1
|
Wang Y, Xiang M, Zhou Y, Zheng N, Zhang J, Zha X, Duan Z, Wang F, Zhang Y, Wang Z, Cao Y, Zhu F. Novel and recurrent hemizygous variants in BCORL1 cause oligoasthenoteratozoospermia by interfering transcription. Andrology 2024. [PMID: 39189935 DOI: 10.1111/andr.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Oligoasthenoteratozoospermia (OAT) is a common cause of male infertility, of which the causes remain largely unknown. Recently, BCORL1 was identified as a contributor to male infertility from non-obstructive azoospermia (NOA) to OAT. OBJECTIVES To identify novel and hotspot variants in BCORL1 from infertile men with OAT and reveal their outcomes of assisted reproductive treatments (ARTs). MATERIALS AND METHODS Forty-six infertile men characterized by OAT were recruited from 2017 to 2022. Variants in OAT patients were identified by whole-exome sequencing (WES) and verified by Sanger sequencing. Papanicolaou staining was used for sperm morphology analysis. Pathogenicity of BCORL1 variants were analyzed by bioinformatics analysis, and further confirmed in vitro by using recombinant plasmids and cells. Meanwhile, ARTs were performed on these patients to investigate the appropriate clinical treatment strategy. RESULTS We identified a novel hemizygous missense variant (NM_021946: c.G4171A; p.G1391R) and a recurrent variant (NM_021946: c.T2615G; p.V872G) in BCORL1 from four OAT patients. Notably, routine semen assessment and Papanicolaou staining revealed a special OAT phenotype of patients with BCORL1 variants, whose rare mature sperm characterized by acephalic and abnormal acrosome. Pathogenicity analysis showed the interaction between BCORL1 with histone deacetylases (HDACs) were disrupted after variance, accompanied with epigenetic alterations and finally the orderly transcriptions of spermatogenetic genes were interfering. Besides, clinical record presented the poor outcomes of ARTs in these patients with BCORL1 variants. DISCUSSION AND CONCLUSIONS Our findings further expand the variant spectrum of BCORL1 related to OAT, and provide new evidences that BCORL1 acts as an important transcriptional regulator, participating in epigenetic regulation and directing the expression of key genes throughout spermatogenesis. The outcomes of ARTs will facilitate the genetic counseling and clinical treatment of infertile men with BCORL1 variants in the future.
Collapse
Affiliation(s)
- Yu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| | - Mingfei Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yiru Zhou
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Na Zheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Xiaomin Zha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhongxin Wang
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of clinical laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
| |
Collapse
|
2
|
Chen S, Guo D, Deng Z, Tang Q, Li C, Xiao Y, Zhong L, Chen B. Integration analysis of transcriptome and proteome profiles brings new insights of somatic embryogenesis of two eucalyptus species. BMC PLANT BIOLOGY 2024; 24:561. [PMID: 38877454 PMCID: PMC11179386 DOI: 10.1186/s12870-024-05271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Somatic embryogenesis (SE) is recognized as a promising technology for plant vegetative propagation. Although previous studies have identified some key regulators involved in the SE process in plant, our knowledge about the molecular changes in the SE process and key regulators associated with high embryogenic potential is still poor, especially in the important fiber and energy source tree - eucalyptus. RESULTS In this study, we analyzed the transcriptome and proteome profiles of E. camaldulensis (with high embryogenic potential) and E. grandis x urophylla (with low embryogenic potential) in SE process: callus induction and development. A total of 12,121 differentially expressed genes (DEGs) and 3,922 differentially expressed proteins (DEPs) were identified in the SE of the two eucalyptus species. Integration analysis identified 1,353 (131 to 546) DEGs/DEPs shared by the two eucalyptus species in the SE process, including 142, 13 and 186 DEGs/DEPs commonly upregulated in the callus induction, maturation and development, respectively. Further, we found that the trihelix transcription factor ASR3 isoform X2 was commonly upregulated in the callus induction of the two eucalyptus species. The SOX30 and WRKY40 TFs were specifically upregulated in the callus induction of E. camaldulensis. Three TFs (bHLH62, bHLH35 isoform X2, RAP2-1) were specifically downregulated in the callus induction of E. grandis x urophylla. WGCNA identified 125 and 26 genes/proteins with high correlation (Pearson correlation > 0.8 or < -0.8) with ASR3 TF in the SE of E. camaldulensis and E. grandis x urophylla, respectively. The potential target gene expression patterns of ASR3 TF were then validated using qRT-PCR in the material. CONCLUSIONS This is the first time to integrate multiple omics technologies to study the SE of eucalyptus. The findings will enhance our understanding of molecular regulation mechanisms of SE in eucalyptus. The output will also benefit the eucalyptus breeding program.
Collapse
Affiliation(s)
- Shengkan Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Dongqiang Guo
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Ziyu Deng
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Qinglan Tang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Changrong Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Lianxiang Zhong
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China.
| |
Collapse
|
3
|
Skjold V, Afanasyev S, Burgerhout E, Sveen L, Rørvik KA, Mota VFCN, Dessen JE, Krasnov A. Endocrine and Transcriptome Changes Associated with Testicular Growth and Differentiation in Atlantic Salmon ( Salmo salar L.). Curr Issues Mol Biol 2024; 46:5337-5351. [PMID: 38920991 PMCID: PMC11202266 DOI: 10.3390/cimb46060319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.
Collapse
Affiliation(s)
- Vetle Skjold
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 194223 Saint Petersburg, Russia;
| | - Erik Burgerhout
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Lene Sveen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Kjell-Arne Rørvik
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | | | - Jens-Erik Dessen
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| | - Aleksei Krasnov
- The Norwegian Institute of Aquaculture, Nofima, 9291 Tromsø, Norway; (V.S.); (E.B.); (L.S.); (K.-A.R.); (J.-E.D.)
| |
Collapse
|
4
|
Säflund M, Özata DM. The MYBL1/TCFL5 transcription network: two collaborative factors with central role in male meiosis. Biochem Soc Trans 2023; 51:2163-2172. [PMID: 38015556 PMCID: PMC10754281 DOI: 10.1042/bst20231007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Male gametogenesis, spermatogenesis, is a stepwise developmental process to generate mature sperm. The most intricate process of spermatogenesis is meiosis during which two successive cell divisions ensue with dramatic cellular and molecular changes to produce haploid cells. After entry into meiosis, several forms of regulatory events control the orderly progression of meiosis and the timely entry into post-meiotic sperm differentiation. Among other mechanisms, changes to gene expression are controlled by key transcription factors. In this review, we will discuss the gene regulatory mechanisms underlying meiotic entry, meiotic progression, and post-meiotic differentiation with a particular emphasis on the MYBL1/TCFL5 regulatory architecture and how this architecture involves in various forms of transcription network motifs to regulate gene expression.
