1
|
Nagata K, Maekawa I, Takahashi T, Abe M. ATML1 and PDF2 regulate cuticle formation and protect the plant body from environmental stresses in Arabidopsis thaliana seedlings. JOURNAL OF PLANT RESEARCH 2024:10.1007/s10265-024-01604-6. [PMID: 39658746 DOI: 10.1007/s10265-024-01604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
A sessile lifestyle compels plants to endure an array of environmental stressors in the location where they grow. To cope with environmental stresses, plants have developed specialized cell wall structures called cuticles at the interface between the plant and the environment. In Arabidopsis thaliana seedlings, cuticles cover and protect aerial organs and young roots. However, the precise assembly of the molecular machinery required for cuticle formation on the surface of distinct organs that exhibit entirely different functions and developmental contexts remains unknown. Here, we demonstrate that a paralogous gene pair, ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2), regulates precise cuticle formation in Arabidopsis thaliana seedlings. We found that the expression of ATML1 and PDF2 spatially overlapped with cuticle deposition in Arabidopsis thaliana seedlings. Furthermore, the loss of ATML1 and PDF2 activity resulted in a significant downregulation of the expression of genes required for cuticle formation and compromised cuticle formation in different organs. Seedlings with impaired activities of ATML1 and PDF2 exhibited higher susceptibility to environmental stress. In particular, PDF2 plays a predominant role in tolerance to environmental stress rather than ATML1 in the roots. Collectively, our study provides new insights into the regulatory mechanisms of cuticle formation and the developmental strategies plants use to protect their bodies from environmental stresses.
Collapse
Affiliation(s)
- Kenji Nagata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| | - Ichiro Maekawa
- Department of Integrated Science, College of Arts and Science, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Mitsutomo Abe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| |
Collapse
|
2
|
Holub AS, Choudury SG, Andrianova EP, Dresden CE, Camacho RU, Zhulin IB, Husbands AY. START domains generate paralog-specific regulons from a single network architecture. Nat Commun 2024; 15:9861. [PMID: 39543118 PMCID: PMC11564692 DOI: 10.1038/s41467-024-54269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Functional divergence of transcription factors (TFs) has driven cellular and organismal complexity throughout evolution, but its mechanistic drivers remain poorly understood. Here we test for new mechanisms using CORONA (CNA) and PHABULOSA (PHB), two functionally diverged paralogs in the CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) family of TFs. We show that virtually all genes bound by PHB ( ~ 99%) are also bound by CNA, ruling out occupation of distinct sets of genes as a mechanism of functional divergence. Further, genes bound and regulated by both paralogs are almost always regulated in the same direction, ruling out opposite regulation of shared targets as a mechanistic driver. Functional divergence of CNA and PHB instead results from differential usage of shared binding sites, with hundreds of uniquely regulated genes emerging from a commonly bound genetic network. Regulation of a given gene by CNA or PHB is thus a function of whether a bound site is considered 'responsive' versus 'non-responsive' by each paralog. Discrimination between responsive and non-responsive sites is controlled, at least in part, by their lipid binding START domain. This suggests a model in which HD-ZIPIII TFs use information integrated by their START domain to generate paralog-specific transcriptional outcomes from a shared network architecture. Taken together, our study identifies a mechanism of HD-ZIPIII TF paralog divergence and proposes the ubiquitously distributed START evolutionary module as a driver of functional divergence.
Collapse
Affiliation(s)
- Ashton S Holub
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43215, USA
| | - Sarah G Choudury
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Courtney E Dresden
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH, 43215, USA
| | - Ricardo Urquidi Camacho
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, 43215, USA
| | - Aman Y Husbands
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Wojciechowska I, Mukherjee T, Knox-Brown P, Hu X, Khosla A, Subedi B, Ahmad B, Mathews GL, Panagakis AA, Thompson KA, Peery ST, Szlachetko J, Thalhammer A, Hincha DK, Skirycz A, Schrick K. Arabidopsis PROTODERMAL FACTOR2 binds lysophosphatidylcholines and transcriptionally regulates phospholipid metabolism. THE NEW PHYTOLOGIST 2024; 244:1498-1518. [PMID: 38952028 PMCID: PMC11486602 DOI: 10.1111/nph.19917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 07/03/2024]
Abstract
Plant homeodomain leucine zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START-dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally found that PDF2 acts as a transcriptional regulator of phospholipid- and phosphate (Pi) starvation-related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.
