1
|
Powell O, Garcia E, Sriram V, Qu Y, Nerurkar NL. Elongation of the nascent avian foregut requires coordination of intrinsic and extrinsic cell behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621372. [PMID: 39554178 PMCID: PMC11565921 DOI: 10.1101/2024.10.31.621372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The foregut tube gives rise to the lungs and upper gastrointestinal tract, enabling vital functions of respiration and digestion. How the foregut tube forms during embryonic development has historically received considerable attention, but over the past few decades this question has primarily been addressed indirectly through studies on morphogenesis of the primitive heart tube, a closely related process. As a result, many aspects of foregut development remain unresolved. Here, we exploit the accessibility of the chick embryo to study the initial formation of the foregut tube, combining embryology with fate mapping, live imaging, and biomechanical analyses. The present study reveals that the foregut forms and elongates over a narrower time window than previously thought, and displays marked dorso-ventral and left-right asymmetries early in its development. Through tissue-specific ablation of endoderm along the anterior intestinal portal, we confirm its central biomechanical role in driving foregut morphogenesis, despite not directly contributing cells to the elongating tube. We further confirm the important role of this cell population in formation of the heart tube, with evidence that this role extends to later stages of cardiac looping as well. Together, these data reveal the need for an intricate balance between intrinsic cell behaviors and extrinsic forces for normal foregut elongation, and set the stage for future studies aimed at understanding the underlying molecular cues that coordinate this balance.
Collapse
Affiliation(s)
- Olivia Powell
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Emily Garcia
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Vanshika Sriram
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Yi Qu
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| |
Collapse
|
2
|
Li X, Chen B. Dynamics of multicellular swirling on micropatterned substrates. Proc Natl Acad Sci U S A 2024; 121:e2400804121. [PMID: 38900800 PMCID: PMC11214149 DOI: 10.1073/pnas.2400804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Chirality plays a crucial role in biology, as it is highly conserved and fundamentally important in the developmental process. To better understand the relationship between the chirality of individual cells and that of tissues and organisms, we develop a generalized mechanics model of chiral polarized particles to investigate the swirling dynamics of cell populations on substrates. Our analysis reveals that cells with the same chirality can form distinct chiral patterns on ring-shaped or rectangular substrates. Interestingly, our studies indicate that an excessively strong or weak individual cellular chirality hinders the formation of such chiral patterns. Our studies also indicate that there exists the influence distance of substrate boundaries in chiral patterns. Smaller influence distances are observed when cell-cell interactions are weaker. Conversely, when cell-cell interactions are too strong, multiple cells tend to be stacked together, preventing the formation of chiral patterns on substrates in our analysis. Additionally, we demonstrate that the interaction between cells and substrate boundaries effectively controls the chiral distribution of cellular orientations on ring-shaped substrates. This research highlights the significance of coordinating boundary features, individual cellular chirality, and cell-cell interactions in governing the chiral movement of cell populations and provides valuable mechanics insights into comprehending the intricate connection between the chirality of single cells and that of tissues and organisms.
Collapse
Affiliation(s)
- Xi Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, People’s Republic of China
| |
Collapse
|
3
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Grzymkowski JK, Chiu YC, Jima DD, Wyatt BH, Jayachandran S, Stutts WL, Nascone-Yoder NM. Developmental regulation of cellular metabolism is required for intestinal elongation and rotation. Development 2024; 151:dev202020. [PMID: 38369735 PMCID: PMC10911142 DOI: 10.1242/dev.202020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Malrotation of the intestine is a prevalent birth anomaly, the etiology of which remains poorly understood. Here, we show that late-stage exposure of Xenopus embryos to atrazine, a widely used herbicide that targets electron transport chain (ETC) reactions, elicits intestinal malrotation at high frequency. Interestingly, atrazine specifically inhibits the cellular morphogenetic events required for gut tube elongation, including cell rearrangement, differentiation and proliferation; insufficient gut lengthening consequently reorients the direction of intestine rotation. Transcriptome analyses of atrazine-exposed intestines reveal misexpression of genes associated with glycolysis and oxidative stress, and metabolomics shows that atrazine depletes key glycolytic and tricarboxylic acid cycle metabolites. Moreover, cellular bioenergetics assays indicate that atrazine blocks a crucial developmental transition from glycolytic ATP production toward oxidative phosphorylation. Atrazine-induced defects are phenocopied by rotenone, a known ETC Complex I inhibitor, accompanied by elevated reactive oxygen species, and rescued by antioxidant supplementation, suggesting that malrotation may be at least partly attributable to redox imbalance. These studies reveal roles for metabolism in gut morphogenesis and implicate defective gut tube elongation and/or metabolic perturbations in the etiology of intestinal malrotation.