Collapse
Affiliation(s)
- Martin Säflund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Deniz M. Özata
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Liu R, Qu R, Li Q, Chen B, Mu J, Zeng Y, Luo Y, Xu F, Wang L, Zhang Z, Sang Q. ARRDC5 deficiency impairs spermatogenesis by affecting SUN5 and NDC1. Development 2023; 150:dev201959. [PMID: 37997706 DOI: 10.1242/dev.201959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Sperm with normal morphology and motility are essential for successful fertilization, and the strong attachment of the sperm head-tail coupling apparatus to the nuclear envelope during spermatogenesis is required to ensure the integrity of sperm for capacitation and fertilization. Here, we report that Arrdc5 is associated with spermatogenesis. The Arrdc5 knockout mouse model showed male infertility characterized by a high bent-head rate and reduced motility in sperm, which led to capacitation defects and subsequent fertilization failure. Through mass spectrometry, we found that ARRDC5 affects spermatogenesis by affecting NDC1 and SUN5. We further found that ARRDC5 might affect the vesicle-trafficking protein SEC22A-mediated transport and localization of NDC1, SUN5 and other head-tail coupling apparatus-related proteins that are responsible for initiating the attachment of the sperm head and tail. We finally performed intracytoplasmic sperm injection as a way to explore therapeutic strategies. Our findings demonstrate the essential role and the underlying molecular mechanism of ARRDC5 in anchoring the sperm head to the tail during spermatogenesis.
Collapse
Affiliation(s)
- Ruyi Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Ronggui Qu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Qun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Fangzhou Xu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Huang D, Zuo Y, Zhang C, Sun G, Jing Y, Lei J, Ma S, Sun S, Lu H, Cai Y, Zhang W, Gao F, Peng Xiang A, Belmonte JCI, Liu GH, Qu J, Wang S. A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein Cell 2023; 14:888-907. [PMID: 36929025 PMCID: PMC10691849 DOI: 10.1093/procel/pwac057] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms' Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.
Collapse
Grants
- 2022M712216 National Key Research and Development Program of China
- 81921006, 82125011, 92149301, 92168201, 91949209, 92049304, 92049116, 32121001, 82192863, 82122024, 82071588, 32000500, 31900523, 82201714, 82271600, 82201727 National Natural Science Foundation of China
- 11000022T000000461062 Beijing-affiliated Medical Research
- CAS-WX2021SF-0301, CAS-WX2021SF-0101, CAS-WX2022SDC-XK14 Youth Innovation Promotion Association
- CAS-WX2021SF-0301 Youth Innovation Promotion Association
Collapse
Affiliation(s)
- Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuesheng Zuo
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Chen Zhang
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Jing
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Huifen Lu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510000, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | | | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, China
| |
Collapse
|
7
|
Xu W, Yao Z, Li Y, Wang K, Kong S, Wang Y, Xiang M, Zhu F, Wang F, Zhang H. Loss of PMFBP1 Disturbs Mouse Spermatogenesis by Downregulating HDAC3 Expression. J Assist Reprod Genet 2023; 40:1865-1879. [PMID: 37423931 PMCID: PMC10371971 DOI: 10.1007/s10815-023-02874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE Polyamine modulating factor 1 binding protein (PMFBP1) acts as a scaffold protein for the maintenance of sperm structure. The aim of this study was further to identify the new role and molecular mechanism of PMFBP1 during mouse spermatogenesis. METHODS AND RESULTS We identified a profile of proteins interacting with PMFBP1 by immunoprecipitation combined with mass spectrometry and demonstrated that class I histone deacetylases, particularly HDAC3 and chaperonin-containing TCP1 subunit 3 (CCT3), were potential interaction partners of PMFBP1 based on network analysis of protein-protein interactions and co-immunoprecipitation. Immunoblotting and immunochemistry assays showed that loss of Pmfbp1 would result in a decline in HDACs and change the proteomic profile of mouse testis, in which differently expressed proteins are associated with spermatogenesis and assembly of flagella, which was proved by proteomic analysis of testis tissue obtained from Pmfbp1-/- mice. After integrating with transcriptome data for Hdac3-/- and Sox30-/- round sperm obtained from a public database, RT-qPCR confirmed ring finger protein 151 (Rnf151) and ring finger protein 133 (Rnf133) were key downstream response factors of the Pmfbp1-Hdac axis affecting mouse spermatogenesis. CONCLUSION Taken together, this study indicates a previously unidentified molecular mechanism of PMFBP1 in spermatogenesis whereby PMFBP1 interacts with CCT3, affecting the expression of HDAC3, followed by the downregulation of RNF151 and RNF133, resulting in an abnormal phenotype of sperm beyond the headless sperm tails. These findings not only advance our understanding of the function of Pmfbp1 in mouse spermatogenesis but also provide a typical case for multi-omics analysis used in the functional annotation of specific genes.
Collapse
Affiliation(s)
- Weilong Xu
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Zhoujuan Yao
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yunzhi Li
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Ke Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China
- Reproductive Medicine Center, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, 230022, China
| | - Yu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Mingfei Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, Anhui, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
| | - Hui Zhang
- School of Life Science, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
8
|
Pieplow CA, Furze AR, Wessel GM. A case of hermaphroditism in the gonochoristic sea urchin, Strongylocentrotus purpuratus, reveals key mechanisms of sex determination†. Biol Reprod 2023; 108:960-973. [PMID: 36943312 PMCID: PMC10266946 DOI: 10.1093/biolre/ioad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
Sea urchins are usually gonochoristic, with all of their five gonads either testes or ovaries. Here, we report an unusual case of hermaphroditism in the purple sea urchin, Strongylocentrotus purpuratus. The hermaphrodite is self-fertile, and one of the gonads is an ovotestis; it is largely an ovary with a small segment containing fully mature sperm. Molecular analysis demonstrated that each gonad producedviable gametes, and we identified for the first time a somatic sex-specific marker in this phylum: Doublesex and mab-3 related transcription factor 1 (DMRT1). This finding also enabled us to analyze the somatic tissues of the hermaphrodite, and we found that the oral tissues (including gut) were out of register with the aboral tissues (including tube feet) enabling a genetic lineage analysis. Results from this study support a genetic basis of sex determination in sea urchins, the viability of hermaphroditism, and distinguish gonad determination from somatic tissue organization in the adult.
