3
|
Grego-Bessa J, Gómez-Apiñaniz P, Prados B, Gómez MJ, MacGrogan D, de la Pompa JL. Nrg1 Regulates Cardiomyocyte Migration and Cell Cycle in Ventricular Development. Circ Res 2023; 133:927-943. [PMID: 37846569 PMCID: PMC10631509 DOI: 10.1161/circresaha.123.323321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Cardiac ventricles provide the contractile force of the beating heart throughout life. How the primitive endocardium-layered myocardial projections called trabeculae form and mature into the adult ventricles is of great interest for biology and regenerative medicine. Trabeculation is dependent on the signaling protein Nrg1 (neuregulin-1). However, the mechanism of action of Nrg1 and its role in ventricular wall maturation are poorly understood. METHODS We investigated the functions and downstream mechanisms of Nrg1 signaling during ventricular chamber development using confocal imaging, transcriptomics, and biochemical approaches in mice with cardiac-specific inactivation or overexpression of Nrg1. RESULTS Analysis of cardiac-specific Nrg1 mutant mice showed that the transcriptional program underlying cardiomyocyte-oriented cell division and trabeculae formation depends on endocardial Nrg1 to myocardial ErbB2 (erb-b2 receptor tyrosine kinase 2) signaling and phospho-Erk (phosphorylated extracellular signal-regulated kinase; pErk) activation. Early endothelial loss of Nrg1 and reduced pErk activation diminished cardiomyocyte Pard3 and Crumbs2 (Crumbs Cell Polarity Complex Component 2) protein and altered cytoskeletal gene expression and organization. These alterations are associated with abnormal gene expression related to mitotic spindle organization and a shift in cardiomyocyte division orientation. Nrg1 is crucial for trabecular growth and ventricular wall thickening by regulating an epithelial-to-mesenchymal transition-like process in cardiomyocytes involving migration, adhesion, cytoskeletal actin turnover, and timely progression through the cell cycle G2/M phase. Ectopic cardiac Nrg1 overexpression and high pErk signaling caused S-phase arrest, sustained high epithelial-to-mesenchymal transition-like gene expression, and prolonged trabeculation, blocking compact myocardium maturation. Myocardial trabecular patterning alterations resulting from above- or below-normal Nrg1-dependent pErk activation were concomitant with sarcomere actin cytoskeleton disorganization. The Nrg1 loss- and gain-of-function transcriptomes were enriched for Yap1 (yes-associated protein-1) gene signatures, identifying Yap1 as a potential downstream effector. Furthermore, biochemical and imaging data reveal that Nrg1 influences pErk activation and Yap1 nuclear-cytoplasmic distribution during trabeculation. CONCLUSIONS These data establish the Nrg1-ErbB2/ErbB4-Erk axis as a crucial regulator of cardiomyocyte cell cycle progression and migration during ventricular development.
Collapse
Affiliation(s)
- Joaquim Grego-Bessa
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - Paula Gómez-Apiñaniz
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - Belén Prados
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | | | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain (J.G.-B., P.G.-A., B.P., D.M., J.L.d.l.P.)
| |
Collapse
|
6
|
Geusz RJ, Wang A, Chiou J, Lancman JJ, Wetton N, Kefalopoulou S, Wang J, Qiu Y, Yan J, Aylward A, Ren B, Dong PDS, Gaulton KJ, Sander M. Pancreatic progenitor epigenome maps prioritize type 2 diabetes risk genes with roles in development. eLife 2021; 10:e59067. [PMID: 33544077 PMCID: PMC7864636 DOI: 10.7554/elife.59067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Generation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D.