Collapse
Affiliation(s)
| | - Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
- Donald Danforth Plant Science Center, Olivette, MO, 63132, USA
| | | | - Xueyun Hu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Aashima Khosla
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Graham L Mathews
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Kyle A Thompson
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophie T Peery
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jagoda Szlachetko
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, 14476, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
4
|
Beckers A, Mamiya A, Furutani M, Bennett MJ, Fukaki H, Sawa S, Gantet P, Laplaze L, Guyomarc'h S. Multiple layers of regulators emerge in the network controlling lateral root organogenesis. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00268-1. [PMID: 39455398 DOI: 10.1016/j.tplants.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.
Collapse
Affiliation(s)
- Antoine Beckers
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Akihito Mamiya
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiko Furutani
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan; Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shinichiro Sawa
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto, Japan; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Soazig Guyomarc'h
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| |
Collapse
|
5
|
Wu M, Bian X, Hu S, Huang B, Shen J, Du Y, Wang Y, Xu M, Xu H, Yang M, Wu S. A gradient of the HD-Zip regulator Woolly regulates multicellular trichome morphogenesis in tomato. THE PLANT CELL 2024; 36:2375-2392. [PMID: 38470570 PMCID: PMC11132899 DOI: 10.1093/plcell/koae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Homeodomain (HD) proteins regulate embryogenesis in animals such as the fruit fly (Drosophila melanogaster), often in a concentration-dependent manner. HD-leucine zipper (Zip) IV family genes are unique to plants and often function in the L1 epidermal cell layer. However, our understanding of the roles of HD-Zip IV family genes in plant morphogenesis is limited. In this study, we investigated the morphogenesis of tomato (Solanum lycopersicum) multicellular trichomes, a type of micro-organ in plants. We found that a gradient of the HD-Zip IV regulator Woolly (Wo) coordinates spatially polarized cell division and cell expansion in multicellular trichomes. Moreover, we identified a TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCP) transcription factor-encoding gene, SlBRANCHED2a (SlBRC2a), as a key downstream target of Wo that regulates the transition from cell division to cell expansion. High levels of Wo promote cell division in apical trichome cells, whereas in basal trichome cells, Wo mediates a negative feedback loop with SlBRC2a that forces basal cells to enter endoreduplication. The restricted high and low activities of Wo pattern the morphogenesis of tomato multicellular trichomes. These findings provide insights into the functions of HD-Zip IV genes during plant morphogenesis.
Collapse
Affiliation(s)
- MinLiang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - XinXin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - ShouRong Hu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - BenBen Huang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JingYuan Shen
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YaDi Du
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YanLi Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MengYuan Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - HuiMin Xu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MeiNa Yang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Sessa G, Carabelli M, Sassi M. The Ins and Outs of Homeodomain-Leucine Zipper/Hormone Networks in the Regulation of Plant Development. Int J Mol Sci 2024; 25:5657. [PMID: 38891845 PMCID: PMC11171833 DOI: 10.3390/ijms25115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.
Collapse
Affiliation(s)
| | | | - Massimiliano Sassi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy; (G.S.); (M.C.)