Collapse
Affiliation(s)
- Cosmo A Pieplow
- Department of Molecular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Aidan R Furze
- Department of Molecular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Gary M Wessel
- Department of Molecular Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Xiong M, Yin L, Gui Y, Lv C, Ma X, Guo S, Wu Y, Feng S, Fan X, Zhou S, Wang L, Wen Y, Wang X, Xie Q, Namekawa SH, Yuan S. ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis. J Cell Biol 2023; 222:e202206067. [PMID: 36930220 PMCID: PMC10040813 DOI: 10.1083/jcb.202206067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Pachytene piRNA biogenesis is a hallmark of the germline, distinct from another wave of pre-pachytene piRNA biogenesis with regard to the lack of a secondary amplification process known as the Ping-pong cycle. However, the underlying molecular mechanism and the venue for the suppression of the Ping-pong cycle remain elusive. Here, we showed that a testis-specific protein, ADAD2, interacts with a TDRD family member protein RNF17 and is associated with P-bodies. Importantly, ADAD2 directs RNF17 to repress Ping-pong activity in pachytene piRNA biogenesis. The P-body localization of RNF17 requires the intrinsically disordered domain of ADAD2. Deletion of Adad2 or Rnf17 causes the mislocalization of each other and subsequent Ping-pong activity derepression, secondary piRNAs overproduced, and disruption of P-body integrity at the meiotic stage, thereby leading to spermatogenesis arrested at the round spermatid stage. Collectively, by identifying the ADAD2-dependent mechanism, our study reveals a novel function of P-bodies in suppressing Ping-pong activity in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Lv
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xv Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingzhen Xie
- Reproductive Medicine Center, Wuhan University Renmin Hospital, Wuhan, China
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology, Research Institute, Shenzhen, China
| |
Collapse
|
10
|
Chen Y, Zhang X, Jiang J, Luo M, Tu H, Xu C, Tan H, Zhou X, Chen H, Han X, Yue Q, Guo Y, Zheng K, Qi Y, Situ C, Cui Y, Guo X. Regulation of Miwi-mediated mRNA stabilization by Ck137956/Tssa is essential for male fertility. BMC Biol 2023; 21:89. [PMID: 37069605 PMCID: PMC10111675 DOI: 10.1186/s12915-023-01589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Sperm is formed through spermiogenesis, a highly complex process involving chromatin condensation that results in cessation of transcription. mRNAs required for spermiogenesis are transcribed at earlier stages and translated in a delayed fashion during spermatid formation. However, it remains unknown that how these repressed mRNAs are stabilized. RESULTS Here we report a Miwi-interacting testis-specific and spermiogenic arrest protein, Ck137956, which we rename Tssa. Deletion of Tssa led to male sterility and absence of sperm formation. The spermiogenesis arrested at the round spermatid stage and numerous spermiogenic mRNAs were down-regulated in Tssa-/- mice. Deletion of Tssa disrupted the localization of Miwi to chromatoid body, a specialized assembly of cytoplasmic messenger ribonucleoproteins (mRNPs) foci present in germ cells. We found that Tssa interacted with Miwi in repressed mRNPs and stabilized Miwi-interacting spermiogenesis-essential mRNAs. CONCLUSIONS Our findings indicate that Tssa is indispensable in male fertility and has critical roles in post-transcriptional regulations by interacting with Miwi during spermiogenesis.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengjiao Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Sakamoto M, Ito D, Inoue R, Wakayama S, Kikuchi Y, Yang L, Hayashi E, Emura R, Shiura H, Kohda T, Namekawa SH, Ishiuchi T, Wakayama T, Ooga M. Paternally inherited H3K27me3 affects chromatin accessibility in mouse embryos produced by round spermatid injection. Development 2022; 149:276384. [DOI: 10.1242/dev.200696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.
Collapse
Affiliation(s)
- Mizuki Sakamoto
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Daiyu Ito
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rei Inoue
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Yasuyuki Kikuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Li Yang
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Erika Hayashi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Rina Emura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Hirosuke Shiura
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Takashi Kohda
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Satoshi H. Namekawa
- University of California Davis 3 Department of Microbiology and Molecular Genetics , , Davis, CA 95616 , USA
| | - Takashi Ishiuchi
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi 2 , Yamanashi, 400-8510 , Japan
| | - Masatoshi Ooga
- University of Yamanashi 1 Faculty of Life and Environmental Sciences , , Yamanashi, 400-8510 , Japan
| |
Collapse
|
12
|
Kang JY, Wen Z, Pan D, Zhang Y, Li Q, Zhong A, Yu X, Wu YC, Chen Y, Zhang X, Kou PC, Geng J, Wang YY, Hua MM, Zong R, Li B, Shi HJ, Li D, Fu XD, Li J, Nelson DL, Guo X, Zhou Y, Gou LT, Huang Y, Liu MF. LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science 2022; 377:eabj6647. [PMID: 35951695 DOI: 10.1126/science.abj6647] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Postmeiotic spermatids use a unique strategy to coordinate gene expression with morphological transformation, in which transcription and translation take place at separate developmental stages, but how mRNAs stored as translationally inert messenger ribonucleoproteins in developing spermatids become activated remains largely unknown. Here, we report that the RNA binding protein FXR1, a member of the fragile X-related (FXR) family, is highly expressed in late spermatids and undergoes liquid-liquid phase separation (LLPS) to merge messenger ribonucleoprotein granules with the translation machinery to convert stored mRNAs into a translationally activated state. Germline-specific Fxr1 ablation in mice impaired the translation of target mRNAs and caused defective spermatid development and male infertility, and a phase separation-deficient FXR1L351P mutation in Fxr1 knock-in mice produced the same developmental defect. These findings uncover a mechanism for translational reprogramming with LLPS as a key driver in spermiogenesis.
Collapse
Affiliation(s)
- Jun-Yan Kang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ze Wen
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Duo Pan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuhan Zhang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ai Zhong
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinghai Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yi-Chen Wu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng-Cheng Kou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junlan Geng
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying-Yi Wang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Ruiting Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Biao Li
- Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, Shanghai, China
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lan-Tao Gou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Huang
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai Research Center of Biliary Tract Disease, Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
13
|
Xu W, Zhang Y, Qin D, Gui Y, Wang S, Du G, Yang F, Li L, Yuan S, Wang M, Wu X. Transcription factor-like 5 is a potential DNA/RNA-binding protein essential for maintaining male fertility in mice. J Cell Sci 2021; 135:273810. [PMID: 34931239 DOI: 10.1242/jcs.259036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Transcription factor-like 5 (TCFL5) is a testis-specific protein that contains the basic helix-loop-helix domain, but the in vivo functions of TCFL5 remain unknown. Herein, we generated CRISPR/Cas9-mediated knockout mice to dissect the function of TCFL5 in mouse testes. Surprisingly, we found that it was difficult to generate homozygous mice with the Tcfl5 deletion since the heterozygous males (Tcfl5+/-) were infertile. We did; however, observe markedly abnormal phenotypes of spermatids and spermatozoa in the testes and epididymides of Tcfl5+/- mice. Mechanistically, we demonstrated that TCFL5 transcriptionally and post-transcriptionally regulated a set of genes participating in male germ cell development via TCFL5 ChIP-DNA and eCLIP-RNA high-throughput sequencing. We also identified a known RBP, FXR1 as an interacting partner of TCFL5 that may coordinate the transition and localization of TCFL5 in the nucleus. Collectively, we herein report for the first time that Tcfl5 is haploinsufficient in vivo and acts as a dual-function protein that mediates DNA and RNA to regulate spermatogenesis.
