1
|
Shimada R, Ishiguro KI. Female-specific mechanisms of meiotic initiation and progression in mammalian oocyte development. Genes Cells 2024; 29:797-807. [PMID: 39119753 DOI: 10.1111/gtc.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Meiosis is regulated in sexually dimorphic manners in mammals. In females, the commitment to and entry into meiosis are coordinated with the developmental program of oocytes. Female germ cells initiate meiosis within a short time window during the fetal period and then undergo meiotic arrest until puberty. However, the genetic mechanisms underlying the orchestration of oocyte development and meiosis to maximize the reproductive lifespan of mammalian females remain largely elusive. While meiotic initiation is regulated by a sexually common mechanism, where meiosis initiator and Stimulated by Retinoic Acid Gene 8 (STRA8) activate the meiotic genes, the female-specific mode of meiotic initiation is mediated by the interaction between retinoblastoma (RB) and STRA8. This review highlights the female-specific mechanisms of meiotic initiation and meiotic prophase progression in the context of oocyte development. Furthermore, the downstream pathway of the RB-STRA8 interaction that may regulate meiotic arrest will be discussed in the context of oocyte development, highlighting a potential genetic link between the female-specific mode of meiotic entry and meiotic arrest.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Woo SJ, Han JY. Epigenetic programming of chicken germ cells: a comparative review. Poult Sci 2024; 103:103977. [PMID: 38970845 PMCID: PMC11269908 DOI: 10.1016/j.psj.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
Chicken embryos serve as an important model for investigating germ cells due to their ease of accessibility and manipulation within the egg. Understanding the development of germ cells is particularly crucial, as they are the only cell types capable of transmitting genetic information to the next generation. Therefore, gene expression regulation in germ cells is important for genomic function. Epigenetic programming is a crucial biological process for the regulation of gene expression without altering the genome sequence. Although epigenetic programming is evolutionarily conserved, several differences between chickens and mammals have been revealed. In this review, we compared the epigenetic regulation of germ cells in chickens and mammals (mainly mice as a representative species). In mammals, migrating primordial germ cells (precursors for germ cells [PGCs]) undergo global DNA demethylation and persist until sexual differentiation, while in chickens, DNA is demethylated until reaching the gonad but remethylated when sexually differentiated. Prospermatogonia is methylated at the onset of mitotic arrest in mammals, while DNA is demethylated at mitotic arrest in chickens. Furthermore, genomic imprinting and inactivation of sex chromosomes are differentially regulated through DNA methylation in chickens and mammals. Chickens and mammals exhibit different patterns of histone modifications during germ cell development, and non-coding RNA, which is not involved in PGC differentiation in mice, plays an important role in chicken PGC development. Additionally, several chicken-specific non-coding RNAs have been identified. In conclusion, we summarized current knowledge of epigenetic gene regulation of chicken germ cells, comparing that of mammals, and highlighted notable differences between them.
Collapse
Affiliation(s)
- Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
3
|
Yin H, Zhou Z, Fu C. Fance deficiency impaired DNA damage repair of prospermatogonia and altered the repair dynamics of spermatocytes. Reprod Biol Endocrinol 2024; 22:113. [PMID: 39210375 PMCID: PMC11360510 DOI: 10.1186/s12958-024-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is the most severe form of male infertility and affects approximately 1% of men worldwide. Fanconi anemia (FA) genes were known for their essential role in DNA repair and growing evidence showed the crucial role of FA pathway in NOA. However, the underlying mechanisms for Fance deficiency lead to a serious deficit and delayed maturation of male germ cells remain unclear. METHODS We used Fance deficiency mouse model for experiments, and collected testes or epididymides from mice at 8 weeks (8W), 17.5 days post coitum (dpc), and postnatal 11 (P11) to P23. The mice referred to three genotypes: wildtype (Fance +/+), heterozygous (Fance +/-), and homozygous (Fance -/-). Hematoxylin and eosin staining, immunofluorescence staining, and surface spread of spermatocytes were performed to explore the mechanisms for NOA of Fance -/- mice. Each experiment was conducted with a minimum of three biological replicates and Kruskal-Wallis with Dunn's correction was used for statistical analysis. RESULTS In the present study, we found that the adult male Fance -/- mice exhibited massive germ cell loss in seminiferous tubules and dramatically decreased sperms in epididymides. During the embryonic period, the number of Fance -/- prospermatogonia decreased significantly, without impacts on the proliferation (Ki-67, PCNA) and apoptosis (cleaved PARP, cleaved Caspase 3) status. The DNA double-strand breaks (γH2AX) increased at the cellular level of Fance -/- prospermatogonia, potentially associated with the increased nonhomologous end joining (53BP1) and decreased homologous recombination (RAD51) activity. Besides, Fance deficiency impeded the progression of meiotic prophase I of spermatocytes. The mechanisms entailed the reduced recruitment of the DNA end resection protein RPA2 at leptotene and recombinases RAD51 and DMC1 at zygotene. It also involved impaired removal of RPA2 at zygotene and FANCD2 foci at pachytene. And the accelerated initial formation of crossover at early pachytene, which is indicated by MLH1. CONCLUSIONS Fance deficiency caused massive male germ cell loss involved in the imbalance of DNA damage repair in prospermatogonia and altered dynamics of proteins in homologous recombination, DNA end resection, and crossover, providing new insights into the etiology and molecular basis of NOA.