| |
Collapse
|
7
|
Nouwen N, Pervent M, El M’Chirgui F, Tellier F, Rios M, Horta Araújo N, Klopp C, Gressent F, Arrighi JF. OROSOMUCOID PROTEIN 1 regulation of sphingolipid synthesis is required for nodulation in Aeschynomene evenia. PLANT PHYSIOLOGY 2024; 194:1611-1630. [PMID: 38039119 PMCID: PMC10904325 DOI: 10.1093/plphys/kiad642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Legumes establish symbiotic interactions with nitrogen-fixing rhizobia that are accommodated in root-derived organs known as nodules. Rhizobial recognition triggers a plant symbiotic signaling pathway that activates 2 coordinated processes: infection and nodule organogenesis. How these processes are orchestrated in legume species utilizing intercellular infection and lateral root base nodulation remains elusive. Here, we show that Aeschynomene evenia OROSOMUCOID PROTEIN 1 (AeORM1), a key regulator of sphingolipid biosynthesis, is required for nodule formation. Using A. evenia orm1 mutants, we demonstrate that alterations in AeORM1 function trigger numerous early aborted nodules, defense-like reactions, and shorter lateral roots. Accordingly, AeORM1 is expressed during lateral root initiation and elongation, including at lateral root bases where nodule primordium form in the presence of symbiotic bradyrhizobia. Sphingolipidomics revealed that mutations in AeORM1 lead to sphingolipid overaccumulation in roots relative to the wild type, particularly for very long-chain fatty acid-containing ceramides. Taken together, our findings reveal that AeORM1-regulated sphingolipid homeostasis is essential for rhizobial infection and nodule organogenesis, as well as for lateral root development in A. evenia.
Collapse
Affiliation(s)
- Nico Nouwen
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Marjorie Pervent
- Plant Health Institute of Montpellier (PHIM), INRAE, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Franck El M’Chirgui
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Maëlle Rios
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Natasha Horta Araújo
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, 31326 Castanet-Tolosan, France
| | - Frédéric Gressent
- Plant Health Institute of Montpellier (PHIM), INRAE, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| | - Jean-François Arrighi
- Plant Health Institute of Montpellier (PHIM), IRD, UMR Univ Montpellier/IRD/SupAgro/INRAE/CIRAD, TA-A82/J Campus de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
8
|
Uemura Y, Tsukagoshi H. Quantitative analysis of lateral root development with time-lapse imaging and deep neural network. QUANTITATIVE PLANT BIOLOGY 2024; 5:e1. [PMID: 38385121 PMCID: PMC10877138 DOI: 10.1017/qpb.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
During lateral root (LR) development, morphological alteration of the developing single LR primordium occurs continuously. Precise observation of this continuous alteration is important for understanding the mechanism involved in single LR development. Recently, we reported that very long-chain fatty acids are important signalling molecules that regulate LR development. In the study, we developed an efficient method to quantify the transition of single LR developmental stages using time-lapse imaging followed by a deep neural network (DNN) analysis. In this 'insight' paper, we discuss our DNN method and the importance of time-lapse imaging in studies on plant development. Integrating DNN analysis and imaging is a powerful technique for the quantification of the timing of the transition of organ morphology; it can become an important method to elucidate spatiotemporal molecular mechanisms in plant development.
Collapse
Affiliation(s)
- Yuta Uemura
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | |
Collapse
|
9
|
Uemura Y, Kimura S, Ohta T, Suzuki T, Mase K, Kato H, Sakaoka S, Uefune M, Komine Y, Hotta K, Shimizu M, Morikami A, Tsukagoshi H. A very long chain fatty acid responsive transcription factor, MYB93, regulates lateral root development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1408-1427. [PMID: 37247130 DOI: 10.1111/tpj.16330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Lateral roots (LRs) are critical to root system architecture development in plants. Although the molecular mechanisms by which auxin regulates LR development have been extensively studied, several additional regulatory systems are hypothesized to be involved. Recently, the regulatory role of very long chain fatty acids (VLCFAs) has been shown in LR development. Our analysis showed that LTPG1 and LTPG2, transporters of VLCFAs, are specifically expressed in the developing LR primordium (LRP), while the number of LRs is reduced in the ltpg1/ltpg2 double mutant. Moreover, late LRP development was hindered when the VLCFA levels were reduced by the VLCFA synthesis enzyme mutant, kcs1-5. However, the details of the regulatory mechanisms of LR development controlled by VLCFAs remain unknown. In this study, we propose a novel method to analyze the LRP development stages with high temporal resolution using a deep neural network and identify a VLCFA-responsive transcription factor, MYB93, via transcriptome analysis of kcs1-5. MYB93 showed a carbon chain length-specific expression response following treatment of VLCFAs. Furthermore, myb93 transcriptome analysis suggested that MYB93 regulated the expression of cell wall organization genes. In addition, we also found that LTPG1 and LTPG2 are involved in LR development through the formation of root cap cuticle, which is different from transcriptional regulation by VLCFAs. Our results suggest that VLCFA is a regulator of LRP development through transcription factor-mediated regulation of gene expression and the transportation of VLCFAs is also involved in LR development through root cap cuticle formation.