Collapse
Affiliation(s)
- Weiya Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiyun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guihua Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Centre for Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu 222000, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
14
|
PRDM9-directed recombination hotspots depleted near meiotically transcribed genes. Gene 2021; 813:146123. [PMID: 34952174 DOI: 10.1016/j.gene.2021.146123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022]
Abstract
PRDM9 drives recombination hotspots in some mammals, including mice and apes. Non-functional orthologs of PRDM9 are present in a wide variety of vertebrates, but why it is functionally maintained in some lineages is not clear. One possible explanation is that PRDM9 plays a role in ensuring that meiosis is successful. During meiosis, available DNA may be a limiting resource given the tight packaging of chromosomes and could lead to competition between two key processes: meiotic transcription and recombination. Here we explore this potential competition and the role that PRDM9 might play in their interaction. Leveraging existing mouse genomic data, we use resampling schemes that simulate shuffled features along the genome and models that account for the rarity of features in the genome, to test if PRDM9 influences interactions between recombination hotspots and meiotic transcription in a whole genome framework. We also explored possible DNA sequence motifs associated to clusters of hotspots not tied to transcription or PRDM9. We find evidence of competition between meiotic transcription and recombination, with PRDM9 appearing to relocate recombination to avoid said conflict. We also find that retrotransposons may be playing a role in directing hotspots in the absence of other factors.
Collapse
|
15
|
Wei L, Tang Y, Zeng X, Li Y, Zhang S, Deng L, Wang L, Wang D. The transcription factor Sox30 is involved in Nile tilapia spermatogenesis. J Genet Genomics 2021; 49:666-676. [PMID: 34801758 DOI: 10.1016/j.jgg.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 12/30/2022]
Abstract
Spermatogenesis is a complex process in which spermatogonial stem cells differentiate and develop into mature spermatozoa. The transcriptional regulatory network involved in fish spermatogenesis remains poorly understood. Here, we demonstrate in Nile tilapia that the Sox transcription factor family member Sox30 is specifically expressed in the testes and mainly localizes to spermatocytes and spermatids. CRISPR/Cas9-mediated sox30 mutation results in abnormal spermiogenesis, reduction of sperm motility, and male subfertility. Comparative transcriptome analysis shows that sox30 mutation alters the expression of genes involved in spermatogenesis. Further chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), ChIP-PCR, and luciferase reporter assays reveal that Sox30 positively regulates the transcription of ift140 and ptprb, two genes involved in spermiogenesis, by directly binding to their promoters. Taken together, our data indicate that Sox30 plays essential roles in Nile tilapia spermatogenesis by directly regulating the transcription of the spermiogenesis-related genes ift140 and ptprb.
Collapse
Affiliation(s)
- Ling Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yaohao Tang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianhai Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yueqin Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Song Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Deng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingsong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Chen X, Li Y, Dai H, Zhang H, Wan D, Zhou X, Situ C, Zhu H. Cyclin-dependent kinase 7 is essential for spermatogenesis by regulating retinoic acid signaling pathways and the STAT3 molecular pathway. IUBMB Life 2021; 73:1446-1459. [PMID: 34717033 DOI: 10.1002/iub.2574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a complex process that requires precise regulation. Phosphorylation plays a role in spermatogenesis by regulating protein structure and activity. This study focused on cyclin-dependent kinase 7 (CDK7), and explored its function and molecular mechanisms in spermatogenesis in vitro in a cell line and in vivo in a mouse model. Inhibition of CDK7 activity affected spermatogonia proliferation and differentiation, and we found that CDK7 regulates retinoic acid (RA)-mediated c-KIT expression to play a role in spermatogonia. Then, we demonstrated that inhibition of CDK7 affected meiosis initiation, DNA repair, and synaptonemal complex formation in meiosis progression, and CDK7 played this role by regulating RA-mediated STRA8 and REC8 signaling pathways. Moreover, inhibition of CDK7 impacted spermatid differentiation and resulted in decreased counts, decreased motility, and increased head deformity of sperm. We demonstrated that CDK7 affects germ cell apoptosis and sperm motility by activating STAT3 and that STAT3 further regulates Cortactin expression to influence the nuclear elongation, chromatin condensation, and acrosome formation of sperm. Additionally, EP300 was identified as another potential target phosphorylated by CDK7 that participates in chromatin condensation. Our results demonstrated the important role of CDK7 in all key aspects of spermatogenesis, potentially providing an effective target for clinical diagnosis and pathogenesis.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haiqian Dai
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Danyang Wan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xinli Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Chadourne M, Poumerol E, Jouneau L, Passet B, Castille J, Sellem E, Pailhoux E, Mandon-Pépin B. Structural and Functional Characterization of a Testicular Long Non-coding RNA (4930463O16Rik) Identified in the Meiotic Arrest of the Mouse Topaz1 -/- Testes. Front Cell Dev Biol 2021; 9:700290. [PMID: 34277642 PMCID: PMC8281061 DOI: 10.3389/fcell.2021.700290] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1–/– testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis. Moreover, a quarter of P18 dysregulated genes are long non-coding RNAs (lncRNAs), and three of them are testis-specific and located in spermatocytes, their expression starting between P11 and P15. The suppression of one of them, 4939463O16Rik, did not alter fertility although sperm parameters were disturbed and sperm concentration fell. The transcriptome of P18-4939463O16Rik–/– testes was altered and the molecular pathways affected included microtubule-based processes, the regulation of cilium movement and spermatogenesis. The absence of TOPAZ1 protein or 4930463O16Rik produced the same enrichment clusters in mutant testes despite a contrasted phenotype on male fertility. In conclusion, although Topaz1 is essential for the meiosis in male germ cells and regulate the expression of numerous lncRNAs, these studies have identified a Topaz1 regulated lncRNA (4930463O16Rik) that is key for both sperm production and motility.