Collapse
Affiliation(s)
- Huan Yin
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China.
| |
Collapse
|
4
|
Yang SH, Zeng YZ, Jia XZ, Gu YW, Wood C, Yang RS, Yang JS, Yang WJ. Activated dormant stem cells recover spermatogenesis in chemoradiotherapy-induced infertility. Cell Rep 2024; 43:114582. [PMID: 39096488 DOI: 10.1016/j.celrep.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/23/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
Male infertility is a recognized side effect of chemoradiotherapy. Extant spermatogonial stem cells (SSCs) may act as originators for any subsequent recovery. However, which type of SSCs, the mechanism by which they survive and resist toxicity, and how they act to restart spermatogenesis remain largely unknown. Here, we identify a small population of Set domain-containing protein 4 (Setd4)-expressing SSCs that occur in a relatively dormant state in the mouse seminiferous tubule. Extant beyond high-dose chemoradiotherapy, these cells then activate to recover spermatogenesis. Recovery fails when Setd4+ SSCs are deleted. Confirmed to be of fetal origin, these Setd4+ SSCs are shown to facilitate early testicular development and also contribute to steady-state spermatogenesis in adulthood. Upon activation, chromatin remodeling increases their genome-wide accessibility, enabling Notch1 and Aurora activation with corresponding silencing of p21 and p53. Here, Setd4+ SSCs are presented as the originators of both testicular development and spermatogenesis recovery in chemoradiotherapy-induced infertility.
Collapse
Affiliation(s)
- Shu-Hua Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Zhe Zeng
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi-Zheng Jia
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Gu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Christopher Wood
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ri-Sheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Shu Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Yang R, Zhang B, Wang Y, Zhang Y, Zhao Y, Jiang D, Chen L, Tang B, Zhang X. H3K9me3 Levels Affect the Proliferation of Bovine Spermatogonial Stem Cells. Int J Mol Sci 2024; 25:9215. [PMID: 39273164 PMCID: PMC11394725 DOI: 10.3390/ijms25179215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences. Previously, we showed that histone 3 (H3) lysine 9 (K9) trimethylation (H3K9me3) is associated with the proliferation of bovine SSCs. Here, we isolated and purified SSCs from calf testicular tissues and investigated the impact of different H3K9me3 levels on the in vitro proliferation of bovine SSCs. The enriched SSCs eventually formed classical stem cell clones in vitro in our feeder-free culture system. These clones expressed glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1, specific marker for SSCs), NANOG (pluripotency protein), C-KIT (germ cell marker), and strong alkaline phosphatase (AKP) positivity. qRT-PCR analysis further showed that these clones expressed the pluripotency genes NANOG and SOX2, and the SSC-specific marker gene GFRα1. To investigate the dynamic relationship between H3K9me3 levels and SSC proliferation, H3K9me3 levels in bovine SSCs were first downregulated using the methyltransferase inhibitor, chaetocin, or transfection with the siRNA of H3K9 methyltransferase suppressor of variegation 3-9 homologue 1 (SUV39H1). The EDU (5-Ethynyl-2'-deoxyuridine) assay revealed that SSC proliferation was inhibited. Conversely, when H3K9me3 levels in bovine SSCs were upregulated by transfecting lysine demethylase 4D (KDM4D) siRNA, the EDU assay showed a promotion of cell proliferation. In summary, this study established a feeder-free culture system to obtain bovine SSCs and explored its effects on the proliferation of bovine SSCs by regulating H3K9me3 levels, laying the foundation for elucidating the regulatory mechanism underlying histone methylation modification in the proliferation of bovine SSCs.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yansen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lanxin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
