1
|
Blanco-Touriñán N, Rana S, Nolan TM, Li K, Vukašinović N, Hsu CW, Russinova E, Hardtke CS. The brassinosteroid receptor gene BRI1 safeguards cell-autonomous brassinosteroid signaling across tissues. SCIENCE ADVANCES 2024; 10:eadq3352. [PMID: 39321293 PMCID: PMC11423886 DOI: 10.1126/sciadv.adq3352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Brassinosteroid signaling is essential for plant growth as exemplified by the dwarf phenotype of loss-of-function mutants in BRASSINOSTEROID INSENSITIVE 1 (BRI1), a ubiquitously expressed Arabidopsis brassinosteroid receptor gene. Complementation of brassinosteroid-blind receptor mutants by BRI1 expression with various tissue-specific promoters implied that local brassinosteroid signaling may instruct growth non-cell autonomously. Here, we performed such rescues with a panel of receptor variants and promoters, in combination with tissue-specific transgene knockouts. Our experiments demonstrate that brassinosteroid receptor expression in several tissues is necessary but not sufficient for rescue. Moreover, complementation with tissue-specific promoters requires the genuine BRI1 gene body sequence, which confers ubiquitous expression of trace receptor amounts that are sufficient to promote brassinosteroid-dependent root growth. Our data, therefore, argue for a largely cell-autonomous action of brassinosteroid receptors.
Collapse
Affiliation(s)
- Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Trevor M. Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Kunkun Li
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Christian S. Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Yang Z, Gu J, Zhao M, Fan X, Guo H, Xie Y, Zhang J, Xiong H, Zhao L, Zhao S, Ding Y, Kong F, Sui L, Xu L, Liu L. Genetic Analysis and Fine Mapping of QTL for the Erect Leaf in Mutant mths29 Induced through Fast Neutron in Wheat. BIOLOGY 2024; 13:430. [PMID: 38927310 PMCID: PMC11201221 DOI: 10.3390/biology13060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The erect leaf plays a crucial role in determining plant architecture, with its growth and development regulated by genetic factors. However, there has been a lack of comprehensive studies on the regulatory mechanisms governing wheat lamina joint development, thus failing to meet current breeding demands. In this study, a wheat erect leaf mutant, mths29, induced via fast neutron mutagenesis, was utilized for QTL fine mapping and investigation of lamina joint development. Genetic analysis of segregating populations derived from mths29 and Jimai22 revealed that the erect leaf trait was controlled by a dominant single gene. Using BSR sequencing and map-based cloning techniques, the QTL responsible for the erect leaf trait was mapped to a 1.03 Mb physical region on chromosome 5A. Transcriptome analysis highlighted differential expression of genes associated with cell division and proliferation, as well as several crucial transcription factors and kinases implicated in lamina joint development, particularly in the boundary cells of the preligule zone in mths29. These findings establish a solid foundation for understanding lamina joint development and hold promise for potential improvements in wheat plant architecture.
Collapse
Affiliation(s)
- Zhixin Yang
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Jiayu Gu
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Minghui Zhao
- Dry-Land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China
| | - Xiaofeng Fan
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
| | - Huijun Guo
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Yongdun Xie
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Jinfeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Hongchun Xiong
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Linshu Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Shirong Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Yuping Ding
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| | - Fuquan Kong
- China Institute of Atomic Energy, Beijing 102413, China; (F.K.); (L.S.)
| | - Li Sui
- China Institute of Atomic Energy, Beijing 102413, China; (F.K.); (L.S.)
| | - Le Xu
- College of Agriculture, Yangtze University, Jingzhou 434023, China; (Z.Y.); (X.F.); (L.X.)
| | - Luxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Engineering Laboratory for Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, CAEA Research and Development Center on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (H.G.); (Y.X.); (H.X.); (L.Z.); (S.Z.); (Y.D.)