Collapse
Affiliation(s)
- Manon Chadourne
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Elodie Poumerol
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Passet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Johan Castille
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Eric Pailhoux
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
18
|
Iqbal T, Cao M, Zhao Z, Zhao Y, Chen L, Chen T, Li C, Zhou X. Damage to the Testicular Structure of Rats by Acute Oral Exposure of Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116038. [PMID: 34199704 PMCID: PMC8200047 DOI: 10.3390/ijerph18116038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is one of the most important heavy metal toxicants, used throughout the world at the industrial level. It affects humans through environmental and occupational exposure and animals through the environment. The most severe effects of oral exposure to Cd on the male reproductive system, particularly spermatogenesis, have not been discussed. In this study, we observed the damage to the testes and heritable DNA caused by oral exposure to Cd. Adult male Sprague–Dawley rats were divided into four groups: a control group and three groups treated with 5, 10, and 15 mg Cd/kg/day for 17 days by oral gavage. Our results revealed that Cd significantly decreases weight gain in 10 and 15 mg/kg groups, whereas the 5 mg/kg groups showed no difference in weight gain. The histopathology showed adverse structural effects on the rat testis by significantly reducing the thickness of the tunica albuginea, the diameter of the tubular lumen, and the interstitial space among seminiferous tubules and increasing the height of the epithelium and the diameter of the seminiferous tubules in Cd treated groups. Comet assay in epididymal sperms demonstrated a significant difference in the lengths of the head and comet in all the 3 Cd treated groups, indicating damage in heritable DNA, although variations in daily sperm production were not significant. Only a slight decrease in sperm count was reported in Cd-treated groups as compared to the control group, whereas the tail length, percentage of DNA in head, and tail showed no significant difference in control and all the experimental groups. Overall, our findings indicate that Cd toxicity must be controlled using natural sources, such as herbal medicine or bioremediation, with non-edible plants, because it could considerably affect heritable DNA and induce damage to the reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xu Zhou
- Correspondence: (C.L.); (X.Z.)
| |
Collapse
|
19
|
Yin H, Kang Z, Zhang Y, Gong Y, Liu M, Xue Y, He W, Wang Y, Zhang S, Xu Q, Fu K, Zheng B, Xie J, Zhang J, Wang Y, Lin M, Zhang Y, Feng H, Xin C, Guan Y, Huang C, Guo X, Wang P, Baur JA, Zheng K, Sun Z, Ye L. HDAC3 controls male fertility through enzyme-independent transcriptional regulation at the meiotic exit of spermatogenesis. Nucleic Acids Res 2021; 49:5106-5123. [PMID: 33939832 PMCID: PMC8136829 DOI: 10.1093/nar/gkab313] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome. Among histone deacetylases (HDACs) and acetyltransferases, we find that HDAC3 is selectively expressed in the late meiotic and early haploid stages. Three independent mouse lines with the testis-specific knockout of HDAC3 show infertility and defects in meiotic exit with an arrest at the late stage of meiosis or early stage of round spermatids. Stage-specific RNA-seq and histone acetylation ChIP-seq analyses reveal that HDAC3 represses meiotic/spermatogonial genes and activates postmeiotic haploid gene programs during meiotic exit, with associated histone acetylation alterations. Unexpectedly, abolishing HDAC3 catalytic activity by missense mutations in the nuclear receptor corepressor (NCOR or SMRT) does not cause infertility, despite causing histone hyperacetylation as HDAC3 knockout, demonstrating that HDAC3 enzyme activity is not required for spermatogenesis. Motif analysis of the HDAC3 cistrome in the testes identified SOX30, which has a similar spatiotemporal expression pattern as HDAC3 during spermatogenesis. Depletion of SOX30 in the testes abolishes the genomic recruitment of the HDAC3 to the binding sites. Collectively, these results establish the SOX30/HDAC3 signaling as a key regulator of the transcriptional program in a deacetylase-independent manner during the meiotic-to-postmeiotic transition in spermatogenesis.
Collapse
Affiliation(s)
- Huiqi Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zhenlong Kang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yingyun Gong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Mengrou Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yanfeng Xue
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenxiu He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Bangjin Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yihan Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences
| | - Hua Feng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences
| | - Changpeng Xin
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Peoples' Republic of China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Peoples' Republic of China
| | - Chaoyang Huang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, People's Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity, and Metabolism and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
20
|
Han F, Yin L, Jiang X, Zhang X, Zhang N, Yang J, Ouyang W, Hao X, Liu W, Huang Y, Chen H, Gao F, Li Z, Guo Q, Cao J, Liu J. Identification of SRY-box 30 as an age-related essential gatekeeper for male germ-cell meiosis and differentiation. Aging Cell 2021; 20:e13343. [PMID: 33721419 PMCID: PMC8135013 DOI: 10.1111/acel.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Li Yin
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
- College of Pharmacy and Bioengineering Chongqing University of Technology Chongqing China
| | - Xiao Jiang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Xi Zhang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Ning Zhang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Jun‐tang Yang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
- College of Life Science Henan Normal University Henan China
| | - Wei‐ming Ouyang
- Office of Biotechnology Products Center for Drug Evaluation and Research U.S. Food and Drug Administration Pittsburgh PA USA
| | - Xiang‐lin Hao
- Department of Pathology Xinqiao HospitalArmy Medical University Chongqing China
| | - Wen‐bin Liu
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Yong‐sheng Huang
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Hong‐qiang Chen
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Fei Gao
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen Frederiksberg DK Denmark
| | - Zhong‐tai Li
- Department of Urology Daping HospitalArmy Medical University Chongqing China
| | - Qiao‐nan Guo
- Department of Pathology Xinqiao HospitalArmy Medical University Chongqing China
| | - Jia Cao
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| | - Jin‐yi Liu
- Institute of Toxicology College of Preventive Medicine Army Medical University Chongqing China
| |
Collapse
|
21
|
Skaftnesmo KO, Crespo D, Kleppe L, Andersson E, Edvardsen RB, Norberg B, Fjelldal PG, Hansen TJ, Schulz RW, Wargelius A. Loss of stra8 Increases Germ Cell Apoptosis but Is Still Compatible With Sperm Production in Atlantic Salmon ( Salmo salar). Front Cell Dev Biol 2021; 9:657192. [PMID: 33942021 PMCID: PMC8087537 DOI: 10.3389/fcell.2021.657192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Entering meiosis strictly depends on stimulated by retinoic acid 8 (Stra8) gene function in mammals. This gene is missing in a number of fish species, including medaka and zebrafish, but is present in the majority of fishes, including Atlantic salmon. Here, we have examined the effects of removing stra8 on male fertility in Atlantic salmon. As in mammals, stra8 expression was restricted to germ cells in the testis, transcript levels increased during the start of puberty, and decreased when blocking the production of retinoic acid. We targeted the salmon stra8 gene with two gRNAs one of these were highly effective and produced numerous mutations in stra8, which led to a loss of wild-type (WT) stra8 expression in F0 salmon testis. In maturing stra8 crispants, the spermatogenetic tubuli were partially disorganized and displayed a sevenfold increase in germ cell apoptosis, in particular among type B spermatogonia and spermatocytes. The production of spermatogenic cysts, on the other hand, increased in maturing stra8 crispants. Gene expression analysis revealed unchanged (lin28a, ret) or reduced levels (egr1, dusp4) of transcripts associated with undifferentiated spermatogonia. Decreased expression was recorded for some genes expressed in differentiating spermatogonia including dmrt1 and ccnd2 or in spermatocytes, such as ccna1. Different from Stra8-deficient mammals, a large number of germ cells completed spermatogenesis, sperm was produced and fertilization rates were similar in WT and crispant males. While loss of stra8 increased germ cell apoptosis during salmon spermatogenesis, crispants compensated this cell loss by an elevated production of spermatogenic cysts, and were able to produce functional sperm. It appears that also in a fish species with a stra8 gene in the genome, the critical relevance this gene has attained for mammalian spermatogenesis is not yet given, although detrimental effects of the loss of stra8 were clearly visible during maturation.