6
|
Zou D, Li K, Su L, Liu J, Lu Y, Huang R, Li M, Mang X, Geng Q, Li P, Tang J, Yu Z, Zhang Z, Chen D, Miao S, Yu J, Yan W, Song W. DDX20 is required for cell-cycle reentry of prospermatogonia and establishment of spermatogonial stem cell pool during testicular development in mice. Dev Cell 2024; 59:1707-1723.e8. [PMID: 38657611 DOI: 10.1016/j.devcel.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs), as key regulators of mRNA fate, are abundantly expressed in the testis. However, RBPs associated with human male infertility remain largely unknown. Through bioinformatic analyses, we identified 62 such RBPs, including an evolutionarily conserved RBP, DEAD-box helicase 20 (DDX20). Male germ-cell-specific inactivation of Ddx20 at E15.5 caused T1-propsermatogonia (T1-ProSG) to fail to reenter cell cycle during the first week of testicular development in mice. Consequently, neither the foundational spermatogonial stem cell (SSC) pool nor progenitor spermatogonia were ever formed in the knockout testes. Mechanistically, DDX20 functions to control the translation of its target mRNAs, many of which encode cell-cycle-related regulators, by interacting with key components of the translational machinery in prospermatogonia. Our data demonstrate a previously unreported function of DDX20 as a translational regulator of critical cell-cycle-related genes, which is essential for cell-cycle reentry of T1-ProSG and formation of the SSC pool.
Collapse
Affiliation(s)
- Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Qi Geng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Dingyao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China; The Institute of Blood Transfusion, Chinese Academy of Medical Sciences, and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
7
|
Wen Y, Zhou S, Gui Y, Li Z, Yin L, Xu W, Feng S, Ma X, Gan S, Xiong M, Dong J, Cheng K, Wang X, Yuan S. hnRNPU is required for spermatogonial stem cell pool establishment in mice. Cell Rep 2024; 43:114113. [PMID: 38625792 DOI: 10.1016/j.celrep.2024.114113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/28/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.
Collapse
Affiliation(s)
- Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shumin Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zeqing Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenchao Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiming Gan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keren Cheng
- Center for Reproductive Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
8
|
Rahmawati M, Stadler KM, Lopez-Biladeau B, Hoisington TM, Law NC. Core binding factor subunit β plays diverse and essential roles in the male germline. Front Cell Dev Biol 2023; 11:1284184. [PMID: 38020932 PMCID: PMC10653448 DOI: 10.3389/fcell.2023.1284184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-β (CBFβ) plays critical roles in prepubertal development and the onset of spermatogenesis. Using a mouse conditional knockout (cKO) approach, inactivation of Cbfb in the male germline resulted in rapid degeneration of the germline during the onset of spermatogenesis, impaired overall sperm production, and adult infertility. Utilizing a different Cre driver to generate another Cbfb cKO model, we determined that the function of CBFβ in the male germline is likely limited to undifferentiated spermatogonia despite expression in other germ cell types. Within undifferentiated spermatogonia, CBFβ regulates proliferation, survival, and overall maintenance of the undifferentiated spermatogonia population. Paradoxically, we discovered that CBFβ also distally regulates meiotic progression and spermatid formation but only with Cbfb cKO within undifferentiated spermatogonia. Spatial transcriptomics revealed that CBFβ modulates cell cycle checkpoint control genes associated with both proliferation and meiosis. Taken together, our findings demonstrate that core programs established within the prepubertal undifferentiated spermatogonia population are necessary for both germline maintenance and sperm production.