Collapse
Affiliation(s)
- Yuta Uemura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Saori Kimura
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Tomomichi Ohta
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 478-8501, Japan
| | - Kosuke Mase
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Satomi Sakaoka
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Masayoshi Uefune
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Yuki Komine
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Atsushi Morikami
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| | - Hironaka Tsukagoshi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan
| |
Collapse
|
10
|
Mahtha SK, Kumari K, Gaur V, Yadav G. Cavity architecture based modulation of ligand binding tunnels in plant START domains. Comput Struct Biotechnol J 2023; 21:3946-3963. [PMID: 37635766 PMCID: PMC10448341 DOI: 10.1016/j.csbj.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
The Steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain represents an evolutionarily conserved superfamily of lipid transfer proteins widely distributed across the tree of life. Despite significant expansion in plants, knowledge about this domain remains inadequate in plants. In this work, we explore the role of cavity architectural modulations in START protein evolution and functional diversity. We use deep-learning approaches to generate plant START domain models, followed by surface accessibility studies and a comprehensive structural investigation of the rice START family. We validate 28 rice START domain models, delineate binding cavities, measure pocket volumes, and compare these with mammalian counterparts to understand evolution of binding preferences. Overall, plant START domains retain the ancestral α/β helix-grip signature, but we find subtle variation in cavity architectures, resulting in significantly smaller ligand-binding tunnels in the plant kingdom. We identify cavity lining residues (CLRs) responsible for reduction in ancestral tunnel space, and these appear to be class specific, and unique to plants, providing a mechanism for the observed shift in domain function. For instance, mammalian cavity lining residues A135, G181 and A192 have evolved to larger CLRs across the plant kingdom, contributing to smaller sizes, minimal STARTs being the largest, while members of type-IV HD-Zip family show almost complete obliteration of lipid binding cavities, consistent with their present-day DNA binding functions. In summary, this work quantifies plant START structural & functional divergence, bridging current knowledge gaps.
Collapse
Affiliation(s)
| | - Kamlesh Kumari
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
11
|
Husbands AY, Feller A, Aggarwal V, Dresden CE, Holub AS, Ha T, Timmermans MCP. The START domain potentiates HD-ZIPIII transcriptional activity. THE PLANT CELL 2023; 35:2332-2348. [PMID: 36861320 DOI: 10.1093/plcell/koad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/09/2023] [Accepted: 02/05/2023] [Indexed: 05/30/2023]
Abstract
The CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) transcription factors (TFs) were repeatedly deployed over 725 million years of evolution to regulate central developmental innovations. The START domain of this pivotal class of developmental regulators was recognized over 20 years ago, but its putative ligands and functional contributions remain unknown. Here, we demonstrate that the START domain promotes HD-ZIPIII TF homodimerization and increases transcriptional potency. Effects on transcriptional output can be ported onto heterologous TFs, consistent with principles of evolution via domain capture. We also show the START domain binds several species of phospholipids, and that mutations in conserved residues perturbing ligand binding and/or its downstream conformational readout abolish HD-ZIPIII DNA-binding competence. Our data present a model in which the START domain potentiates transcriptional activity and uses ligand-induced conformational change to render HD-ZIPIII dimers competent to bind DNA. These findings resolve a long-standing mystery in plant development and highlight the flexible and diverse regulatory potential coded within this widely distributed evolutionary module.