| |
Collapse
|
3
|
Hardtke CS. Phloem development. THE NEW PHYTOLOGIST 2023. [PMID: 37243530 DOI: 10.1111/nph.19003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
The evolution of the plant vascular system is a key process in Earth history because it enabled plants to conquer land and transform the terrestrial surface. Among the vascular tissues, the phloem is particularly intriguing because of its complex functionality. In angiosperms, its principal components are the sieve elements, which transport phloem sap, and their neighboring companion cells. Together, they form a functional unit that sustains sap loading, transport, and unloading. The developmental trajectory of sieve elements is unique among plant cell types because it entails selective organelle degradation including enucleation. Meticulous analyses of primary, so-called protophloem in the Arabidopsis thaliana root meristem have revealed key steps in protophloem sieve element formation at single-cell resolution. A transcription factor cascade connects specification with differentiation and also orchestrates phloem pole patterning via noncell-autonomous action of sieve element-derived effectors. Reminiscent of vascular tissue patterning in secondary growth, these involve receptor kinase pathways, whose antagonists guide the progression of sieve element differentiation. Receptor kinase pathways may also safeguard phloem formation by maintaining the developmental plasticity of neighboring cell files. Our current understanding of protophloem development in the A. thaliana root has reached sufficient detail to instruct molecular-level investigation of phloem formation in other organs.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Zeng J, Jiang G, Liang H, Yan H, Kong X, Duan X, Li Z. Histone demethylase MaJMJ15 is involved in the regulation of postharvest banana fruit ripening. Food Chem 2023; 407:135102. [PMID: 36495744 DOI: 10.1016/j.foodchem.2022.135102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Histone methylation plays important roles in plant development. However, the role of histone methylation in fruit ripening remains unclear. Here, a total of 16 Jumonji domain-containing proteins (JMJs) were identified from banana genome. During fruit ripening, expression of MaJMJ15 was significantly upregulated. Exogenous ethylene accelerated the upregulation whereas 1-methylcyclopropene delayed the process, suggesting that MaJMJ15 positively regulates banana fruit ripening. MaJMJ15 is an H3K27me3 site-specific demethylase. Transient overexpression of MaJMJ15 promoted banana fruit ripening. Moreover, the global H3K27me3 was decreased by MaJMJ15. Furthermore, MaJMJ15 directly targeted several key ripening-related genes (RRGs) in banana including NAC transcription factor 1/2 (MaNAC1/2), 1-aminocyclopropane-1-carboxylate synthase 1 (MaACS1), 1-aminocyclopropane-1-carboxylate oxidase 1 (MaACO1) and expansin 2 (MaEXP2), removed H3K27me3 from their chromatin, and activated their expression. Our data suggest that MaJMJ15 is an H3K27me3 demethylase, which is involved in the regulation of banana fruit ripening by activating expression of key RRGs via removal of H3K27me3.
Collapse
Affiliation(s)
- Jing Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxiang Jiang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanzhi Liang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Yan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjin Kong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China; Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Zhiwei Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Rodrigues VL, Dolde U, Sun B, Blaakmeer A, Straub D, Eguen T, Botterweg-Paredes E, Hong S, Graeff M, Li MW, Gendron JM, Wenkel S. A microProtein repressor complex in the shoot meristem controls the transition to flowering. PLANT PHYSIOLOGY 2021; 187:187-202. [PMID: 34015131 PMCID: PMC8418433 DOI: 10.1093/plphys/kiab235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/01/2021] [Indexed: 05/12/2023]
Abstract
MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.
Collapse
Affiliation(s)
- Vandasue L. Rodrigues
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ulla Dolde
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tenai Eguen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg-Paredes
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Shinyoung Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Moritz Graeff
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Man-Wah Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Joshua M. Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- NovoCrops Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Author for communication:
| |
Collapse
|
6
|
Graeff M, Hardtke CS. Metaphloem development in the Arabidopsis root tip. Development 2021; 148:270791. [PMID: 34224570 DOI: 10.1242/dev.199766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
The phloem transport network is a major evolutionary innovation that enabled plants to dominate terrestrial ecosystems. In the growth apices, the meristems, apical stem cells continuously produce early 'protophloem'. This is easily observed in Arabidopsis root meristems, in which the differentiation of individual protophloem sieve element precursors into interconnected conducting sieve tubes is laid out in a spatio-temporal gradient. The mature protophloem eventually collapses as the neighboring metaphloem takes over its function further distal from the stem cell niche. Compared with protophloem, metaphloem ontogenesis is poorly characterized, primarily because its visualization is challenging. Here, we describe the improved TetSee protocol to investigate metaphloem development in Arabidopsis root tips in combination with a set of molecular markers. We found that mature metaphloem sieve elements are only observed in the late post-meristematic root, although their specification is initiated as soon as protophloem sieve elements enucleate. Moreover, unlike protophloem sieve elements, metaphloem sieve elements only differentiate once they have fully elongated. Finally, our results suggest that metaphloem differentiation is not directly controlled by protophloem-derived cues but rather follows a distinct, robust developmental trajectory.