Collapse
Affiliation(s)
- Kai O Skaftnesmo
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Diego Crespo
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Lene Kleppe
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Rolf B Edvardsen
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Austevoll Research Station, Storebø, Norway
| | - Per Gunnar Fjelldal
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Matre Research Station, Matredal, Norway
| | - Rüdiger W Schulz
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway.,Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Anna Wargelius
- Institute of Marine Research, Research Group Reproduction and Developmental Biology, Bergen, Norway
| |
Collapse
|
22
|
|
23
|
Awan MA, Arshad J, Rakha BA, Ansari MS, Waseem M, Fouladi-Nashta A, Miller D, Akhter S. Sperm binding to hyaluronan is an excellent predictor of Nili-Ravi buffalo bull fertility. Andrologia 2021; 53:e13991. [PMID: 33528065 DOI: 10.1111/and.13991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
This study reports the first evaluation of sperm hyaluronan binding assay (HBA) for predicting the fertility of Nili-Ravi buffalo bulls in relation to standard parameters of sperm quality. Cryopreserved semen doses of low (n = 6), medium (n = 3) and high fertility (n = 8) bulls based on their respective return rates were used. Significantly, more spermatozoa bound to hyaluronan from the most fertile bulls (57.15% ± 1.44) compared with medium (42.46% ± 1.08) and low fertility bulls (29.70% ± 0.78). A strongly positive correlation (r = .824, p < .01) was found between HBA and fertility that predicts a 67.9% variability (r2 = .679, p < .01) in fertility. HBA was also strongly positively correlated with sperm viability (r = .679, p < .01) followed by their live/dead ratio (r = .637, p < .01), uncapacitated spermatozoa (r = .631, p < .01), normal apical ridge (r = .459, p < .01), motility (r = .434, p < .01), mature spermatozoa with low residual histones (r = .364, p < .01), high plasma membrane integrity (r = .316, p < .01) and nonfragmented DNA levels (r = .236, p < .05). It was negatively correlated with spermatozoa having reacted acrosome (r = -.654, p < .01). A fertility model built using a combination of sperm HBA and either sperm livability or viability predicts, respectively, 86.1% (r2 = .861, p < .01) and 85.9% (r2 = .859, p < .01) variability in buffalo bull fertility. In conclusion, sperm HBA may prove to be a single robust predictor of Nili-Ravi buffalo bull fertility.
Collapse
Affiliation(s)
- Muhammad Amjad Awan
- Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Javeria Arshad
- Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Bushra Allah Rakha
- Department of Wildlife Management, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | - Ali Fouladi-Nashta
- Reproduction Research Group, Royal Veterinary College, Hatfield, United Kingdom
| | - David Miller
- LIGHT Laboratories, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Shamim Akhter
- Department of Zoology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
24
|
Cannarella R, Salemi M, Condorelli RA, Cimino L, Giurato G, Marchese G, Cordella A, Romano C, La Vignera S, Calogero AE. SOX13 gene downregulation in peripheral blood mononuclear cells of patients with Klinefelter syndrome. Asian J Androl 2021; 23:157-162. [PMID: 33109779 PMCID: PMC7991811 DOI: 10.4103/aja.aja_37_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Klinefelter syndrome (KS) is the most common sex chromosome disorder in men. It is characterized by germ cell loss and other variable clinical features, including autoimmunity. The sex-determining region of Y (SRY)-box 13 (Sox13) gene is expressed in mouse spermatogonia. In addition, it has been identified as islet cell autoantigen 12 (ICA12), which is involved in the pathogenesis of autoimmune diseases, including type 1 diabetes mellitus (DM) and primary biliary cirrhosis. Sox13 expression has never been investigated in patients with KS. In this age-matched, case-control study performed on ten patients with KS and ten controls, we found that SOX13 is significantly downregulated in peripheral blood mononuclear cells of patients with KS compared to controls. This finding might be consistent with the germ cell loss typical of patients with KS. However, the role of Sox13 in the pathogenesis of germ cell loss and humoral autoimmunity in patients with KS deserves to be further explored.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Giorgio Giurato
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Angela Cordella
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana," University of Salerno, Baronissi (SA) 84081, Italy
| | - Corrado Romano
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
25
|
Wang F, Kong S, Hu X, Li X, Xu B, Yue Q, Fu K, Ye L, Bai S. Dnajb8, a target gene of SOX30, is dispensable for male fertility in mice. PeerJ 2020; 8:e10582. [PMID: 33391882 PMCID: PMC7759119 DOI: 10.7717/peerj.10582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Background The DNAJ family of molecular chaperones maintains protein homeostasis in mitotic and postmeiotic cells, especially germ cells. Recently, we found that the transcription factor SOX30 initiates transcription of Dnajb8 during late meiosis and spermiogenesis in mouse testes. Methods We used the CRISPR/Cas9 system to generate Dnajb8 mutant mice and analyze the phenotype of the Dnajb8 mutants. Results AlthoughDnajb8 is an evolutionarily conserved gene, it is not essential for spermatogenesis and male fertility. We provide this phenotypic information, which could prevent duplicative work by other groups.
Collapse
Affiliation(s)
- Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei, China
| | - Shuai Kong
- School of Life Science, Anhui Medical University, Hefei, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiuling Yue
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Kaiqiang Fu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
26
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
27
|
Anitha A, Senthilkumaran B. Role of sox30 in regulating testicular steroidogenesis of common carp. J Steroid Biochem Mol Biol 2020; 204:105769. [PMID: 33065277 DOI: 10.1016/j.jsbmb.2020.105769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023]
Abstract
Expression of transcription factors is crucial for the regulation of steroidogenesis and gonadal development in fish. SRY-related box (SOX) proteins regulate gene expression of various events related to vertebrate reproduction. This study reports the role of sox30 and its influence on sox9a/b in regulating testicular steroidogenesis of the common carp, Cyprinus carpio. Tissue distribution showed predominant expression of sox30 in gonads, while gonadal ontogeny indicated significant dimorphic expression of sox30 from 120 days post hatch. Higher sox30 transcripts during the spawning season, an elevation of sox30 after human chorionic gonadotropin induction, and 11-ketotestosterone (11-KT) treatment authenticate gonadotropin dependency. Treatment of 17α-methyl-di-hydroxy-testosterone to juvenile common carp for mono-sex induction, vis-à-vis elevated sox30 expression. Sox30 protein was detected abundantly in spermatocytes and spermatid/sperm of carp testis. Transient silencing of sox30 using small interfering RNAs decreased sox9a/b expression, lead to downregulation of certain molecule/factor, transcription factor, germ/stem cell marker, and steroidogenesis-related enzyme genes. Serum testosterone and 11-KT decreased significantly upon transient silencing of sox30, in vivo. Concomitantly, a reduction in testicular microsomal 11-β hydroxysteroid dehydrogenase activity was observed. These results demonstrate the influence of sox30 as well as sox9a/b in the regulation of testicular steroidogenesis in common carp.