Collapse
Affiliation(s)
- Aman Y Husbands
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA 19104, USA
| | - Antje Feller
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Vasudha Aggarwal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Courtney E Dresden
- Department of Biology, University of Pennsylvania, 415 S. University Ave, Philadelphia, PA 19104, USA
- Molecular, Cellular, and Developmental Biology (MCDB), The Ohio State University, Columbus, OH 43215, USA
| | - Ashton S Holub
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43215, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Marja C P Timmermans
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Nagata K, Abe M. A conserved mechanism determines the activity of two pivotal transcription factors that control epidermal cell differentiation in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2023; 136:349-358. [PMID: 36826609 PMCID: PMC10126025 DOI: 10.1007/s10265-023-01439-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/01/2023] [Indexed: 05/25/2023]
Abstract
The surface of plants is covered by the epidermis, which protects the plant's body from the external environment and mediates inter-cell layer signaling to regulate plant development. Therefore, the manifestation of epidermal traits at a precise location is a prerequisite for their normal growth and development. In Arabidopsis thaliana, class IV homeodomain-leucine zipper transcription factors PROTODERMAL FACTOR2 (PDF2) and ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) play redundant roles in epidermal cell differentiation. Nevertheless, several pieces of evidence suggest that the activity and/or function of PDF2 and ATML1 are regulated differently. The role of the steroidogenic acute regulatory protein-related lipid transfer (START) domain of ATML1 in restricting this protein's activity has been demonstrated; however, whether this lipid-dependent mechanism regulates PDF2 expression is unknown. In this study, we demonstrated that the START domains of PDF2 and ATML1, regulate protein turnover in a position-dependent manner and affect the dimeric proteins. Our results show that a conserved mechanism provides the basis for the functional redundancy of PDF2 and ATML1 in epidermal cell differentiation and that an unidentified regulatory layer specific to PDF2 or ATML1 is responsible for the difference in the activity and/or function of PDF2 and ATML1.
Collapse
Affiliation(s)
- Kenji Nagata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Mitsutomo Abe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
13
|
Subedi B, Schrick K. EYFP fusions to HD-Zip IV transcription factors enhance their stability and lead to phenotypic changes in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2119013. [PMID: 36154907 PMCID: PMC9519029 DOI: 10.1080/15592324.2022.2119013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Green fluorescent protein (GFP) and its derivatives are extensively used for labeling cells, monitoring gene expression and/or tracking the localization or interactions of proteins. Previous reports of detrimental effects of fluorescent protein (FP) expression include cytotoxicity and interference with fusion protein function or localization. Only a few studies have documented the fluorescent tag-specific effects in plants. Here, we show that placing an enhanced yellow FP (EYFP) tag on the amino-terminus of GLABRA2 (GL2) and PROTODERMAL FACTOR2 (PDF2), two developmentally important HD-Zip IV transcription factors from Arabidopsis, enhances their protein stability. Additionally, expression of EYFP:GL2 not only rescued the gl2 null mutant but also resulted in the abnormal development of abaxially curled leaves associated with EYFP-tag induced GL2 overexpression. Our study raises concerns on the use of FPs regarding their effects on the native properties of target proteins as well as biological consequences of fusion protein expression on morphology.
Collapse
Affiliation(s)
- Bibek Subedi
- Division of Biology, Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, USA
| | - Kathrin Schrick
- Division of Biology, Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
14
|
Mukherjee T, Subedi B, Khosla A, Begler EM, Stephens PM, Warner AL, Lerma-Reyes R, Thompson KA, Gunewardena S, Schrick K. The START domain mediates Arabidopsis GLABRA2 dimerization and turnover independently of homeodomain DNA binding. PLANT PHYSIOLOGY 2022; 190:2315-2334. [PMID: 35984304 PMCID: PMC9706451 DOI: 10.1093/plphys/kiac383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 05/08/2023]
Abstract
Class IV homeodomain leucine-zipper transcription factors (HD-Zip IV TFs) are key regulators of epidermal differentiation that are characterized by a DNA-binding HD in conjunction with a lipid-binding domain termed steroidogenic acute regulatory-related lipid transfer (START). Previous work established that the START domain of GLABRA2 (GL2), a HD-Zip IV member from Arabidopsis (Arabidopsis thaliana), is required for TF activity. Here, we addressed the functions and possible interactions of START and the HD in DNA binding, dimerization, and protein turnover. Deletion analysis of the HD and missense mutations of a conserved lysine (K146) resulted in phenotypic defects in leaf trichomes, root hairs, and seed mucilage, similar to those observed for START domain mutants, despite nuclear localization of the respective proteins. In vitro and in vivo experiments demonstrated that while HD mutations impair binding to target DNA, the START domain is dispensable for DNA binding. Vice versa, protein interaction assays revealed impaired GL2 dimerization for multiple alleles of START mutants, but not HD mutants. Using in vivo cycloheximide chase experiments, we provided evidence for the role of START, but not HD, in maintaining protein stability. This work advances our mechanistic understanding of HD-Zip TFs as multidomain regulators of epidermal development in plants.
