1
|
Rosales-Vega M, Reséndez-Pérez D, Vázquez M. Antennapedia: The complexity of a master developmental transcription factor. Genesis 2024; 62:e23561. [PMID: 37830148 DOI: 10.1002/dvg.23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Hox genes encode transcription factors that play an important role in establishing the basic body plan of animals. In Drosophila, Antennapedia is one of the five genes that make up the Antennapedia complex (ANT-C). Antennapedia determines the identity of the second thoracic segment, known as the mesothorax. Misexpression of Antennapedia at different developmental stages changes the identity of the mesothorax, including the muscles, nervous system, and cuticle. In Drosophila, Antennapedia has two distinct promoters highly regulated throughout development by several transcription factors. Antennapedia proteins are found with other transcription factors in different ANTENNAPEDIA transcriptional complexes to regulate multiple subsets of target genes. In this review, we describe the different mechanisms that regulate the expression and function of Antennapedia and the role of this Hox gene in the development of Drosophila.
Collapse
Affiliation(s)
- Marco Rosales-Vega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Diana Reséndez-Pérez
- Facultad de Ciencias Biológicas, Departamento de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Vázquez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Zhao J, Perkins ML, Norstad M, Garcia HG. A bistable autoregulatory module in the developing embryo commits cells to binary expression fates. Curr Biol 2023; 33:2851-2864.e11. [PMID: 37453424 PMCID: PMC10428078 DOI: 10.1016/j.cub.2023.06.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/13/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Bistable autoactivation has been proposed as a mechanism for cells to adopt binary fates during embryonic development. However, it is unclear whether the autoactivating modules found within developmental gene regulatory networks are bistable, unless their parameters are quantitatively determined. Here, we combine in vivo live imaging with mathematical modeling to dissect the binary cell fate dynamics of the fruit fly pair-rule gene fushi tarazu (ftz), which is regulated by two known enhancers: the early (non-autoregulating) element and the autoregulatory element. Live imaging of transcription and protein concentration in the blastoderm revealed that binary Ftz fates are achieved as Ftz expression rapidly transitions from being dictated by the early element to the autoregulatory element. Moreover, we discovered that Ftz concentration alone is insufficient to activate the autoregulatory element, and that this element only becomes responsive to Ftz at a prescribed developmental time. Based on these observations, we developed a dynamical systems model and quantitated its kinetic parameters directly from experimental measurements. Our model demonstrated that the ftz autoregulatory module is indeed bistable and that the early element transiently establishes the content of the binary cell fate decision to which the autoregulatory module then commits. Further in silico analysis revealed that the autoregulatory element locks the Ftz fate quickly, within 35 min of exposure to the transient signal of the early element. Overall, our work confirms the widely held hypothesis that autoregulation can establish developmental fates through bistability and, most importantly, provides a framework for the quantitative dissection of cellular decision-making.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Matthew Norstad
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hernan G Garcia
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA; Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Giri R, Brady S, Papadopoulos DK, Carthew RW. Single-cell Senseless protein analysis reveals metastable states during the transition to a sensory organ fate. iScience 2022; 25:105097. [PMID: 36157584 PMCID: PMC9494244 DOI: 10.1016/j.isci.2022.105097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Cell fate decisions can be envisioned as bifurcating dynamical systems, and the decision that Drosophila cells make during sensory organ differentiation has been described as such. We extended these studies by focusing on the Senseless protein which orchestrates sensory cell fate transitions. Wing cells contain intermediate Senseless numbers before their fate transition, after which they express much greater numbers of Senseless molecules as they differentiate. However, the dynamics are inconsistent with it being a simple bistable system. Cells with intermediate Senseless are best modeled as residing in four discrete states, each with a distinct protein number and occupying a specific region of the tissue. Although the states are stable over time, the number of molecules in each state vary with time. The fold change in molecule number between adjacent states is invariant and robust to absolute protein number variation. Thus, cells transitioning to sensory fates exhibit metastability with relativistic properties.
