tumor-inhibitor in multiple tumor types. Yet, the detailed role of SOX30 in acute myeloid leukemia (AML) has not been well studied. The present research was designed to investigate the detailed relevance of SOX30 in AML. The data of our study indicated that SOX30 expression was markedly downregulated in AML cells, a pattern associated with its hypermethylation. SOX30 overexpression caused a marked reduction in AML cell proliferation and colony formation, but it promoted AML cell apoptosis. By contrast, SOX30 depletion by small interfering RNA (siRNA)-mediated gene silencing had the opposite effect. Moreover, SOX30 overexpression markedly decreased β-catenin expression, a change that led to inactivation of Wnt/β-catenin pathway. Notably, restoration of β-catenin expression partially reversed SOX30-mediated tumor suppressive effect in AML cells. In an AML-derived mouse xenograft model, SOX30 overexpression remarkably retarded the tumor growth in vivo. Overall, these data of the study suggest a tumor-inhibition role of SOX30 in AML, and highlight a key role of SOX30/Wnt/β-catenin axis in the progression of AML.
Collapse
Affiliation(s)
- Ye Liu
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China
| | - Wei Wang
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China
| | - Yuan Li
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China
| | - Yao Huang
- Department of Oncology & Hematology, Ninth Hospital of Xi'an Affiliated to Xi 'an Jiaotong University, Xi'an, 710054, Shaanxi Province, China.
| |
Collapse
|
29
|
Fu Q, Sun Z, Yang F, Mao T, Gao Y, Wang H. SOX30, a target gene of miR-653-5p, represses the proliferation and invasion of prostate cancer cells through inhibition of Wnt/β-catenin signaling. Cell Mol Biol Lett 2019; 24:71. [PMID: 31889959 PMCID: PMC6929505 DOI: 10.1186/s11658-019-0195-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sex-determining region Y-box containing gene 30 (SOX30) is a newly identified tumor-associated gene in several types of cancer. However, whether SOX30 is involved in the development and progression of prostate cancer remains unknown. This study investigated the potential role of SOX30 in prostate cancer. METHODS Prostate cancer cell lines and a normal prostate epithelial cell line were used for the experiments. The expression of SOX30 was determined using quantitative real-time PCR and western blot analysis. The malignant cellular behaviors of prostate cancer were assessed using the Cell Counting Kit-8, colony formation and Matrigel invasion assays. The miRNA-mRNA interaction was validated using the dual-luciferase reporter assay. RESULTS SOX30 expression was lower in cells of prostate cancer lines than in cells of the normal prostate epithelial line. Its overexpression repressed the proliferation and invasion of prostate cancer cells. SOX30 was identified as a target gene of microRNA-653-5p (miR-653-5p), which is upregulated in prostate cancer tissues. MiR-653-5p overexpression decreased SOX30 expression, while its inhibition increased SOX30 expression in prostate cancer cells. MiR-653-5p inhibition also markedly restricted prostate cancer cell proliferation and invasion. SOX30 overexpression or miR-653-5p inhibition significantly reduced β-catenin expression and downregulated the activation of Wnt/β-catenin signaling. SOX30 knockdown significantly reversed the miR-653-5p inhibition-mediated inhibitory effect on the proliferation, invasion and Wnt/β-catenin signaling in prostate cancer cells. CONCLUSIONS These results reveal a tumor suppressive function for SOX30 in prostate cancer and confirmed the gene as a target of miR-653-5p. SOX30 upregulation due to miR-653-5p inhibition restricted the proliferation and invasion of prostate cancer cells, and this was associated with Wnt/β-catenin signaling suppression. These findings highlight the importance of the miR-653-5p-SOX30-Wnt/β-catenin signaling axis in prostate cancer progression.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Zhenye Sun
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Tianci Mao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Yanyao Gao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| |
Collapse
|
30
|
Han F, Jiang X, Li ZM, Zhuang X, Zhang X, Ouyang WM, Liu WB, Mao CY, Chen Q, Huang CS, Gao F, Cui ZH, Ao L, Li YF, Cao J, Liu JY. Epigenetic Inactivation of SOX30 Is Associated with Male Infertility and Offers a Therapy Target for Non-obstructive Azoospermia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:72-83. [PMID: 31835093 PMCID: PMC6926170 DOI: 10.1016/j.omtn.2019.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility. However, the etiology of NOA is largely unknown, resulting in a lack of clinical treatments. Here, we performed a comparative genome-wide profiling of DNA methylation and identified SOX30 as the most notably hyper-methylated gene at promoter in testicular tissues from NOA patients. This hyper-methylation at promoter of SOX30 directly causes its silencing of expression in NOA. The reduced levels of SOX30 expression are correlated with severity of NOA disease. Deletion of Sox30 in mice uniquely impairs testis development and spermatogenesis with complete absence of spermatozoa in testes leading to male infertility, but does not influence ovary development and female fertility. The pathology and testicular size of Sox30 null mice highly simulate those of NOA patients. Re-expression of Sox30 in Sox30 null mice at adult age reverses the pathological damage of testis and restores the spermatogenesis. The re-presented spermatozoa after re-expression of Sox30 in Sox30 null mice have the ability to start a pregnancy. Moreover, the male offspring of Sox30 re-expression Sox30 null mice still can father children, and these male offspring and their children can live normally more than 1 year without significant difference of physical appearance compared with wild-type mice. In summary, methylated inactivation of SOX30 uniquely impairs spermatogenesis, probably causing NOA disease, and re-expression of SOX30 can successfully restore the spermatogenesis and actual fertility. This study advances our understanding of the pathogenesis of NOA, offering a promising therapy target for NOA disease.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Zhi-ming Li
- Institute of Reproductive Health, Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Wei-ming Ouyang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Wen-bin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Cheng-yi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Chuan-shu Huang