Collapse
Affiliation(s)
- Julia K. Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Yu-Chun Chiu
- Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC 27695, USA
| | - Dereje D. Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent H. Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Sudhish Jayachandran
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Whitney L. Stutts
- Molecular Education, Technology and Research Innovation Center (METRIC), Raleigh, NC 27695, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
5
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
6
|
Chevalier NR. Physical organogenesis of the gut. Development 2022; 149:276365. [DOI: 10.1242/dev.200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The gut has been a central subject of organogenesis since Caspar Friedrich Wolff’s seminal 1769 work ‘De Formatione Intestinorum’. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical–mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.
Collapse
Affiliation(s)
- Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057 , 10 rue Alice Domon et Léonie Duquet, 75013 Paris , France
| |
Collapse
|
7
|
Ludwig K, De Bartolo D, Salerno A, Ingravallo G, Cazzato G, Giacometti C, Dall’Igna P. Congenital anomalies of the tubular gastrointestinal tract. Pathologica 2022; 114:40-54. [PMID: 35212315 PMCID: PMC9040549 DOI: 10.32074/1591-951x-553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 02/08/2023] Open
Abstract
Congenital anomalies of the tubular gastrointestinal tract are an important cause of morbidity not only in infants, but also in children and adults. The gastrointestinal (GI) tract, composed of all three primitive germ layers, develops early during embryogenesis. Two major steps in its development are the formation of the gut tube (giving rise to the foregut, the midgut and the hindgut), and the formation of individual organs with specialized cell types. Formation of an intact and functioning GI tract is under strict control from various molecular pathways. Disruption of any of these crucial mechanisms involved in the cell-fate decision along the dorsoventral, anteroposterior, left-right and radial axes, can lead to numerous congenital anomalies, most of which occur and present in infancy. However, they may run undetected during childhood. Therapy is surgical, which in some cases must be performed urgently, and prognosis depends on early diagnosis and suitable treatment. A precise pathologic macroscopic or microscopic diagnosis is important, not only for the immediate treatment and management of affected individuals, but also for future counselling of the affected individual and their family. This is even more true in cases of multiple anomalies or syndromic patterns. We discuss some of the more frequent or clinically important congenital anomalies of the tubular GI, including atresia's, duplications, intestinal malrotation, Meckel's diverticulum and Hirschsprung's Disease.
Collapse
Affiliation(s)
- Katrhin Ludwig
- Department of Pathology, Azienda Ospedale-Università Padova, Padua, Italy
| | - Debora De Bartolo
- Department of Medicine, University of Padua School of Medicine, Padua, Italy
| | - Angela Salerno
- Department of Oncology, Anatomic and Histologic Pathology and Cytodiagnostics, Maggiore Hospital, Bologna, Italy
| | - Giuseppe Ingravallo
- Department of Emergencies and Organ Transplantation, Section of Pathology, University of Bari, Bari, Italy
| | - Gerardo Cazzato
- Department of Emergencies and Organ Transplantation, Section of Pathology, University of Bari, Bari, Italy
| | - Cinzia Giacometti
- Department of Services, Pathology Unit, ULSS 6 “Euganea”, Camposampiero, Italy
| | - Patrizia Dall’Igna
- Department of Emergencies and Organ Transplantation, Pediatric Surgery, University of Bari, Bari, Italy
- Correspondence Patrizia Dall’Igna Department of Emergencies and Organ Transplantation, Azienda Ospedaliero-Universitaria Consorziale, Ospedale Pediatrico Giovanni XXIII, via Giovanni Amendola 207, 70126 Bari, Italy E-mail:
| |
Collapse
|
8
|
Wyatt BH, Amin NM, Bagley K, Wcisel DJ, Dush MK, Yoder JA, Nascone-Yoder NM. Single-minded 2 is required for left-right asymmetric stomach morphogenesis. Development 2021; 148:dev199265. [PMID: 34486651 PMCID: PMC8512893 DOI: 10.1242/dev.199265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023]
Abstract
The morphogenesis of left-right (LR) asymmetry is a crucial phase of organogenesis. In the digestive tract, the development of anatomical asymmetry is first evident in the leftward curvature of the stomach. To elucidate the molecular events that shape this archetypal laterality, we performed transcriptome analyses of the left versus right sides of the developing stomach in frog embryos. Besides the known LR gene pitx2, the only gene found to be expressed asymmetrically throughout all stages of curvature was single-minded 2 (sim2), a Down Syndrome-related transcription factor and homolog of a Drosophila gene (sim) required for LR asymmetric looping of the fly gut. We demonstrate that sim2 functions downstream of LR patterning cues to regulate key cellular properties and behaviors in the left stomach epithelium that drive asymmetric curvature. Our results reveal unexpected convergent cooption of single-minded genes during the evolution of LR asymmetric morphogenesis, and have implications for dose-dependent roles of laterality factors in non-laterality-related birth defects.
Collapse
Affiliation(s)
- Brent H. Wyatt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Nirav M. Amin
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Dustin J. Wcisel
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Michael K. Dush
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette M. Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|