Collapse
Affiliation(s)
- Moritz Graeff
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Koh SWH, Marhava P, Rana S, Graf A, Moret B, Bassukas AEL, Zourelidou M, Kolb M, Hammes UZ, Schwechheimer C, Hardtke CS. Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins. THE PLANT CELL 2021; 33:1945-1960. [PMID: 33751121 PMCID: PMC8290284 DOI: 10.1093/plcell/koab076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/03/2021] [Indexed: 05/04/2023]
Abstract
Angiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX). BRX and its BRX-LIKE (BRXL) homologs are composed of four highly conserved domains including the signature tandem BRX domains that are separated by variable spacers. Nevertheless, BRX family proteins have functionally diverged. For instance, BRXL2 can only partially replace BRX in the root protophloem. This divergence is reflected in physiologically relevant differences in protein behavior, such as auxin-induced plasma membrane dissociation of BRX, which is not observed for BRXL2. Here we dissected the differential functions of BRX family proteins using a set of amino acid substitutions and domain swaps. Our data suggest that the plasma membrane-associated tandem BRX domains are both necessary and sufficient to convey the biological outputs of BRX function and therefore constitute an important regulatory entity. Moreover, PAX target phosphosites in the linker between the two BRX domains mediate the auxin-induced plasma membrane dissociation. Engineering these sites into BRXL2 renders this modified protein auxin-responsive and thereby increases its biological activity in the root protophloem context.
Collapse
Affiliation(s)
- Samuel W H Koh
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Petra Marhava
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Alina Graf
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Bernard Moret
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | | | - Melina Zourelidou
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Martina Kolb
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
- Author for correspondence:
| |
Collapse
|
8
|
Genetic and Molecular Control of Somatic Embryogenesis. PLANTS 2021; 10:plants10071467. [PMID: 34371670 PMCID: PMC8309254 DOI: 10.3390/plants10071467] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.
Collapse
|
9
|
Yan W, Wang B, Chan E, Mitchell-Olds T. Genetic architecture and adaptation of flowering time among environments. THE NEW PHYTOLOGIST 2021; 230:1214-1227. [PMID: 33484593 PMCID: PMC8193995 DOI: 10.1111/nph.17229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/07/2021] [Indexed: 05/17/2023]
Abstract
The genetic basis of flowering time changes across environments, and pleiotropy may limit adaptive evolution of populations in response to local conditions. However, little information is known about how genetic architecture changes among environments. We used genome-wide association studies (GWAS) in Boechera stricta (Graham) Al-Shehbaz, a relative of Arabidopsis, to examine flowering variation among environments and associations with climate conditions in home environments. Also, we used molecular population genetics to search for evidence of historical natural selection. GWAS found 47 significant quantitative trait loci (QTLs) that influence flowering time in one or more environments, control plastic changes in phenology between experiments, or show associations with climate in sites of origin. Genetic architecture of flowering varied substantially among environments. We found that some pairs of QTLs showed similar patterns of pleiotropy across environments. A large-effect QTL showed molecular signatures of adaptive evolution and is associated with climate in home environments. The derived allele at this locus causes later flowering and predominates in sites with greater water availability. This work shows that GWAS of climate associations and ecologically important traits across diverse environments can be combined with molecular signatures of natural selection to elucidate ecological genetics of adaptive evolution.
Collapse
Affiliation(s)
- Wenjie Yan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Emily Chan
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | | |
Collapse
|