Collapse
Affiliation(s)
- Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Donald Danforth Plant Science Center, Olivette, Missouri 63132, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Aashima Khosla
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Erika M Begler
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Preston M Stephens
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adara L Warner
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Interdepartmental Genetics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Kyle A Thompson
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, USA
- Molecular, Cellular and Developmental Biology, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
15
|
Bellande K, Trinh DC, Gonzalez AA, Dubois E, Petitot AS, Lucas M, Champion A, Gantet P, Laplaze L, Guyomarc’h S. PUCHI represses early meristem formation in developing lateral roots of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3496-3510. [PMID: 35224628 PMCID: PMC9162184 DOI: 10.1093/jxb/erac079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/25/2022] [Indexed: 05/21/2023]
Abstract
Lateral root organogenesis is a key process in the development of a plant's root system and its adaptation to the environment. During lateral root formation, an early phase of cell proliferation first produces a four-cell-layered primordium, and only from this stage onwards is a root meristem-like structure, expressing root stem cell niche marker genes, being established in the developing organ. Previous studies reported that the gene regulatory network controlling lateral root formation is organized into two subnetworks whose mutual inhibition may contribute to organ patterning. PUCHI encodes an AP2/ERF transcription factor expressed early during lateral root primordium development and required for correct lateral root formation. To dissect the molecular events occurring during this early phase, we generated time-series transcriptomic datasets profiling lateral root development in puchi-1 mutants and wild types. Transcriptomic and reporter analyses revealed that meristem-related genes were expressed ectopically at early stages of lateral root formation in puchi-1 mutants. We conclude that, consistent with the inhibition of genetic modules contributing to lateral root development, PUCHI represses ectopic establishment of meristematic cell identities at early stages of organ development. These findings shed light on gene network properties that orchestrate correct timing and patterning during lateral root formation.
Collapse
Affiliation(s)
| | | | - Anne-Alicia Gonzalez
- Univ Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier GenomiX, France Génomique, Montpellier, France
| | - Emeric Dubois
- Univ Montpellier, CNRS, INSERM, Montpellier, France
- Montpellier GenomiX, France Génomique, Montpellier, France
| | | | - Mikaël Lucas
- DIADE, Univ Montpellier, IRD, Montpellier, France
| | | | | | | | | |
Collapse
|
16
|
Han H, Zhou Y. Function and Regulation of microRNA171 in Plant Stem Cell Homeostasis and Developmental Programing. Int J Mol Sci 2022; 23:2544. [PMID: 35269685 PMCID: PMC8910752 DOI: 10.3390/ijms23052544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
MicroRNA171 (miR171), a group of 21-nucleotide single-strand small RNAs, is one ancient and conserved microRNA family in land plants. This review focuses on the recent progress in understanding the role of miR171 in plant stem cell homeostasis and developmental patterning, and the regulation of miR171 by developmental cues and environmental signals. Specifically, miR171 regulates shoot meristem activity and phase transition through repressing the HAIRYMERISTEM (HAM) family genes. In the model species Arabidopsis, miR171 serves as a short-range mobile signal, which initiates in the epidermal layer of shoot meristems and moves downwards within a limited distance, to pattern the apical-basal polarity of gene expression and drive stem cell dynamics. miR171 levels are regulated by light and various abiotic stresses, suggesting miR171 may serve as a linkage between environmental factors and cell fate decisions. Furthermore, miR171 family members also demonstrate both conserved and lineage-specific functions in land plants, which are summarized and discussed here.