Collapse
Affiliation(s)
- Mustika Rahmawati
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kassie M. Stadler
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Blanca Lopez-Biladeau
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Tia M. Hoisington
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Nathan C. Law
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Chen M, Wang N, Yang H, Liu D, Gao Y, Duo L, Cui X, Hao F, Ye J, Gao F, Tu Q, Gui Y. Single-cell transcriptome analysis of the germ cells and somatic cells during mitotic quiescence stage in goats. FASEB J 2023; 37:e23244. [PMID: 37823602 DOI: 10.1096/fj.202301278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The mitotic quiescence of prospermatogonia is the event known to occur during genesis of the male germline and is tied to the development of the spermatogenic lineage. The regulatory mechanisms and the functional importance of this process have been demonstrated in mice; however, regulation of this process in human and domestic animal is still largely unknown. In this study, we employed single-cell RNA sequencing to identify transcriptional signatures of prospermatogonia and major somatic cell types in testes of goats at E85, E105, and E125. We identified both common and specific Gene Ontology categories, transcription factor regulatory networks, and cell-cell interactions in cell types from goat testis. We also analyzed the transcriptional dynamic changes in prospermatogonia, Sertoli cells, Leydig cells, and interstitial cells. Our datasets provide a useful resource for the study of domestic animal germline development.
Collapse
Affiliation(s)
- Min Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lei Duo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Tu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
10
|
Shimada R, Kato Y, Takeda N, Fujimura S, Yasunaga KI, Usuki S, Niwa H, Araki K, Ishiguro KI. STRA8-RB interaction is required for timely entry of meiosis in mouse female germ cells. Nat Commun 2023; 14:6443. [PMID: 37880249 PMCID: PMC10600341 DOI: 10.1038/s41467-023-42259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Meiosis is differently regulated in males and females. In females, germ cells initiate meiosis within a limited time period in the fetal ovary and undergo a prolonged meiotic arrest until puberty. However, how meiosis initiation is coordinated with the cell cycle to coincide with S phase remains elusive. Here, we demonstrate that STRA8 binds to RB via the LXCXE motif. Mutation of the RB-binding site of STRA8 in female mice delays meiotic entry, which consequently delays progression of meiotic prophase and leads to precocious depletion of the oocyte pool. Single-cell RNA-sequencing analysis reveals that the STRA8-RB interaction is required for S phase entry and meiotic gene activation, ensuring precise timing of meiosis initiation in oocytes. Strikingly, the results suggest STRA8 could sequester RB from E2F during pre-meiotic G1/S transition. This study highlights the gene regulatory mechanisms underlying the female-specific mode of meiotic initiation in mice.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan.
| |
Collapse
|
11
|
Gura MA, Bartholomew MA, Abt KM, Relovská S, Seymour KA, Freiman RN. Transcription and chromatin regulation by TAF4b during cellular quiescence of developing prospermatogonia. Front Cell Dev Biol 2023; 11:1270408. [PMID: 37900284 PMCID: PMC10600471 DOI: 10.3389/fcell.2023.1270408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Prospermatogonia (ProSpg) link the embryonic development of male primordial germ cells to the healthy establishment of postnatal spermatogonia and spermatogonial stem cells. While these spermatogenic precursor cells undergo the characteristic transitions of cycling and quiescence, the transcriptional events underlying these developmental hallmarks remain unknown. Here, we investigated the expression and function of TBP-associated factor 4b (Taf4b) in the timely development of quiescent mouse ProSpg using an integration of gene expression profiling and chromatin mapping. We find that Taf4b mRNA expression is elevated during the transition of mitotic-to-quiescent ProSpg and Taf4b-deficient ProSpg are delayed in their entry into quiescence. Gene ontology, protein network analysis, and chromatin mapping demonstrate that TAF4b is a direct and indirect regulator of chromatin and cell cycle-related gene expression programs during ProSpg quiescence. Further validation of these cell cycle mRNA changes due to the loss of TAF4b was accomplished via immunostaining for proliferating cell nuclear antigen (PCNA). Together, these data indicate that TAF4b is a key transcriptional regulator of the chromatin and quiescent state of the developing mammalian spermatogenic precursor lineage.
