1
|
Rai N, Kailashiya V, Gautam V. Exploring the Protective Effect against 7,12-Dimethylbenz[a]anthracene-Induced Breast Tumors of Palmitoylethanolamide. ACS Pharmacol Transl Sci 2024; 7:97-109. [PMID: 38230286 PMCID: PMC10789129 DOI: 10.1021/acsptsci.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer remains a global health burden, and the need for effective therapies is of chief importance. The current study explored the in vivo chemoprotective activity of palmitoylethanolamide (PEA) against 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast tumor in rats. Results of noninvasive photoacoustic imaging showed real-time progression in the tumor area and volume in DMBA-induced rats, while there was a reduction in tumor area and volume in PEA-treated tumor-bearing rats. The increase in the average oxygen saturation (sO2 %) and decrease in the average total hemoglobin (HbT %) indicated the PEA-mediated attenuation of hypoxia-induced neovascularization in DMBA-induced rats. Histopathological investigations confirmed the efficacy of PEA in mitigating breast carcinoma, hepatotoxicity and nephrotoxicity driven by DMBA. Moreover, PEA-mediated alterations in the metabolic activity of the tumor microenvironment were evidenced by decreased glucose and lactate dehydrogenase enzyme level in the blood plasma and mammary tissue. PEA also maintained the redox balance by inhibiting nitric oxide level, reducing malondialdehyde (a product of lipid peroxidation), and increasing the level of antioxidant enzyme reduced glutathione. PEA altered the expression of apoptosis-related genes (BAX, P53,BCL-XL, CASPASE-8, and CASPASE-9) and induced the activity of Caspase-3 protein in the mammary tissue of tumor-bearing rats, indicating its apoptosis inducing ability. Taken together, the findings of this study suggest that PEA may have a protective effect against DMBA-induced breast tumors.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vikas Kailashiya
- Department
of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Verma A, Rai N, Gupta P, Singh S, Tiwari H, Chauhan SB, Kailashiya V, Gautam V. Exploration of in vitro cytotoxic and in ovo antiangiogenic activity of ethyl acetate extract of Penicillium oxalicum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2509-2523. [PMID: 37461856 DOI: 10.1002/tox.23889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Fungal endophytes have established new paradigms in the area of biomedicine due to their ability to produce metabolites of pharmacological importance. The present study reports the in vitro cytotoxic and in ovo antiangiogenic activity of the ethyl acetate (EA) extract of Penicillium oxalicum and their chemical profiling through Gas Chromatography-Mass Spectrometry analysis. Treatment of the EA extract of P. oxalicum to the selected human breast cancer cell lines (MDA-MB-231 and MCF-7) leads to the reduced glucose uptake and increased nitric oxide production suggesting the cytotoxic activity of EA extract of P. oxalicum. Our results further show that treatment of EA extract of P. oxalicum attenuates the colony number, cell migration ability and alters nuclear morphology in both the human breast cancer cell lines. Furthermore, the treatment of EA extract of P. oxalicum mediates apoptosis by increasing the expression of BAX, P21, FADD, and CASPASE-8 genes, with increased Caspase-3 activity. Additionally, in ovo chorioallantoic membrane (CAM) assay showed that the treatment of EA extract of P. oxalicum leads to antiangiogenic activity with perturbed formation of blood vessels. Overall, our findings suggest that the EA extract of P. oxalicum show in vitro cytotoxic and antiproliferative activity against human breast cancer cell lines, and in ovo antiangiogenic activity in CAM model.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Rai N, Gupta P, Verma A, Tiwari RK, Madhukar P, Kamble SC, Kumar A, Kumar R, Singh SK, Gautam V. Ethyl Acetate Extract of Colletotrichum gloeosporioides Promotes Cytotoxicity and Apoptosis in Human Breast Cancer Cells. ACS OMEGA 2023; 8:3768-3784. [PMID: 36743019 PMCID: PMC9893742 DOI: 10.1021/acsomega.2c05746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Fungal endophytes are known to be a paragon for producing bioactive compounds with a variety of pharmacological importance. The current study aims to elucidate the molecular alterations induced by the bioactive compounds produced by the fungal endophyte Colletotrichum gloeosporioides in the tumor microenvironment of human breast cancer cells. GC/MS analysis of the ethyl acetate (EA) extract of C. gloeosporioides revealed the presence of bioactive compounds with anticancer activity. The EA extract of C. gloeosporioides exerted potential plasmid DNA protective activity against hydroxyl radicals of Fenton's reagent. The cytotoxic activity further revealed that MDA-MB-231 cells exhibit more sensitivity toward the EA extract of C. gloeosporioides as compared to MCF-7 cells, whereas non-toxic to non-cancerous HEK293T cells. Furthermore, the anticancer activity demonstrated by the EA extract of C. gloeosporioides was studied by assessing nuclear morphometric analysis and induction of apoptosis in MDA-MB-231 and MCF-7 cells. The EA extract of C. gloeosporioides causes the alteration in cellular and nuclear morphologies, chromatin condensation, long-term colony inhibition, and inhibition of cell migration and proliferation ability of MDA-MB-231 and MCF-7 cells. The study also revealed that the EA extract of C. gloeosporioides