1
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Regulatory functions of homeobox domain transcription factors in fungi. Appl Environ Microbiol 2024; 90:e0220823. [PMID: 38421174 PMCID: PMC10952592 DOI: 10.1128/aem.02208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Homeobox domain (HD) proteins present a crucial involvement in morphological differentiation and other functions in eukaryotes. Most HD genes encode transcription factors (TFs) that orchestrate a regulatory role in cellular and developmental decisions. In fungi, multiple studies have increased our understanding of these important HD regulators in recent years. These reports have revealed their role in fungal development, both sexual and asexual, as well as their importance in governing other biological processes in these organisms, including secondary metabolism, pathogenicity, and sensitivity to environmental stresses. Here, we provide a comprehensive review of the current knowledge on the regulatory roles of HD-TFs in fungi, with a special focus on Aspergillus species.
Collapse
Affiliation(s)
- A. M. Calvo
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - A. Dabholkar
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - E. M. Wyman
- Department of Biological Sciences, Northern Illinois University, Dekalb, Illinois, USA
| | - J. M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - J. W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Díaz-de-la-Loza MDC, Stramer BM. The extracellular matrix in tissue morphogenesis: No longer a backseat driver. Cells Dev 2024; 177:203883. [PMID: 37935283 DOI: 10.1016/j.cdev.2023.203883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
The forces driving tissue morphogenesis are thought to originate from cellular activities. While it is appreciated that extracellular matrix (ECM) may also be involved, ECM function is assumed to be simply instructive in modulating the cellular behaviors that drive changes to tissue shape. However, there is increasing evidence that the ECM may not be the passive player portrayed in developmental biology textbooks. In this review we highlight examples of embryonic ECM dynamics that suggest cell-independent activity, along with developmental processes during which localized ECM alterations and ECM-autonomous forces are directing changes to tissue shape. Additionally, we discuss experimental approaches to unveil active ECM roles during tissue morphogenesis. We propose that it may be time to rethink our general definition of morphogenesis as a cellular-driven phenomenon and incorporate an underappreciated, and surprisingly dynamic ECM.
Collapse
Affiliation(s)
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
3
|
Tsuboi A, Fujimoto K, Kondo T. Spatiotemporal remodeling of extracellular matrix orients epithelial sheet folding. SCIENCE ADVANCES 2023; 9:eadh2154. [PMID: 37656799 PMCID: PMC10854429 DOI: 10.1126/sciadv.adh2154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Biological systems are inherently noisy; however, they produce highly stereotyped tissue morphology. Drosophila pupal wings show a highly stereotypic folding through uniform expansion and subsequent buckling of wing epithelium within a surrounding cuticle sac. The folding pattern produced by buckling is generally stochastic; it is thus unclear how buckling leads to stereotypic tissue folding of the wings. We found that the extracellular matrix (ECM) protein, Dumpy, guides the position and direction of buckling-induced folds. Dumpy anchors the wing epithelium to the overlying cuticle at specific tissue positions. Tissue-wide alterations of Dumpy deposition and degradation yielded different buckling patterns. In summary, we propose that spatiotemporal ECM remodeling shapes stereotyped tissue folding through dynamic interactions between the epithelium and its external structures.