Collapse
Affiliation(s)
- Ritika Giri
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA,NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Shannon Brady
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Dimitrios K. Papadopoulos
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden,Department of Biology, University of Crete, Voutes University Campus, Heraklion, Crete 70013, Greece
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA,NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA,Corresponding author
| |
Collapse
|
4
|
Carrettiero DC, Almeida MC, Longhini AP, Rauch JN, Han D, Zhang X, Najafi S, Gestwicki JE, Kosik KS. Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate. Nat Commun 2022; 13:3074. [PMID: 35654899 PMCID: PMC9163039 DOI: 10.1038/s41467-022-30751-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
The formation of membraneless organelles can be a proteotoxic stress control mechanism that locally condenses a set of components capable of mediating protein degradation decisions. The breadth of mechanisms by which cells respond to stressors and form specific functional types of membraneless organelles, is incompletely understood. We found that Bcl2-associated athanogene 2 (BAG2) marks a distinct phase-separated membraneless organelle, triggered by several forms of stress, particularly hyper-osmotic stress. Distinct from well-known condensates such as stress granules and processing bodies, BAG2-containing granules lack RNA, lack ubiquitin and promote client degradation in a ubiquitin-independent manner via the 20S proteasome. These organelles protect the viability of cells from stress and can traffic to the client protein, in the case of Tau protein, on the microtubule. Components of these ubiquitin-independent degradation organelles include the chaperone HSP-70 and the 20S proteasome activated by members of the PA28 (PMSE) family. BAG2 condensates did not co-localize with LAMP-1 or p62/SQSTM1. When the proteasome is inhibited, BAG2 condensates and the autophagy markers traffic to an aggresome-like structure.
Collapse
Affiliation(s)
- Daniel C Carrettiero
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Maria C Almeida
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Jennifer N Rauch
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Dasol Han
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xuemei Zhang
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
5
|
Trigueros R, Navarro N, Mercader I, Aguilar-Parra JM, Lopez-Liria R, Rocamora-Pérez P. Self-Stigma, Mental Health and Healthy Habits in Parent of Children with Severe Mental Disorder. Psychol Res Behav Manag 2022; 15:227-235. [PMID: 35140533 PMCID: PMC8819165 DOI: 10.2147/prbm.s342780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Family members who have children with Severe Mental Disorder under their care have a hard impact on them as they are faced with the task of attending to their demands and care. This is a change in their lives as it significantly interferes with their physical and social well-being. The aim of this study was to explore the relationships between self-stigma, depression, stress and anxiety and their relationship with healthy habits, such as sport and a healthy diet. METHODS The sample consisted of 538 parents aged between 38 and 52 years (M = 43.42; SD = 13.11). The parents have children with a diagnosis of mental disorder under their care. Participants completed the Spanish adaptation of the Self-Stigma in Relatives of people with Mental Illness (SSRMI), the Depression, Anxiety and Stress Scale (DASS-21), the Kidmed Scale and the WHO scale, whose responses were analysed using structural equation modelling. RESULTS The results showed that self-stigma was positively related to anxiety, stress and depression and, in turn, these three variables were negatively related to sporting activity and healthy eating. CONCLUSION This study, therefore, is further evidence of the impact of self-stigma at the physical and mental level on family members, which highlights the need to provide them with support tools and resources, and to work on raising social awareness of mental disorders.
Collapse
Affiliation(s)
- Rubén Trigueros
- Department of Psychology, Hum-878 Research Team, Health Research Centre, University of Almeria, Almeria, 04120, Spain
| | - Noelia Navarro
- Department of Psychology, Hum-760 Research Team, Health Research Centre, University of Almería, Almería, 04120, Spain
| | - Isabel Mercader
- Department of Psychology, Hum-878 Research Team, Health Research Centre, University of Almeria, Almeria, 04120, Spain
| | - José M Aguilar-Parra
- Department of Psychology, Hum-878 Research Team, Health Research Centre, University of Almeria, Almeria, 04120, Spain
| | - Remedios Lopez-Liria
- Department of Nursing Science, Physiotherapy and Medicine, Hum-498 Research Team, Health Research Centre, University of Almería, Almería, 04120, Spain
| | - Patricia Rocamora-Pérez
- Department of Nursing Science, Physiotherapy and Medicine, Hum-498 Research Team, Health Research Centre, University of Almería, Almería, 04120, Spain
| |
Collapse
|
6
|
Paul R, Giraud G, Domsch K, Duffraisse M, Marmigère F, Khan S, Vanderperre S, Lohmann I, Stoks R, Shashidhara LS, Merabet S. Hox dosage contributes to flight appendage morphology in Drosophila. Nat Commun 2021; 12:2892. [PMID: 34001903 PMCID: PMC8129201 DOI: 10.1038/s41467-021-23293-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Flying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.