- Nelson Institute of Environmental Medicine, NYU School of Medicine, New York, NY, USA
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zhi-hong Cui
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yan-feng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jia Cao, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| | - Jin-yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jin-yi Liu, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
31
|
Transcription of the Sox30 Gene Is Positively Regulated by Dmrt1 in Nile Tilapia. Int J Mol Sci 2019; 20:ijms20215487. [PMID: 31690021 PMCID: PMC6862701 DOI: 10.3390/ijms20215487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
The Sox family member Sox30 is highly expressed in the testis of several vertebrate species and has been shown to play key roles in spermiogenesis. However, its transcription regulation remains unclear. Here, we analyzed the Sox30 promoter from the teleost fish Nile tilapia (Oreochromis niloticus) and predicted a putative cis-regulatory element (CRE) for doublesex and mab-3 related transcription factor 1 (Dmrt1), a male-specific transcription factor involved in male sex differentiation. Transcriptional profiling revealed that Sox30 and Dmrt1 similarly exhibited a high expression in tilapia testes from 90 days after hatching (dah) to 300 dah, and the transcription of the Sox30 gene was reduced about one-fold in the testes of male tilapia with Dmrt1 knockdown. Further dual-luciferase reporter assay confirmed that Dmrt1 overexpression significantly promoted transcriptional activity of the Sox30 promoter and this promotion was decreased following the mutation of putative CRE for Dmrt1 within the Sox30 promoter. Chromatin immunoprecipitation-based PCR (ChIP-PCR) and electrophoretic mobility shift assay (EMSA) demonstrated that Dmrt1 directly binds to putative CRE within the Sox30 promoter. These results together indicate that Dmrt1 positively regulates the transcription of the tilapia Sox30 gene by directly binding to specific CRE within the Sox30 promoter.
Collapse
|
32
|
Kumar P, Mistri TK. Transcription factors in SOX family: Potent regulators for cancer initiation and development in the human body. Semin Cancer Biol 2019; 67:105-113. [PMID: 31288067 DOI: 10.1016/j.semcancer.2019.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) have a key role in controlling the gene regulatory network that sustains explicit cell states in humans. However, an uncontrolled regulation of these genes potentially results in a wide range of diseases, including cancer. Genes of the SOX family are indeed crucial as deregulation of SOX family TFs can potentially lead to changes in cell fate as well as irregular cell growth. SOX TFs are a conserved group of transcriptional regulators that mediate DNA binding through a highly conserved high-mobility group (HMG) domain. Accumulating evidence demonstrates that cell fate and differentiation in major developmental processes are controlled by SOX TFs. Besides; numerous reports indicate that both up- and down-regulation of SOX TFs may induce cancer progression. In this review, we discuss the involvement of key TFs of SOX family in human cancers.
Collapse
Affiliation(s)
- Prasann Kumar
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Agronomy, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tapan Kumar Mistri
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Chemistry, Lovely Professional University, Jalandhar, Punjab, 144411, India.
| |
Collapse
|
33
|
Li Y, Qi W, Liu G, Du B, Sun Q, Zhang X, Jin M, Dong W, Liu J, Zheng Z. Sohlh1 is required for synaptonemal complex formation by transcriptionally regulating meiotic genes during spermatogenesis in mice. Mol Reprod Dev 2019; 86:252-264. [PMID: 30614095 DOI: 10.1002/mrd.23100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Abstract
Gonad-specific transcription factor spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 1 (SOHLH1) plays a key role in the transcriptional regulation of the expression of differentiating spermatogonial genes. However, its role in spermatocytes (meiotic male germ cells) remains largely unknown. In this study, Sohlh1 knockout (KO) male mice displayed meiotic defects at the zygotene stage during spermatogenesis. Microarray analyses identified 66 upregulated genes and 139 downregulated genes in Sohlh1 KO testes compared with those in wild-type testes at postnatal Day 7.5. Among many of the downregulated genes, Sycp1 and Sycp3, which encode synaptonemal complex proteins 1 and 3 (SYCP1 and SYCP3), respectively, were significantly reduced in Sohlh1 knockout mice. Transmission electron microscopy revealed no formation of the synaptonemal complex in Sohlh1 KO spermatocytes. Luciferase reporter and chromatin-immunoprecipitation assays demonstrated that SOHLH1 enhanced the expression of the Sycp1 and Sycp3 genes by binding the -1276, -708, and -94 basepairs (bp) E-boxes upstream of the Sycp1 promoter and the -64 and -43 bp E-boxes upstream of the Sycp3 promoter. Our data suggest that SOHLH1 transcriptionally regulates the expression of many target genes critical for the meiotic phase of spermatogenesis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Wanjing Qi
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Gongqing Liu
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Department of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, People's Republic of China.,Police Dog Technical School of the Ministry of Public Security of P.R. China, Shenyang, People's Republic of China
| | - Bing Du
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Qi Sun
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Xue Zhang
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Meiyu Jin
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China
| | - Wanwei Dong
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Transgenic Animal Research, Shenyang, Liaoning, People's Republic of China
| | - Jia Liu
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Transgenic Animal Research, Shenyang, Liaoning, People's Republic of China
| | - Zhihong Zheng
- Department of Laboratory Animal Science, China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Transgenic Animal Research, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
34
|
Genetic Factors Affecting Sperm Chromatin Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:1-28. [PMID: 31301043 DOI: 10.1007/978-3-030-21664-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.
Collapse
|