Collapse
Affiliation(s)
- Alice Tsuboi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Program of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Huang Y, Zheng J, Wu P, Zhang Y, Qiu L. A Comparative Study of Transcriptional Regulation Mechanism of Cytochrome P450 CYP6B7 between Resistant and Susceptible Strains of Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289933 DOI: 10.1021/acs.jafc.3c01593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytochrome P450 CYP6B7 has previously been proved to be associated with fenvalerate-resistance in Helicoverpa armigera. Here, how CYP6B7 is regulated and involved in the resistance of H. armigera is studied. Seven base differences (M1-M7) were found in CYP6B7 promoter between a fenvalerate-resistant (HDTJFR) and a susceptible (HDTJ) strain of H. armigera. M1-M7 sites in HDTJFR were mutated into the corresponding base in HDTJ, and pGL3-CYP6B7 reporter genes with different mutation sites were constructed. Fenvalerate-induced activities of reporter genes mutated at M3, M4, and M7 sites were significantly reduced. Transcription factors Ubx and Br, whose binding sites contain M3 and M7, respectively, were overexpressed in HDTJFR. Knockdown of Ubx and Br results in significant expression inhibition of CYP6B7 and other resistance-related P450 genes, and increase of sensitivity of H. armigera to fenvalerate. These results indicate that Ubx and Br regulate the expression of CYP6B7 to mediate the fenvalerate-resistance in H. armigera.
Collapse
Affiliation(s)
- Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Buffry AD, Kittelmann S, McGregor AP. Characterisation of the role and regulation of Ultrabithorax in sculpting fine-scale leg morphology. Front Cell Dev Biol 2023; 11:1119221. [PMID: 36861038 PMCID: PMC9968978 DOI: 10.3389/fcell.2023.1119221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Hox genes are expressed during embryogenesis and determine the regional identity of animal bodies along the antero-posterior axis. However, they also function post-embryonically to sculpt fine-scale morphology. To better understand how Hox genes are integrated into post-embryonic gene regulatory networks, we further analysed the role and regulation of Ultrabithorax (Ubx) during leg development in Drosophila melanogaster. Ubx regulates several aspects of bristle and trichome patterning on the femurs of the second (T2) and third (T3) leg pairs. We found that repression of trichomes in the proximal posterior region of the T2 femur by Ubx is likely mediated by activation of the expression of microRNA-92a and microRNA-92b by this Hox protein. Furthermore, we identified a novel enhancer of Ubx that recapitulates the temporal and regional activity of this gene in T2 and T3 legs. We then used transcription factor (TF) binding motif analysis in regions of accessible chromatin in T2 leg cells to predict and functionally test TFs that may regulate the Ubx leg enhancer. We also tested the role of the Ubx co-factors Homothorax (Hth) and Extradenticle (Exd) in T2 and T3 femurs. We found several TFs that may act upstream or in concert with Ubx to modulate trichome patterning along the proximo-distal axis of developing femurs and that the repression of trichomes also requires Hth and Exd. Taken together our results provide insights into how Ubx is integrated into a post-embryonic gene regulatory network to determine fine-scale leg morphology.
Collapse
Affiliation(s)
- Alexandra D. Buffry
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Sebastian Kittelmann
- Centre for Functional Genomics, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Alistair P. McGregor
- Department of Biosciences, Durham University, Durham, United Kingdom,*Correspondence: Alistair P. McGregor,
| |
Collapse
|
6
|
Buffry AD, McGregor AP. Micromanagement of Drosophila Post-Embryonic Development by Hox Genes. J Dev Biol 2022; 10:13. [PMID: 35225966 PMCID: PMC8883937 DOI: 10.3390/jdb10010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Hox genes function early in development to determine regional identity in animals. Consequently, the loss or gain of Hox gene expression can change this identity and cause homeotic transformations. Over 20 years ago, it was observed that the role of Hox genes in patterning animal body plans involves the fine-scale regulation of cell fate and identity during development, playing the role of 'micromanagers' as proposed by Michael Akam in key perspective papers. Therefore, as well as specifying where structures develop on animal bodies, Hox genes can help to precisely sculpt their morphology. Here, we review work that has provided important insights about the roles of Hox genes in influencing cell fate during post-embryonic development in Drosophila to regulate fine-scale patterning and morphology. We also explore how this is achieved through the regulation of Hox genes, specific co-factors and their complex regulation of hundreds of target genes. We argue that further investigating the regulation and roles of Hox genes in Drosophila post-embryonic development has great potential for understanding gene regulation, cell fate and phenotypic differentiation more generally.