Collapse
Affiliation(s)
| | | | | | - Soňa Relovská
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly A. Seymour
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Richard N. Freiman
- MCB Graduate Program, Providence, RI, United States
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
12
|
Tan K, Wilkinson MF. Developmental regulators moonlighting as transposons defense factors. Andrology 2023; 11:891-903. [PMID: 36895139 PMCID: PMC11162177 DOI: 10.1111/andr.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND The germline perpetuates genetic information across generations. To maintain the integrity of the germline, transposable elements in the genome must be silenced, as these mobile elements would otherwise engender widespread mutations passed on to subsequent generations. There are several well-established mechanisms that are dedicated to providing defense against transposable elements, including DNA methylation, RNA interference, and the PIWI-interacting RNA pathway. OBJECTIVES Recently, several studies have provided evidence that transposon defense is not only provided by factors dedicated to this purpose but also factors with other roles, including in germline development. Many of these are transcription factors. Our objective is to summarize what is known about these "bi-functional" transcriptional regulators. MATERIALS AND METHODS Literature search. RESULTS AND CONCLUSION We summarize the evidence that six transcriptional regulators-GLIS3, MYBL1, RB1, RHOX10, SETDB1, and ZBTB16-are both developmental regulators and transposable element-defense factors. These factors act at different stages of germ cell development, including in pro-spermatogonia, spermatogonial stem cells, and spermatocytes. Collectively, the data suggest a model in which specific key transcriptional regulators have acquired multiple functions over evolutionary time to influence developmental decisions and safeguard transgenerational genetic information. It remains to be determined whether their developmental roles were primordial and their transposon defense roles were co-opted, or vice versa.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Choi HJ, Jung KM, Rengaraj D, Lee KY, Yoo E, Kim TH, Han JY. Single-cell RNA sequencing of mitotic-arrested prospermatogonia with DAZL::GFP chickens and revealing unique epigenetic reprogramming of chickens. J Anim Sci Biotechnol 2022; 13:64. [PMID: 35659766 PMCID: PMC9169296 DOI: 10.1186/s40104-022-00712-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background Germ cell mitotic arrest is conserved in many vertebrates, including birds, although the time of entry or exit into quiescence phase differs. Mitotic arrest is essential for the normal differentiation of male germ cells into spermatogonia and accompanies epigenetic reprogramming and meiosis inhibition from embryonic development to post-hatch. However, mitotic arrest was not well studied in chickens because of the difficulty in obtaining pure germ cells from relevant developmental stage. Results We performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens. Using differentially expressed gene analysis and K-means clustering to analyze cells at different developmental stages (E12, E16, and hatch), we found that metabolic and signaling pathways were regulated, and that the epigenome was reprogrammed during mitotic arrest. In particular, we found that histone H3K9 and H3K14 acetylation (by HDAC2) and DNA demethylation (by DNMT3B and HELLS) led to a transcriptionally permissive chromatin state. Furthermore, we found that global DNA demethylation occurred gradually after the onset of mitotic arrest, indicating that the epigenetic-reprogramming schedule of the chicken genome differs from that of the mammalian genome. DNA hypomethylation persisted after hatching, and methylation was slowly re-established 3 weeks later. Conclusions We found a unique epigenetic-reprogramming schedule of mitotic-arrested chicken prospermatogonia and prolonged hypomethylation after hatching. This will provide a foundation for understanding the process of germ-cell epigenetic regulation in several species for which this process is not clearly described. Our findings on the biological processes related to sex-specific differentiation of prospermatogonia could help studying germline development in vitro more elaborately. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00712-4.
Collapse
Affiliation(s)
- Hyeon Jeong Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhui Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tae Hyun Kim
- Department of Animal Science, Pennsylvania State University, State College, PA, 16801, USA