Collapse
Affiliation(s)
- Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
28
|
Crespo M, Damont A, Blanco M, Lastrucci E, Kennani SE, Ialy-Radio C, Khattabi LE, Terrier S, Louwagie M, Kieffer-Jaquinod S, Hesse AM, Bruley C, Chantalat S, Govin J, Fenaille F, Battail C, Cocquet J, Pflieger D. Multi-omic analysis of gametogenesis reveals a novel signature at the promoters and distal enhancers of active genes. Nucleic Acids Res 2020; 48:4115-4138. [PMID: 32182340 PMCID: PMC7192594 DOI: 10.1093/nar/gkaa163] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
Epigenetic regulation of gene expression is tightly controlled by the dynamic modification of histones by chemical groups, the diversity of which has largely expanded over the past decade with the discovery of lysine acylations, catalyzed from acyl-coenzymes A. We investigated the dynamics of lysine acetylation and crotonylation on histones H3 and H4 during mouse spermatogenesis. Lysine crotonylation appeared to be of significant abundance compared to acetylation, particularly on Lys27 of histone H3 (H3K27cr) that accumulates in sperm in a cleaved form of H3. We identified the genomic localization of H3K27cr and studied its effects on transcription compared to the classical active mark H3K27ac at promoters and distal enhancers. The presence of both marks was strongly associated with highest gene expression. Assessment of their co-localization with transcription regulators (SLY, SOX30) and chromatin-binding proteins (BRD4, BRDT, BORIS and CTCF) indicated systematic highest binding when both active marks were present and different selective binding when present alone at chromatin. H3K27cr and H3K27ac finally mark the building of some sperm super-enhancers. This integrated analysis of omics data provides an unprecedented level of understanding of gene expression regulation by H3K27cr in comparison to H3K27ac, and reveals both synergistic and specific actions of each histone modification.
Collapse
Affiliation(s)
- Marion Crespo
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Annelaure Damont
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Melina Blanco
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | | | - Sara El Kennani
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Côme Ialy-Radio
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Laila El Khattabi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Samuel Terrier
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | | | | | - Anne-Marie Hesse
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | | | - Sophie Chantalat
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS UMR 5309, Inserm U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Christophe Battail
- Univ. Grenoble Alpes, CEA, INSERM, Biosciences and Biotechnology Institute of Grenoble, Biology of Cancer and Infection UMR_S 1036, 38000 Grenoble, France
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, 75014 Paris, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France.,CNRS, IRIG-BGE, 38000 Grenoble, France
| |
Collapse
|
29
|
Fu Q, Sun Z, Yang F, Mao T, Gao Y, Wang H. SOX30, a target gene of miR-653-5p, represses the proliferation and invasion of prostate cancer cells through inhibition of Wnt/β-catenin signaling. Cell Mol Biol Lett 2019; 24:71. [PMID: 31889959 PMCID: PMC6929505 DOI: 10.1186/s11658-019-0195-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sex-determining region Y-box containing gene 30 (SOX30) is a newly identified tumor-associated gene in several types of cancer. However, whether SOX30 is involved in the development and progression of prostate cancer remains unknown. This study investigated the potential role of SOX30 in prostate cancer. METHODS Prostate cancer cell lines and a normal prostate epithelial cell line were used for the experiments. The expression of SOX30 was determined using quantitative real-time PCR and western blot analysis. The malignant cellular behaviors of prostate cancer were assessed using the Cell Counting Kit-8, colony formation and Matrigel invasion assays. The miRNA-mRNA interaction was validated using the dual-luciferase reporter assay. RESULTS SOX30 expression was lower in cells of prostate cancer lines than in cells of the normal prostate epithelial line. Its overexpression repressed the proliferation and invasion of prostate cancer cells. SOX30 was identified as a target gene of microRNA-653-5p (miR-653-5p), which is upregulated in prostate cancer tissues. MiR-653-5p overexpression decreased SOX30 expression, while its inhibition increased SOX30 expression in prostate cancer cells. MiR-653-5p inhibition also markedly restricted prostate cancer cell proliferation and invasion. SOX30 overexpression or miR-653-5p inhibition significantly reduced β-catenin expression and downregulated the activation of Wnt/β-catenin signaling. SOX30 knockdown significantly reversed the miR-653-5p inhibition-mediated inhibitory effect on the proliferation, invasion and Wnt/β-catenin signaling in prostate cancer cells. CONCLUSIONS These results reveal a tumor suppressive function for SOX30 in prostate cancer and confirmed the gene as a target of miR-653-5p. SOX30 upregulation due to miR-653-5p inhibition restricted the proliferation and invasion of prostate cancer cells, and this was associated with Wnt/β-catenin signaling suppression. These findings highlight the importance of the miR-653-5p-SOX30-Wnt/β-catenin signaling axis in prostate cancer progression.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Zhenye Sun
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Tianci Mao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Yanyao Gao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| |
Collapse
|
30
|
Gong Y, Zhang Z, Chang Z, Zhou H, Zhao R, He B. Inactivation of glycogen synthase kinase-3α is required for mitochondria-mediated apoptotic germ cell phagocytosis in Sertoli cells. Aging (Albany NY) 2019; 10:3104-3116. [PMID: 30398976 PMCID: PMC6286816 DOI: 10.18632/aging.101614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The rapid and efficient clearance of apoptotic germ cells (GCs) by Sertoli cells (SCs) is important for spermatogenesis. High mitochondrial activity in phagocytes is critical for continued clearance of apoptotic cells. However, the underlying molecular mechanism is poorly understood. Glycogen synthase kinase-3α (GSK3α) is a protein kinase that participates in the regulation of mitochondrial activity. Immunohistochemistry evidenced the predominant presence of the Ser21 phosphorylation GSK3α (inactivation) signal in SCs. Heat shock-induced apoptosis of GCs and dephosphorylation of GSK3α in SCs is a perfect model to investigate the role of GSK3α in phagocytic action. The number of apoptotic GCs was significantly lower in GSK3α inhibitor pre-treated mice with HS compared to normal control. In vitro phagocytosis assays shown that the phagocytic activity in GSK3α activated SCs was downregulated, while GSK3α inhibitor supplementation restored this process. Moreover, GSK3α activation participates in the alteration of the mitochondrial ultrastructure and activity. In particular, GSK3α activation inhibits mitochondrial fission via phosphorylation of dynamin related protein 1 at Ser637. Changes of mitochondrial activity resulted in the accumulation of lipid droplets and the alteration of metabolism pattern in SCs. In summary, our results demonstrate that inactivation of GSK3α is required for mitochondria-mediated apoptotic GCs phagocytosis in SCs.