Collapse
|
7
|
Tögel M, Pass G, Paululat A. Wing hearts in four-winged Ultrabithorax-mutant flies-the role of Hox genes in wing heart specification. Genetics 2022; 220:iyab191. [PMID: 34791231 PMCID: PMC8733458 DOI: 10.1093/genetics/iyab191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Wings are probably the most advanced evolutionary novelty in insects. In the fruit fly Drosophila melanogaster, proper development of wings requires the activity of so-called wing hearts located in the scutellum of the thorax. Immediately after the imaginal ecdysis, these accessory circulatory organs remove hemolymph and apoptotic epidermal cells from the premature wings through their pumping action. This clearing process is essential for the formation of functional wing blades. Mutant flies that lack intact wing hearts are flightless and display malformed wings. The embryonic wing heart progenitors originate from two adjacent parasegments corresponding to the later second and third thoracic segments. However, adult dipterian flies harbor only one pair of wings and only one pair of associated wing hearts in the second thoracic segment. Here we show that the specification of WHPs depends on the regulatory activity of the Hox gene Ultrabithorax. Furthermore, we analyzed the development of wing hearts in the famous four-winged Ultrabithorax (Ubx) mutant, which was first discovered by Ed Lewis in the 1970s. In these flies, the third thoracic segment is homeotically transformed into a second thoracic segment resulting in a second pair of wings instead of the club-shaped halteres. We show that a second pair of functional wing hearts is formed in the transformed third thoracic segment and that all wing hearts originate from the wild-type population of wing heart progenitor cells.
Collapse
Affiliation(s)
- Markus Tögel
- Department of Biology, Zoology/Developmental Biology, University of Osnabrück, Osnabrück D-49069, Germany
| | - Günther Pass
- Department of Evolutionary Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| | - Achim Paululat
- Department of Biology, Zoology/Developmental Biology, University of Osnabrück, Osnabrück D-49069, Germany
| |
Collapse
|
8
|
Fraire-Zamora JJ, Tosi S, Solon J, Casanova J. Control of hormone-driven organ disassembly by ECM remodeling and Yorkie-dependent apoptosis. Curr Biol 2021; 31:5261-5273.e4. [PMID: 34666006 DOI: 10.1016/j.cub.2021.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Epithelia grow and shape into functional structures during organogenesis. Although most of the focus on organogenesis has been drawn to the building of biological structures, the disassembly of pre-existing structures is also an important event to reach a functional adult organ. Examples of disassembly processes include the regression of the Müllerian or Wolffian ducts during gonad development and mammary gland involution during the post-lactational period in adult females. To date, it is unclear how organ disassembly is controlled at the cellular level. Here, we follow the Drosophila larval trachea through metamorphosis and show that its disassembly is a hormone-driven and precisely orchestrated process. It occurs in two phases: first, remodeling of the apical extracellular matrix (aECM), mediated by matrix metalloproteases and independent of the actomyosin cytoskeleton, results in a progressive shortening of the entire trachea and a nuclear-to-cytoplasmic relocalization of the Hippo effector Yorkie (Yki). Second, a decreased transcription of the Yki target, Diap1, in the posterior metameres and the activation of caspases result in the apoptotic loss of the posterior half of the trachea while the anterior half escapes cell death. Thus, our work unravels a mechanism by which hormone-driven ECM remodeling controls sequential tissue shortening and apoptotic cell removal through the transcriptional activity of Yki, leading to organ disassembly during animal development.
Collapse
Affiliation(s)
- Juan J Fraire-Zamora
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain; Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain.
| | - Sébastien Tosi
- Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain; Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Tumor-derived MMPs regulate cachexia in a Drosophila cancer model. Dev Cell 2021; 56:2664-2680.e6. [PMID: 34473940 DOI: 10.1016/j.devcel.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFβ signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFβ signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.