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Bhattacharya I, Sharma P, Purohit S, Kothiyal S, Das M, Banerjee A. Recent Update on Retinoic Acid-Driven Initiation of Spermatogonial Differentiation. Front Cell Dev Biol 2022; 10:833759. [PMID: 35372365 PMCID: PMC8965804 DOI: 10.3389/fcell.2022.833759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Germ cells (Gc) propagate the genetic information to subsequent generations. Diploid (2n) Gc get transformed to specialized haploid (n) gametes by mitotic and meiotic divisions in adult gonads. Retinoic acid (RA), an active derivative of vitamin A (retinol), plays a critical role in organ morphogenesis and regulates the meiotic onset in developing Gc. Unlike ovaries, fetal testes express an RA-degrading enzyme CYP26B1, and thereby, male Gc fail to enter into meiosis and instead get arrested at G0/G1 stage, termed as gonocytes/pro-spermatogonia by embryonic (E) 13.5 days. These gonocytes are transformed into spermatogonial stem/progenitor cells after birth (1–3 days of neonatal age). During post-natal testicular maturation, the differentiating spermatogonia enter into the meiotic prophase under the influence RA, independent of gonadotropic (both FSH and LH) support. The first pulse of RA ensures the transition of undifferentiated type A spermatogonia to differentiated A1 spermatogonia and upregulates STRA8 expression in Gc. Whereas, the second pulse of RA induces the meiotic prophase by augmenting MEIOSIN expression in differentiated spermatogonia B. This opinion article briefly reviews our current understanding on the RA-driven spermatogonial differentiation in murine testes.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, HNB Garhwal University, A Central University, Srinagar Campus, Uttarakhand, India
- *Correspondence: Indrashis Bhattacharya, ; Arnab Banerjee,
| | - Partigya Sharma
- Department of Zoology, HNB Garhwal University, A Central University, Srinagar Campus, Uttarakhand, India
| | - Shriya Purohit
- Department of Zoology, HNB Garhwal University, A Central University, Srinagar Campus, Uttarakhand, India
| | - Sachin Kothiyal
- Department of Zoology, HNB Garhwal University, A Central University, Srinagar Campus, Uttarakhand, India
| | - Moitreyi Das
- Department of Biotechnology, Goa University, Taleigao, India
| | - Arnab Banerjee
- Department of Biological Sciences, KK Birla, Goa Campus, BITS Pilani, Zuarinagar, India
- *Correspondence: Indrashis Bhattacharya, ; Arnab Banerjee,
| |
Collapse
|
15
|
Mäkelä JA, Toppari J. Retinoblastoma-E2F Transcription Factor Interplay Is Essential for Testicular Development and Male Fertility. Front Endocrinol (Lausanne) 2022; 13:903684. [PMID: 35663332 PMCID: PMC9161260 DOI: 10.3389/fendo.2022.903684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 01/11/2023] Open
Abstract
The retinoblastoma (RB) protein family members (pRB, p107 and p130) are key regulators of cell cycle progression, but also play crucial roles in apoptosis, and stem cell self-renewal and differentiation. RB proteins exert their effects through binding to E2F transcription factors, which are essential developmental and physiological regulators of tissue and organ homeostasis. According to the canonical view, phosphorylation of RB results in release of E2Fs and induction of genes needed for progress of the cell cycle. However, there are eight members in the E2F transcription factor family with both activator (E2F1-3a) and repressor (E2F3b-E2F8) roles, highlighting the functional diversity of RB-E2F pathway. In this review article we summarize the data showing that RB-E2F interaction is a key cell-autonomous mechanism responsible for establishment and maintenance of lifelong male fertility. We also review the expression pattern of RB proteins and E2F transcription factors in the testis and male germ cells. The available evidence supports that RB and E2F family members are widely and dynamically expressed in the testis, and they are known to have versatile roles during spermatogenesis. Knowledge of the function and significance of RB-E2F interplay for testicular development and spermatogenesis comes primarily from gene knock-out (KO) studies. Several studies conducted in Sertoli cell-specific pRB-KO mice have demonstrated that pRB-mediated inhibition of E2F3 is essential for Sertoli cell functional maturation and cell cycle exit, highlighting that RB-E2F interaction in Sertoli cells is paramount to male fertility. Similarly, ablation of either pRB or E2F1 in the germline results in progressive testicular atrophy due to germline stem cell (GSC) depletion, emphasizing the importance of proper RB-E2F interplay for germline maintenance and lifelong sperm production. In summary, while balanced RB-E2F interplay is essential for cell-autonomous maintenance of GSCs and, the pRB-E2F3 system in Sertoli cells is critical for providing GSC niche thus laying the basis for spermatogenesis.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Jorma Toppari,
| |
Collapse
|
16
|
Wieckowski M, Ranga S, Moison D, Messiaen S, Abdallah S, Granon S, Habert R, Rouiller-Fabre V, Livera G, Guerquin MJ. Unexpected Interacting Effects of Physical (Radiation) and Chemical (Bisphenol A) Treatments on Male Reproductive Functions in Mice. Int J Mol Sci 2021; 22:ijms222111808. [PMID: 34769238 PMCID: PMC8584123 DOI: 10.3390/ijms222111808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.
Collapse
Affiliation(s)
- Margaux Wieckowski
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Stéphanie Ranga
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sonia Abdallah
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sylvie Granon
- Neuroscience Paris-Saclay Institute (Neuro-PSI), CNRS UMR 9197, Paris-Sud University, 91400 Saclay, France;
- Paris-Saclay University, 91405 Orsay, France
| | - René Habert
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
- Correspondence: (G.L.); (M.-J.G.)
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
- Correspondence: (G.L.); (M.-J.G.)
| |
Collapse
|