1
|
Yang S, Poretska O, Poppenberger B, Sieberer T. ALTERED MERISTEM PROGRAM1 sustains cellular differentiation by limiting HD-ZIP III transcription factor gene expression. PLANT PHYSIOLOGY 2024; 196:291-308. [PMID: 38781290 PMCID: PMC11376390 DOI: 10.1093/plphys/kiae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Plants show remarkable developmental and regenerative plasticity through the sustained activity of stem cells in meristems. Under certain conditions, pluripotency can even be reestablished in cells that have already entered differentiation. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis (Arabidopsis thaliana) causes a set of hypertrophic phenotypes, indicating a defect in the suppression of pluripotency. A role of AMP1 in the miRNA-mediated inhibition of translation has previously been reported; however, how this activity is related to its developmental functions is unclear. Here, we examined the functional interaction between AMP1 and the Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors, which are miRNA-controlled determinants of shoot meristem specification. We found that the HD-ZIP III transcriptional output is enhanced in the amp1 mutant and that plant lines with increased HD-ZIP III activity not only developed amp1 mutant-like phenotypes but also showed a synergistic genetic interaction with the mutant. Conversely, the reduction of HD-ZIP III function suppressed the shoot hypertrophy defects of the amp1 mutant. We further provide evidence that the expression domains of HD-ZIP III family members are expanded in the amp1 mutant and that this misexpression occurs at the transcriptional level and does not involve the function of miRNA165/166. Finally, amp1 mutant-specific phenotypes cannot be mimicked by a general inhibition of miRNA function in the AMP1 expression domain. These findings lead us to a model in which AMP1 restricts cellular pluripotency upstream of HD-ZIP III proteins, and this control appears to be not directly mediated by the canonical miRNA pathway.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Brigitte Poppenberger
- Professorship Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, DE-85354 Freising, Germany
| |
Collapse
|
2
|
Yan Y. Insights into Mobile Small-RNAs Mediated Signaling in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3155. [PMID: 36432884 PMCID: PMC9698838 DOI: 10.3390/plants11223155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In higher plants, small RNA (sRNA)-mediated RNA interfering (RNAi) is involved in a broad range of biological processes. Growing evidence supports the model that sRNAs are mobile signaling agents that move intercellularly, systemically and cross-species. Recently, considerable progress has been made in terms of characterization of the mobile sRNAs population and their function. In this review, recent progress in identification of new mobile sRNAs is assessed. Here, critical questions related to the function of these mobile sRNAs in coordinating developmental, physiological and defense-related processes is discussed. The forms of mobile sRNAs and the underlying mechanisms mediating sRNA trafficking are discussed next. A concerted effort has been made to integrate these new findings into a comprehensive overview of mobile sRNAs signaling in plants. Finally, potential important areas for both basic science and potential applications are highlighted for future research.
Collapse
Affiliation(s)
- Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
4
|
Nobusawa T, Kamei M, Ueda H, Matsushima N, Yamatani H, Kusaba M. Highly pleiotropic functions of CYP78As and AMP1 are regulated in non-cell-autonomous/organ-specific manners. PLANT PHYSIOLOGY 2021; 186:767-781. [PMID: 33620479 PMCID: PMC8154090 DOI: 10.1093/plphys/kiab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 05/07/2023]
Abstract
The cytochrome P450 CYP78A5/KLUH in Arabidopsis thaliana is predicted to be involved in the synthesis of a mobile signal molecule that has a pleiotropic function that is distinct from classical phytohormones. CYP78A5 has five close relatives in Arabidopsis. We first investigated their functions, focusing on the plastochron, leaf size, and leaf senescence. Our analyses revealed that CYP78A5 and CYP78A7 are involved in the plastochron and leaf size, and CYP78A6 and CYP78A9 are involved in leaf senescence. Complementation analyses using heterologous promoters and expression analyses suggested that CYP78A isoforms have a common biochemical function and are functionally differentiated via organ-specific expression. The altered meristem program1 (amp1) carboxypeptidase mutant shows a phenotype very similar to that of the cyp78a5 mutant. Complementation analyses using boundary and organizing center-specific promoters suggested that both CYP78A5 and AMP1 act in a non-cell-autonomous manner. Analyses of multiple cyp78a mutants and crosses between cyp78a and amp1 mutants revealed that AMP1/LIKE AMP1 (LAMP1) and CYP78A isoforms regulate plastochron length and leaf senescence in the same genetic pathway, whereas leaf size is independently regulated. Furthermore, we detected feedback regulation between CYP78A6/CYP78A9 and AMP1 at the gene expression level. These observations raise the possibility that AMP1 and CYP78A isoforms are involved in the synthesis of the same mobile signal molecule, and suggest that AMP1 and CYP78A signaling pathways have a very close, albeit complex, functional relationship.