Collapse
|
10
|
Rubin S, Agrawal A, Stegmaier J, Krief S, Felsenthal N, Svorai J, Addadi Y, Villoutreix P, Stern T, Zelzer E. Application of 3D MAPs pipeline identifies the morphological sequence chondrocytes undergo and the regulatory role of GDF5 in this process. Nat Commun 2021; 12:5363. [PMID: 34508093 PMCID: PMC8433335 DOI: 10.1038/s41467-021-25714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.
Collapse
Affiliation(s)
- Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ankit Agrawal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Svorai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Villoutreix
- LIS (UMR 7020), IBDM (UMR 7288), Turing Center For Living Systems, Aix-Marseille University, Marseille, France.
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Atypical laminin spots and pull-generated microtubule-actin projections mediate Drosophila wing adhesion. Cell Rep 2021; 36:109667. [PMID: 34496252 DOI: 10.1016/j.celrep.2021.109667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
During Drosophila metamorphosis, dorsal and ventral wing surfaces adhere, separate, and reappose in a paradoxical process involving cell-matrix adhesion, matrix production and degradation, and long cellular projections. The identity of the intervening matrix, the logic behind the adhesion-reapposition cycle, and the role of projections are unknown. We find that laminin matrix spots devoid of other main basement membrane components mediate wing adhesion. Through live imaging, we show that long microtubule-actin cables grow from those adhesion spots because of hydrostatic pressure that pushes wing surfaces apart. Formation of cables resistant to pressure requires spectraplakin, Patronin, septins, and Sdb, a SAXO1/2 microtubule stabilizer expressed under control of wing intervein-selector SRF. Silkworms and dead-leaf butterflies display similar dorso-ventral projections and expression of Sdb in intervein SRF-like patterns. Our study supports the morphogenetic importance of atypical basement-membrane-related matrices and dissects matrix-cytoskeleton coordination in a process of great evolutionary significance.
Collapse
|
12
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
13
|
Tendolkar A, Pomerantz AF, Heryanto C, Shirk PD, Patel NH, Martin A. Ultrabithorax Is a Micromanager of Hindwing Identity in Butterflies and Moths. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.643661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The forewings and hindwings of butterflies and moths (Lepidoptera) are differentiated from each other, with segment-specific morphologies and color patterns that mediate a wide range of functions in flight, signaling, and protection. The Hox geneUltrabithorax(Ubx) is a master selector gene that differentiates metathoracic from mesothoracic identities across winged insects, and previous work has shown this role extends to at least some of the color patterns from the butterfly hindwing. Here we used CRISPR targeted mutagenesis to generateUbxloss-of-function somatic mutations in two nymphalid butterflies (Junonia coenia,Vanessa cardui) and a pyralid moth (Plodia interpunctella). The resulting mosaic clones yielded hindwing-to-forewing transformations, showingUbxis necessary for specifying many aspects of hindwing-specific identities, including scale morphologies, color patterns, and wing venation and structure. These homeotic phenotypes showed cell-autonomous, sharp transitions between mutant and non-mutant scales, except for clones that encroached into the border ocelli (eyespots) and resulted in composite and non-autonomous effects on eyespot ring determination. In the pyralid moth, homeotic clones converted the folding and depigmented hindwing into rigid and pigmented composites, affected the wing-coupling frenulum, and induced ectopic scent-scales in male androconia. These data confirmUbxis a master selector of lepidopteran hindwing identity and suggest it acts on many gene regulatory networks involved in wing development and patterning.