Collapse
Affiliation(s)
- Ryan J Geusz
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Allen Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Joshua Chiou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Biomedical Graduate Studies Program, University of California, San DiegoSan DiegoUnited States
| | - Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Nichole Wetton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Samy Kefalopoulou
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Jinzhao Wang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| | - Yunjiang Qiu
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Jian Yan
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Anthony Aylward
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Bing Ren
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Ludwig Institute for Cancer ResearchSan DiegoUnited States
| | - P Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery InstituteSan DiegoUnited States
| | - Kyle J Gaulton
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, San DiegoSan DiegoUnited States
- Department of Cellular & Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Sanford Consortium for Regenerative MedicineSan DiegoUnited States
| |
Collapse
|
8
|
Li S, Nguyen NUN, Xiao F, Menendez-Montes I, Nakada Y, Tan WLW, Anene-Nzelu CG, Foo RS, Thet S, Cardoso AC, Wang P, Elhelaly WM, Lam NT, Pereira AHM, Hill JA, Sadek HA. Mechanism of Eccentric Cardiomyocyte Hypertrophy Secondary to Severe Mitral Regurgitation. Circulation 2020; 141:1787-1799. [PMID: 32272846 DOI: 10.1161/circulationaha.119.043939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Primary valvular heart disease is a prevalent cause of morbidity and mortality in both industrialized and developing countries. Although the primary consequence of valvular heart disease is myocardial dysfunction, treatment of valvular heart diseases centers around valve repair or replacement rather than prevention or reversal of myocardial dysfunction. This is particularly evident in primary mitral regurgitation (MR), which invariably results in eccentric hypertrophy and left ventricular (LV) failure in the absence of timely valve repair or replacement. The mechanism of LV dysfunction in primary severe MR is entirely unknown. METHODS Here, we developed the first mouse model of severe MR. Valvular damage was achieved by severing the mitral valve leaflets and chords with iridectomy scissors, and MR was confirmed by echocardiography. Serial echocardiography was performed to follow up LV morphology and systolic function. Analysis of cardiac tissues was subsequently performed to evaluate valve deformation, cardiomyocyte morphology, LV fibrosis, and cell death. Finally, dysregulated pathways were assessed by RNA-sequencing analysis and immunofluorescence. RESULTS In the ensuing 15 weeks after the induction of MR, gradual LV dilatation and dysfunction occurred, resulting in severe systolic dysfunction. Further analysis revealed that severe MR resulted in a marked increase in cardiac mass and increased cardiomyocyte length but not width, with electron microscopic evidence of sarcomere disarray and the development of sarcomere disruption. From a mechanistic standpoint, severe MR resulted in activation of multiple components of both the mammalian target of rapamycin and calcineurin pathways. Inhibition of mammalian target of rapamycin signaling preserved sarcomeric structure and prevented LV remodeling and systolic dysfunction. Immunohistochemical analysis uncovered a differential pattern of expression of the cell polarity regulator Crb2 (crumbs homolog 2) along the longitudinal axis of cardiomyocytes and close to the intercalated disks in the MR hearts. Electron microscopy images demonstrated a significant increase in polysome localization in close proximity to the intercalated disks and some areas along the longitudinal axis in the MR hearts. CONCLUSIONS These results indicate that LV dysfunction in response to severe MR is a form of maladaptive eccentric cardiomyocyte hypertrophy and outline the link between cell polarity regulation and spatial localization protein synthesis as a pathway for directional cardiomyocyte growth.
Collapse
Affiliation(s)
- Shujuan Li
- Department of Pediatric Cardiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China (S.L.).,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China (S.L.).,Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Feng Xiao
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ivan Menendez-Montes
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Yuji Nakada
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Wilson Lek Wen Tan
- Cardiovascular Research Institute, National University of Singapore (W.L.W.T., C.G.A.-N., R.S.F.).,Genome Institute of Singapore (W.L.W.T., C.G.A.-N., R.S.F.)
| | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University of Singapore (W.L.W.T., C.G.A.-N., R.S.F.).,Genome Institute of Singapore (W.L.W.T., C.G.A.-N., R.S.F.)
| | - Roger S Foo
- Cardiovascular Research Institute, National University of Singapore (W.L.W.T., C.G.A.-N., R.S.F.).,Genome Institute of Singapore (W.L.W.T., C.G.A.-N., R.S.F.)
| | - Suwannee Thet
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Alisson Campos Cardoso
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas.,Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo (A.C.C., A.H.M.P.)
| | - Ping Wang
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Waleed M Elhelaly
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Nicholas T Lam
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Ana Helena Macedo Pereira
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas.,Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo (A.C.C., A.H.M.P.)
| | - Joseph A Hill
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas.,Department of Molecular Biology (J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology (S.L., N.U.N.N., F.X., I.M.-M., Y.N., S.T., A.C.C., P.W., W.M.E., N.T.L., A.H.M.P., J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas.,Center for Regenerative Science and Medicine (H.A.S.), University of Texas Southwestern Medical Center, Dallas.,Department of Molecular Biology (J.A.H., H.A.S.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|