Collapse
Affiliation(s)
- Rachel Paul
- IGFL, CNRS UMR5242, ENS Lyon, Lyon, France
- Laboratory of Genetics and Development, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | | | - Katrin Domsch
- University of Heidelberg, Centre for Organismal Studies (COS) Heidelberg Department of Developmental Biology, Heidelberg, Germany
| | | | | | - Soumen Khan
- Indian Institute of Science Education and Research (IISER), Pashan Pune, India
| | | | - Ingrid Lohmann
- University of Heidelberg, Centre for Organismal Studies (COS) Heidelberg Department of Developmental Biology, Heidelberg, Germany
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation, Leuven, Belgium
| | - L S Shashidhara
- Indian Institute of Science Education and Research (IISER), Pashan Pune, India
- Ashoka University, Sonipat, India
| | | |
Collapse
|
7
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
8
|
Martin PC, Zabet NR. Dissecting the binding mechanisms of transcription factors to DNA using a statistical thermodynamics framework. Comput Struct Biotechnol J 2020; 18:3590-3605. [PMID: 33304457 PMCID: PMC7708957 DOI: 10.1016/j.csbj.2020.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
Transcription Factors (TFs) bind to DNA and control activity of target genes. Here, we present ChIPanalyser, a user-friendly, versatile and powerful R/Bioconductor package predicting and modelling the binding of TFs to DNA. ChIPanalyser performs similarly to state-of-the-art tools, but is an explainable model and provides biological insights into binding mechanisms of TFs. We focused on investigating the binding mechanisms of three TFs that are known architectural proteins CTCF, BEAF-32 and su(Hw) in three Drosophila cell lines (BG3, Kc167 and S2). While CTCF preferentially binds only to a subset of high affinity sites located mainly in open chromatin, BEAF-32 binds to most of its high affinity binding sites available in open chromatin. In contrast, su(Hw) binds to both open chromatin and also partially closed chromatin. Most importantly, differences in TF binding profiles between cell lines for these TFs are mainly driven by differences in DNA accessibility and not by differences in TF concentrations between cell lines. Finally, we investigated binding of Hox TFs in Drosophila and found that Ubx binds only in open chromatin, while Abd-B and Dfd are capable to bind in both open and partially closed chromatin. Overall, our results show that TFs display different binding mechanisms and that our model is able to recapitulate their specific binding behaviour.
Collapse
Affiliation(s)
- Patrick C.N. Martin
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
9
|
Misteli T. The Self-Organizing Genome: Principles of Genome Architecture and Function. Cell 2020; 183:28-45. [PMID: 32976797 PMCID: PMC7541718 DOI: 10.1016/j.cell.2020.09.014] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023]
Abstract
Genomes have complex three-dimensional architectures. The recent convergence of genetic, biochemical, biophysical, and cell biological methods has uncovered several fundamental principles of genome organization. They highlight that genome function is a major driver of genome architecture and that structural features of chromatin act as modulators, rather than binary determinants, of genome activity. The interplay of these principles in the context of self-organization can account for the emergence of structural chromatin features, the diversity and single-cell heterogeneity of nuclear architecture in cell types and tissues, and explains evolutionarily conserved functional features of genomes, including plasticity and robustness.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Winter DL, Iranmanesh H, Clark DS, Glover DJ. Design of Tunable Protein Interfaces Controlled by Post-Translational Modifications. ACS Synth Biol 2020; 9:2132-2143. [PMID: 32702241 DOI: 10.1021/acssynbio.0c00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design of protein interaction interfaces is a cornerstone of synthetic biology, where they can be used to promote the association of protein subunits into active molecular complexes or into protein nanostructures. In nature, protein interactions can be modulated by post-translational modifications (PTMs) that modify the protein interfaces with the addition and removal of various chemical groups. PTMs thus represent a means to gain control over protein interactions, yet they have seldom been considered in the design of synthetic proteins. Here, we explore the potential of a reversible PTM, serine phosphorylation, to modulate the interactions between peptides. We designed a series of interacting peptide pairs, including heterodimeric coiled coils, that contained one or more protein kinase A (PKA) recognition motifs. Our set of peptide pairs comprised interactions ranging from nanomolar to micromolar affinities. Mass spectrometry analyses showed that all peptides were excellent phosphorylation substrates of PKA, and subsequent phosphate removal could be catalyzed by lambda protein phosphatase. Binding kinetics measurements performed before and after treatment of the peptides with PKA revealed that phosphorylation of the target serines affected both the association and dissociation rates of the interacting peptides. We observed both the strengthening of interactions (up to an 11-fold decrease in Kd) and the weakening of interactions (up to a 180-fold increase in Kd). De novo-designed PTM-modulated interfaces will be useful to control the association of proteins in biological systems using protein-modifying enzymes, expanding the paradigm of self-assembly to encompass controlled assembly of engineerable protein complexes.