Collapse
|
14
|
McKenna KZ, Wagner GP, Cooper KL. A developmental perspective of homology and evolutionary novelty. Curr Top Dev Biol 2021; 141:1-38. [PMID: 33602485 DOI: 10.1016/bs.ctdb.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and evolution of multicellular body plans is complex. Many distinct organs and body parts must be reproduced at each generation, and those that are traceable over long time scales are considered homologous. Among the most pressing and least understood phenomena in evolutionary biology is the mode by which new homologs, or "novelties" are introduced to the body plan and whether the developmental changes associated with such evolution deserve special treatment. In this chapter, we address the concepts of homology and evolutionary novelty through the lens of development. We present a series of case studies, within insects and vertebrates, from which we propose a developmental model of multicellular organ identity. With this model in hand, we make predictions regarding the developmental evolution of body plans and highlight the need for more integrative analysis of developing systems.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Thompson BJ. From genes to shape during metamorphosis: a history. CURRENT OPINION IN INSECT SCIENCE 2021; 43:1-10. [PMID: 32898719 DOI: 10.1016/j.cois.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Metamorphosis (Greek for a state of transcending-form or change-in-shape) refers to a dramatic transformation of an animal's body structure that occurs after development of the embryo or larva in many species. The development of a fly (or butterfly) from a crawling larva (or caterpillar) that forms a pupa (or chrysalis) before eclosing as a flying adult is a classic example of metamorphosis that captures the imagination and has been immortalized in children's books. Powerful genetic experiments in the fruit fly Drosophila melanogaster have revealed how genes can instruct the behaviour of individual cells to control patterns of tissue growth, mechanical force, cell-cell adhesion and cell-matrix adhesion drive morphogenetic change in epithelial tissues. Together, the distribution of mass, force and resistance determines cell shape changes, cell-cell rearrangements, and/or the orientation of cell divisions to generate the final form of the tissue. In organising tissue shape, genes harness the power of self-organisation to determine the collective behaviour of molecules and cells, which can often be reproduced in computer simulations of cell polarity and/or tissue mechanics. This review highlights fundamental discoveries in epithelial morphogenesis made by pioneers who were fascinated by metamorphosis, including D'Arcy Thompson, Conrad Waddington, Dianne Fristrom and Antonio Garcia-Bellido.
Collapse
Affiliation(s)
- Barry J Thompson
- John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Canberra, Australian Capital Territory (ACT), 2601, Australia.
| |
Collapse
|
16
|
Li Zheng S, Adams JG, Chisholm AD. Form and function of the apical extracellular matrix: new insights from Caenorhabditis elegans, Drosophila melanogaster, and the vertebrate inner ear. Fac Rev 2020; 9:27. [PMID: 33659959 PMCID: PMC7886070 DOI: 10.12703/r/9-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apical extracellular matrices (aECMs) are the extracellular layers on the apical sides of epithelia. aECMs form the outer layer of the skin in most animals and line the luminal surface of internal tubular epithelia. Compared to the more conserved basal ECMs (basement membranes), aECMs are highly diverse between tissues and between organisms and have been more challenging to understand at mechanistic levels. Studies in several genetic model organisms are revealing new insights into aECM composition, biogenesis, and function and have begun to illuminate common principles and themes of aECM organization. There is emerging evidence that, in addition to mechanical or structural roles, aECMs can participate in reciprocal signaling with associated epithelia and other cell types. Studies are also revealing mechanisms underlying the intricate nanopatterns exhibited by many aECMs. In this review, we highlight recent findings from well-studied model systems, including the external cuticle and ductal aECMs of Caenorhabditis elegans, Drosophila melanogaster, and other insects and the internal aECMs of the vertebrate inner ear.
Collapse
Affiliation(s)
- Sherry Li Zheng
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Gotenstein Adams
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Hombría JCG, Sotillos S. Evo-Devo: When Four Became Two Plus Two. Curr Biol 2020; 30:R655-R657. [PMID: 32516617 DOI: 10.1016/j.cub.2020.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Wings and halteres are homologous flight appendages whose shape differences are controlled by the Ubx transcription factor. Recent research shows how Ubx regulates apical and basal extracellular matrix proteases and their inhibitors to achieve this morphological divergence.
Collapse
Affiliation(s)
- James C-G Hombría
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, 41013 Seville, Spain.
| | - Sol Sotillos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|