Collapse
Affiliation(s)
- Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Ramalho JJ, Jones VAS, Mutte S, Weijers D. Pole position: How plant cells polarize along the axes. THE PLANT CELL 2022; 34:174-192. [PMID: 34338785 PMCID: PMC8774072 DOI: 10.1093/plcell/koab203] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/30/2021] [Indexed: 05/10/2023]
Abstract
Having a sense of direction is a fundamental cellular trait that can determine cell shape, division orientation, or function, and ultimately the formation of a functional, multicellular body. Cells acquire and integrate directional information by establishing discrete subcellular domains along an axis with distinct molecular profiles, a process known as cell polarization. Insight into the principles and mechanisms underlying cell polarity has been propelled by decades of extensive research mostly in yeast and animal models. Our understanding of cell polarity establishment in plants, which lack most of the regulatory molecules identified in other eukaryotes, is more limited, but significant progress has been made in recent years. In this review, we explore how plant cells coordinately establish stable polarity axes aligned with the organ axes, highlighting similarities in the molecular logic used to polarize both plant and animal cells. We propose a classification system for plant cell polarity events and nomenclature guidelines. Finally, we provide a deep phylogenetic analysis of polar proteins and discuss the evolution of polarity machineries in plants.
Collapse
Affiliation(s)
| | | | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6703WE Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Creydt M, Lautner S, Fromm J, Fischer M. Wood profiling by non-targeted liquid chromatography high-resolution mass spectrometry: Part 2, Detection of the geographical origin of spruce wood (Picea abies) by determination of metabolite pattern. J Chromatogr A 2021; 1663:462737. [PMID: 34968956 DOI: 10.1016/j.chroma.2021.462737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
A non-targeted metabolomics-based approach using liquid chromatography high-resolution mass spectrometry was used to authenticate spruce wood (Picea abies) from two geographic source areas. The two sample sites were located in Germany and only 250 km apart. In order to achieve the highest possible metabolite coverage, the spruces samples were measured with four different methods using liquid chromatography high-resolution mass spectrometry. In this way, a total of approximately 4,100 features were detected, which included non-polar, polar, and intermediate-polar metabolites. Using supervised multivariate methods, a distinction between the two sample groups could be achieved on the basis of non-polar data sets. The major metabolites contributing to differentiation were identified by MS/MS experiments and were from the following classes of compounds: ceramides, fatty acids, glycerolipids, and phytosterols. Based on the soil descriptions of the two sites, it was concluded that there is probably a close relationship between nutrient availability and the differences in concentration of the marker compounds. The results show that a metabolomics-based approach is also suitable for differentiation of origin, even if the sample sites are close to each other.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany.
| | - Silke Lautner
- Applied Wood Biology, Faculty of Wood Science and Technology, Eberswalde University for Sustainable Development, Schicklerstrasse 5, 16225 Eberswalde, Germany
| | - Jörg Fromm
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany; Institute of Wood Science, Research Unit Wood Biology, University of Hamburg, Leuschnerstrasse 91d, 21031, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science - Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany
| |
Collapse
|
19
|
Dresden CE, Ashraf Q, Husbands AY. Diverse regulatory mechanisms of StARkin domains in land plants and mammals. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102148. [PMID: 34814028 DOI: 10.1016/j.pbi.2021.102148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The StARkin domain (derived from 'kin of steroidogenic acute regulatory protein (StAR)') is an evolutionarily conserved helix-grip-fold structure. StARkin domains possess a deep hydrophobic pocket capable of binding lipophilic ligands such as fatty acids, sterols, and isoprenoids. Dysregulation of StARkin proteins has profound effects on disease and development. In this review, we profile recent mechanistic and evolutionary studies, which highlight the remarkable diversity of regulatory mechanisms employed by the StARkin module. Although primarily focused on land plants, we also discuss select key advances in mammalian StARkin biology. The diversity of perspectives, systems, and approaches described here may be helpful to researchers characterizing poorly understood StARkin proteins.