Collapse
Affiliation(s)
- Takashi Nobusawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Misaki Kamei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Present address: Fruit Tree Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Shimoidai 1618, Matsuyama 791-0112, Japan
| | - Naoya Matsushima
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Yamatani
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Institute of Crop Science NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Makoto Kusaba
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-3, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Author for communication:
| |
Collapse
|
5
|
Juvenile Leaves or Adult Leaves: Determinants for Vegetative Phase Change in Flowering Plants. Int J Mol Sci 2020; 21:ijms21249753. [PMID: 33371265 PMCID: PMC7766579 DOI: 10.3390/ijms21249753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Vegetative leaves in Arabidopsis are classified as either juvenile leaves or adult leaves based on their specific traits, such as leaf shape and the presence of abaxial trichomes. The timing of the juvenile-to-adult phase transition during vegetative development, called the vegetative phase change, is a critical decision for plants, as this transition is associated with crop yield, stress responses, and immune responses. Juvenile leaves are characterized by high levels of miR156/157, and adult leaves are characterized by high levels of miR156/157 targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. The discovery of this miR156/157-SPL module provided a critical tool for elucidating the complex regulation of the juvenile-to-adult phase transition in plants. In this review, we discuss how the traits of juvenile leaves and adult leaves are determined by the miR156/157-SPL module and how different factors, including embryonic regulators, sugar, meristem regulators, hormones, and epigenetic proteins are involved in controlling the juvenile-to-adult phase transition, focusing on recent insights into vegetative phase change. We also highlight outstanding questions in the field that need further investigation. Understanding how vegetative phase change is regulated would provide a basis for manipulating agricultural traits under various conditions.
Collapse
|
6
|
Poretska O, Yang S, Pitorre D, Poppenberger B, Sieberer T. AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana. PLoS Genet 2020; 16:e1009043. [PMID: 32960882 PMCID: PMC7531801 DOI: 10.1371/journal.pgen.1009043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/02/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Higher plants can continuously form new organs by the sustained activity of pluripotent stem cells. These stem cells are embedded in meristems, where they produce descendants, which undergo cell proliferation and differentiation programs in a spatiotemporally-controlled manner. Under certain conditions, pluripotency can be reestablished in descending cells and this reversion in cell fate appears to be actively suppressed by the existing stem cell pool. Mutation of the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) in Arabidopsis causes defects in the suppression of pluripotency in cells normally programmed for differentiation, giving rise to unique hypertrophic phenotypes during embryogenesis as well as in the shoot apical meristem. A role of AMP1 in the miRNA-dependent control of translation has recently been established, however, how this activity is connected to its developmental functions is not resolved. Here we identify members of the cytochrome P450 clade CYP78A to act in parallel with AMP1 to control cell fate in Arabidopsis. Mutation of CYP78A5 and its close homolog CYP78A7 in a cyp78a5,7 double mutant caused suspensor-to-embryo conversion and ectopic stem cell pool formation in the shoot meristem, phenotypes characteristic for amp1. The tissues affected in the mutants showed pronounced expression levels of AMP1 and CYP78A5 in wild type. A comparison of mutant transcriptomic responses revealed an intriguing degree of overlap and highlighted alterations in protein lipidation processes. Moreover, we also found elevated protein levels of selected miRNA targets in cyp78a5,7. Based on comprehensive genetic interaction studies we propose a model in which both enzyme classes act on a common downstream process to sustain cell fate decisions in the early embryo and the shoot apical meristem.
Collapse
Affiliation(s)
- Olena Poretska
- Research Unit Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Delphine Pitorre
- Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Department for Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|