Collapse
Affiliation(s)
- Daniel L. Winter
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, ACT 2601, Australia
| | - Hasti Iranmanesh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dominic J. Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Longman D, Jackson-Jones KA, Maslon MM, Murphy LC, Young RS, Stoddart JJ, Hug N, Taylor MS, Papadopoulos DK, Cáceres JF. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes Dev 2020; 34:1075-1088. [PMID: 32616520 PMCID: PMC7397857 DOI: 10.1101/gad.338061.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kathryn A Jackson-Jones
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jack J Stoddart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dimitrios K Papadopoulos
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
12
|
Giri R, Papadopoulos DK, Posadas DM, Potluri HK, Tomancak P, Mani M, Carthew RW. Ordered patterning of the sensory system is susceptible to stochastic features of gene expression. eLife 2020; 9:e53638. [PMID: 32101167 PMCID: PMC7064346 DOI: 10.7554/elife.53638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/25/2020] [Indexed: 01/23/2023] Open
Abstract
Sensory neuron numbers and positions are precisely organized to accurately map environmental signals in the brain. This precision emerges from biochemical processes within and between cells that are inherently stochastic. We investigated impact of stochastic gene expression on pattern formation, focusing on senseless (sens), a key determinant of sensory fate in Drosophila. Perturbing microRNA regulation or genomic location of sens produced distinct noise signatures. Noise was greatly enhanced when both sens alleles were present in homologous loci such that each allele was regulated in trans by the other allele. This led to disordered patterning. In contrast, loss of microRNA repression of sens increased protein abundance but not sensory pattern disorder. This suggests that gene expression stochasticity is a critical feature that must be constrained during development to allow rapid yet accurate cell fate resolution.
Collapse
Affiliation(s)
- Ritika Giri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | | | - Diana M Posadas
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hemanth K Potluri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and GeneticsDresdenGermany
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
13
|
Skouloudaki K, Christodoulou I, Khalili D, Tsarouhas V, Samakovlis C, Tomancak P, Knust E, Papadopoulos DK. Yorkie controls tube length and apical barrier integrity during airway development. J Cell Biol 2019; 218:2762-2781. [PMID: 31315941 PMCID: PMC6683733 DOI: 10.1083/jcb.201809121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Skouloudaki et al. identify an alternative role of the transcriptional coactivator Yorkie (Yki) in controlling water impermeability and tube size of developing Drosophila airways. Tracheal impermeability is triggered by Yki-mediated transcriptional regulation of δ-aminolevulinate synthase (Alas), whereas tube elongation is controlled by binding of Yki to the actin-severing factor Twinstar. Epithelial organ size and shape depend on cell shape changes, cell–matrix communication, and apical membrane growth. The Drosophila melanogaster embryonic tracheal network is an excellent model to study these processes. Here, we show that the transcriptional coactivator of the Hippo pathway, Yorkie (YAP/TAZ in vertebrates), plays distinct roles in the developing Drosophila airways. Yorkie exerts a cytoplasmic function by binding Drosophila Twinstar, the orthologue of the vertebrate actin-severing protein Cofilin, to regulate F-actin levels and apical cell membrane size, which are required for proper tracheal tube elongation. Second, Yorkie controls water tightness of tracheal tubes by transcriptional regulation of the δ-aminolevulinate synthase gene (Alas). We conclude that Yorkie has a dual role in tracheal development to ensure proper tracheal growth and functionality.
Collapse
Affiliation(s)
| | - Ioannis Christodoulou
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vasilios Tsarouhas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Excellence Cluster Cardio-Pulmonary System, University of Giessen, Giessen, Germany
| | - Pavel Tomancak
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dimitrios K Papadopoulos
- Max-Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany .,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Klein AM, Treutlein B. Single cell analyses of development in the modern era. Development 2019; 146:146/12/dev181396. [PMID: 31249004 DOI: 10.1242/dev.181396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Barbara Treutlein
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| |
Collapse
|
15
|
Klingenberg CP. Phenotypic Plasticity, Developmental Instability, and Robustness: The Concepts and How They Are Connected. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00056] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|