treated cells undergoes apoptosis by increased production of reactive oxygen species and significant deficit in mitochondrial membrane potential. Our study also showed that the EA extract of C. gloeosporioides causes upregulation of pro-apoptotic (BAX, PARP, CASPASE-8, and FADD), cell cycle arrest (P21), and tumor suppressor (P53) related genes. Additionally, the downregulation of antiapoptotic genes (BCL-2 and SURVIVIN) and increased Caspase-3 activity suggest the induction of apoptosis in the EA extract of C. gloeosporioides treated MDA-MB-231 and MCF-7 cells. Overall, our findings suggest that the bioactive compounds present in the EA extract of C. gloeosporioides promotes apoptosis by altering the genes related to the extrinsic as well as the intrinsic pathway. Further in vivo study in breast cancer models is required to validate the in vitro observations.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rajan Kumar Tiwari
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Prasoon Madhukar
- Infectious
Disease Research Laboratory, Department of Medicine, Institute of
Medical Sciences, Banaras Hindu University, Varanasi221005, India
| | - Swapnil C. Kamble
- Department
of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ajay Kumar
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
4
|
Gupta P, Rai N, Verma A, Saikia D, Singh SP, Kumar R, Singh SK, Kumar D, Gautam V. Green-Based Approach to Synthesize Silver Nanoparticles Using the Fungal Endophyte Penicillium oxalicum and Their Antimicrobial, Antioxidant, and In Vitro Anticancer Potential. ACS OMEGA 2022; 7:46653-46673. [PMID: 36570288 PMCID: PMC9774420 DOI: 10.1021/acsomega.2c05605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
A green-based approach for the synthesis of silver nanoparticles has gained tremendous attention in biomedical applications. Fungal endophytes have been recognized as a remarkable biological source for the synthesis of potential nanodrugs. The present study focuses on the fabrication of silver nanoparticles using the fungal endophyte Penicillium oxalicum (POAgNPs) associated with the leaf of the Amoora rohituka plant. Sharp UV-visible spectra at 420 nm appeared due to the surface plasmon resonance of POAgNPs and the reduction of silver salt. FT-IR analysis revealed the presence of functional groups of bioactive compounds of P. oxalicum responsible for the reduction of silver salt and validated the synthesis of POAgNPs. A high degree of crystallinity was revealed through XRD analysis, and microscopy-based characterizations such as AFM, TEM, and FESEM showed uniformly distributed, and spherically shaped nanoparticles. Furthermore, POAgNPs showed a potential inhibitory effect against bacterial and fungal strains of pathogenic nature. POAgNPs also exhibited potential antioxidant activity against the synthetically generated free radicals such as DPPH, superoxide, hydroxyl, and nitric oxide with EC50 values of 9.034 ± 0.449, 56.378 ± 1.137, 34.094 ± 1.944, and 61.219 ± 0.69 μg/mL, respectively. Moreover, POAgNPs exhibited cytotoxic potential against the breast cancer cell lines, MDA-MB-231 and MCF-7 with IC50 values of 20.080 ± 0.761 and 40.038 ± 1.022 μg/mL, respectively. POAgNPs showed anticancer potential through inhibition of wound closure and by altering the nuclear morphology of MDA-MB-231 and MCF-7 cells. Further anticancer activity revealed that POAgNPs induced apoptosis in MDA-MB-231 and MCF-7 cells by differential expression of genes related to apoptosis, tumor suppression, and cell cycle arrest and increased the level of Caspase-3. The novel study showed that P. oxalicum-mediated silver nanoparticles exhibit potential biological activity, which can be exploited as nanodrugs in clinical applications.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dimple Saikia
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Surya Pratap Singh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Deepak Kumar
- Department
of Botany, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Mishra V, Singh A, Gandhi N, Sarkar Das S, Yadav S, Kumar A, Sarkar AK. A unique miR775- GALT9 module regulates leaf senescence in Arabidopsis during post-submergence recovery by modulating ethylene and the abscisic acid pathway. Development 2022; 149:274011. [DOI: 10.1242/dev.199974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here, we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates GALACTOSYLTRANSFERASE 9 (GALT9) and their expression is inversely affected at 24 h of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild-type and MIM775 Arabidopsis shoot. A similar recovery phenotype in the galt9 mutant indicates the role of the miR775-GALT9 module in post-submergence recovery. We predicted that Golgi-localized GALT9 is potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29 and ORE1), ethylene signalling (EIN2 and EIN3) and abscisic acid (ABA) biosynthesis (NCED3) pathway genes occurs in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role for the miR775-GALT9 module in post-submergence recovery through a crosstalk between the ethylene signalling and ABA biosynthesis pathways.
Collapse
Affiliation(s)
- Vishnu Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| | - Nidhi Gandhi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shabari Sarkar Das
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal 721104, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ananda K. Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, USA
| |
Collapse
|