Collapse
Affiliation(s)
- Courtney E Dresden
- Molecular, Cellular, and Developmental Biology (MCDB), the Ohio State University, Columbus, OH 43215, USA
| | - Quratulayn Ashraf
- Molecular, Cellular, and Developmental Biology (MCDB), the Ohio State University, Columbus, OH 43215, USA
| | - Aman Y Husbands
- Molecular, Cellular, and Developmental Biology (MCDB), the Ohio State University, Columbus, OH 43215, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43215, USA; Center for Applied Plant Sciences (CAPS), The Ohio State University, Columbus, OH 43215, USA.
| |
Collapse
|
20
|
Nagata K, Abe M. The lipid-binding START domain regulates the dimerization of ATML1 via modulating the ZIP motif activity in Arabidopsis thaliana. Dev Growth Differ 2021; 63:448-454. [PMID: 34543439 DOI: 10.1111/dgd.12753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
In Arabidopsis thaliana, the epidermis is the outermost cell layer composed of many specialized types of epidermal cells, such as pavement cells, trichomes, and guard cells. The homeodomain-leucine zipper (HD-ZIP) class Ⅳ transcription factors (TFs), which are unique to the plant kingdom, have been recognized as key regulators of epidermis development. Unlike animal HD proteins, which can bind to DNA as monomers, plant HD-ZIP class Ⅳ TFs bind to DNA as dimers, although little is known about the regulation of their dimerization process. Here, we show that the homodimerization of ARABIDOPSIS THALIANA MERISTEM LAYER 1 (ATML1) - HD-ZIP class Ⅳ TF that is required for protoderm development - is regulated by the lipid-binding steroidogenic acute regulatory protein-related lipid transfer (START) domain. We found that ATML1 forms homodimer through interaction via its ZIP motif in yeast and plant cells, although the interaction is abolished by generating a mutation into the lipid-binding START domain to disrupt the lipid-binding ability. These results suggest that lipidic ligands function as key regulators of protoderm development via modulating the dimerization of ATML1.
Collapse
Affiliation(s)
- Kenji Nagata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Mitsutomo Abe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Batsale M, Bahammou D, Fouillen L, Mongrand S, Joubès J, Domergue F. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells 2021; 10:1284. [PMID: 34064239 PMCID: PMC8224384 DOI: 10.3390/cells10061284] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Very-long-chain fatty acids (i.e., fatty acids with more than 18 carbon atoms; VLCFA) are important molecules that play crucial physiological and structural roles in plants. VLCFA are specifically present in several membrane lipids and essential for membrane homeostasis. Their specific accumulation in the sphingolipids of the plasma membrane outer leaflet is of primordial importance for its correct functioning in intercellular communication. VLCFA are found in phospholipids, notably in phosphatidylserine and phosphatidylethanolamine, where they could play a role in membrane domain organization and interleaflet coupling. In epidermal cells, VLCFA are precursors of the cuticular waxes of the plant cuticle, which are of primary importance for many interactions of the plant with its surrounding environment. VLCFA are also major components of the root suberin barrier, which has been shown to be fundamental for nutrient homeostasis and plant adaptation to adverse conditions. Finally, some plants store VLCFA in the triacylglycerols of their seeds so that they later play a pivotal role in seed germination. In this review, taking advantage of the many studies conducted using Arabidopsis thaliana as a model, we present our current knowledge on the biosynthesis and regulation of VLCFA in plants, and on the various functions that VLCFA and their derivatives play in the interactions of plants with their abiotic and biotic environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Frédéric Domergue
- University of Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d’Ornon, France; (M.B.); (D.B.); (L.F.); (S.M.); (J.J.)
| |
Collapse
|
22
|
The people behind the papers - Kenji Nagata and Mitsutomo Abe. Development 2021; 148:148/2/dev199349. [PMID: 33495213 DOI: 10.1242/dev.199349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant epidermis is a single layer of cells that forms a crucial barrier to the outside world, but the mechanisms that control epidermal differentiation - in particular the relative importance of position and lineage - remain incompletely understood. A new paper in Development tackles this question in Arabidopsis To find out more about the story, we caught up with first author Kenji Nagata and his supervisor Mitsutomo Abe, Associate Professor at the University of Tokyo.
Collapse
|