Collapse
Affiliation(s)
- Yabin Gong
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhilong Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhanglin Chang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hao Zhou
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.,Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.,Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| |
Collapse
|
31
|
Han F, Jiang X, Li ZM, Zhuang X, Zhang X, Ouyang WM, Liu WB, Mao CY, Chen Q, Huang CS, Gao F, Cui ZH, Ao L, Li YF, Cao J, Liu JY. Epigenetic Inactivation of SOX30 Is Associated with Male Infertility and Offers a Therapy Target for Non-obstructive Azoospermia. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:72-83. [PMID: 31835093 PMCID: PMC6926170 DOI: 10.1016/j.omtn.2019.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/10/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022]
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility. However, the etiology of NOA is largely unknown, resulting in a lack of clinical treatments. Here, we performed a comparative genome-wide profiling of DNA methylation and identified SOX30 as the most notably hyper-methylated gene at promoter in testicular tissues from NOA patients. This hyper-methylation at promoter of SOX30 directly causes its silencing of expression in NOA. The reduced levels of SOX30 expression are correlated with severity of NOA disease. Deletion of Sox30 in mice uniquely impairs testis development and spermatogenesis with complete absence of spermatozoa in testes leading to male infertility, but does not influence ovary development and female fertility. The pathology and testicular size of Sox30 null mice highly simulate those of NOA patients. Re-expression of Sox30 in Sox30 null mice at adult age reverses the pathological damage of testis and restores the spermatogenesis. The re-presented spermatozoa after re-expression of Sox30 in Sox30 null mice have the ability to start a pregnancy. Moreover, the male offspring of Sox30 re-expression Sox30 null mice still can father children, and these male offspring and their children can live normally more than 1 year without significant difference of physical appearance compared with wild-type mice. In summary, methylated inactivation of SOX30 uniquely impairs spermatogenesis, probably causing NOA disease, and re-expression of SOX30 can successfully restore the spermatogenesis and actual fertility. This study advances our understanding of the pathogenesis of NOA, offering a promising therapy target for NOA disease.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Zhi-ming Li
- Institute of Reproductive Health, Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhuang
- Department of Urology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Xi Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Wei-ming Ouyang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Wen-bin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Cheng-yi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Chuan-shu Huang
- Nelson Institute of Environmental Medicine, NYU School of Medicine, New York, NY, USA
| | - Fei Gao
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Zhi-hong Cui
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yan-feng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jia Cao, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| | - Jin-yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
- Corresponding author: Jin-yi Liu, Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
32
|
Transcription of the Sox30 Gene Is Positively Regulated by Dmrt1 in Nile Tilapia. Int J Mol Sci 2019; 20:ijms20215487. [PMID: 31690021 PMCID: PMC6862701 DOI: 10.3390/ijms20215487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
The Sox family member Sox30 is highly expressed in the testis of several vertebrate species and has been shown to play key roles in spermiogenesis. However, its transcription regulation remains unclear. Here, we analyzed the Sox30 promoter from the teleost fish Nile tilapia (Oreochromis niloticus) and predicted a putative cis-regulatory element (CRE) for doublesex and mab-3 related transcription factor 1 (Dmrt1), a male-specific transcription factor involved in male sex differentiation. Transcriptional profiling revealed that Sox30 and Dmrt1 similarly exhibited a high expression in tilapia testes from 90 days after hatching (dah) to 300 dah, and the transcription of the Sox30 gene was reduced about one-fold in the testes of male tilapia with Dmrt1 knockdown. Further dual-luciferase reporter assay confirmed that Dmrt1 overexpression significantly promoted transcriptional activity of the Sox30 promoter and this promotion was decreased following the mutation of putative CRE for Dmrt1 within the Sox30 promoter. Chromatin immunoprecipitation-based PCR (ChIP-PCR) and electrophoretic mobility shift assay (EMSA) demonstrated that Dmrt1 directly binds to putative CRE within the Sox30 promoter. These results together indicate that Dmrt1 positively regulates the transcription of the tilapia Sox30 gene by directly binding to specific CRE within the Sox30 promoter.
Collapse
|
33
|
Urekar C, Acharya KK, Chhabra P, Reddi PP. A 50-bp enhancer of the mouse acrosomal vesicle protein 1 gene activates round spermatid-specific transcription in vivo†. Biol Reprod 2019; 101:842-853. [PMID: 31290539 PMCID: PMC6863968 DOI: 10.1093/biolre/ioz115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Abstract
Enhancers are cis-elements that activate transcription and play critical roles in tissue- and cell type-specific gene expression. During spermatogenesis, genes coding for specialized sperm structures are expressed in a developmental stage- and cell type-specific manner, but the enhancers responsible for their expression have not been identified. Using the mouse acrosomal vesicle protein (Acrv1) gene that codes for the acrosomal protein SP-10 as a model, our previous studies have shown that Acrv1 proximal promoter activates transcription in spermatids; and the goal of the present study was to separate the enhancer responsible. Transgenic mice showed that three copies of the -186/-135 fragment (50 bp enhancer) placed upstream of the Acrv1 core promoter (-91/+28) activated reporter expression in testis but not somatic tissues (n = 4). Immunohistochemistry showed that enhancer activity was restricted to the round spermatids. The Acrv1 enhancer failed to activate transcription in the context of a heterologous core promoter (n = 4), indicating a likely requirement for enhancer-core promoter compatibility. Chromatin accessibility assays showed that the Acrv1 enhancer assumes a nucleosome-free state in male germ cells (but not liver), indicating occupancy by transcription factors. Southwestern assays (SWA) identified specific binding of the enhancer to a testis nuclear protein of 47 kDa (TNP47). TNP47 was predominantly nuclear and becomes abundant during the haploid phase of spermatogenesis. Two-dimensional SWA revealed the isoelectric point of TNP47 to be 5.2. Taken together, this study delineated a 50-bp enhancer of the Acrv1 gene for round spermatid-specific transcription and identified a putative cognate factor. The 50-bp enhancer could become useful for delivery of proteins into spermatids.
Collapse
Affiliation(s)
- Craig Urekar
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kshitish K Acharya
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Preeti Chhabra
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| |
Collapse
|