1
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Niu CX, Li JW, Li XL, Zhang LL, Lang Y, Song ZB, Yu CL, Yang XG, Zhao HF, Sun JL, Zheng LH, Wang X, Sun Y, Han XH, Wang GN, Bao YL. PRSS50-mediated inhibition of MKP3/ERK signaling is crucial for meiotic progression and sperm quality. Zool Res 2024; 45:1037-1047. [PMID: 39147718 PMCID: PMC11491780 DOI: 10.24272/j.issn.2095-8137.2023.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 08/17/2024] Open
Abstract
Serine protease 50 (PRSS50/TSP50) is highly expressed in spermatocytes. Our study investigated its role in testicular development and spermatogenesis. Initially, PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes. To further explore this, we generated PRSS50 knockout ( Prss50 -/- ) mice ( Mus musculus), which exhibited abnormal spermatid nuclear compression and reduced male fertility. Furthermore, dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50 -/- mice, accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells. Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and elevated levels of MAP kinase phosphatase 3 (MKP3), a specific ERK antagonist, potentially accounting for testicular dysplasia in adolescent Prss50 -/- mice. Taken together, these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis, with the MKP3/ERK signaling pathway playing a significant role in this process.
Collapse
Affiliation(s)
- Chun-Xue Niu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jia-Wei Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Li Li
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Lin-Lin Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yan Lang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Zhen-Bo Song
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| | - Chun-Lei Yu
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Guang Yang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Hai-Feng Zhao
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Jia-Ling Sun
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Li-Hua Zheng
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xue Wang
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Hong Han
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Guan-Nan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| |
Collapse
|
3
|
Tomizawa SI, Fellows R, Ono M, Kuroha K, Dočkal I, Kobayashi Y, Minamizawa K, Natsume K, Nakajima K, Hoshi I, Matsuda S, Seki M, Suzuki Y, Aoto K, Saitsu H, Ohbo K. The non-canonical bivalent gene Wfdc15a controls spermatogenic protease and immune homeostasis. Development 2024; 151:dev202834. [PMID: 39222051 DOI: 10.1242/dev.202834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.
Collapse
Affiliation(s)
- Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Rachel Fellows
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Minamizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Koji Natsume
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shion Matsuda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Central Laboratory, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
4
|
Asad M, Liao J, Chen J, Munir F, Pang S, Abbas AN, Yang G. Exploring the role of the ovary-serine protease gene in the female fertility of the diamondback moth using CRISPR/Cas9. PEST MANAGEMENT SCIENCE 2024; 80:3194-3206. [PMID: 38348909 DOI: 10.1002/ps.8022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/24/2023] [Accepted: 02/11/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Oogenesis is a complex pathway necessary for proper female reproduction in insects. Ovary-serine protease (Osp) is a homologous gene of serine protease Nudel (SpNudel) and plays an essential role in the oogenesis and ovary development of Drosophila melanogaster. However, the function of Osp is not determined in Plutella xylostella, a highly destructive pest of cruciferous crops. RESULTS The PxOsp gene comprises a 5883-bp open-reading frame that encodes a protein consisting of 1994 amino acids, which contain four conserved domains. PxOsp exhibited a high relative expression in adult females with a specific expression in the ovary. Through the utilization of CRISPR/Cas9 technology, homozygous mutants of PxOsp were generated. These homozygous mutant females produced fewer eggs (average of 56 eggs/female) than wild-type (WT) females (average of 97 eggs/female) when crossed with WT males, and these eggs failed to hatch. Conversely, mutant males produced normal progeny when crossed with WT females. The ovarioles in homozygous mutant females were significantly shorter (5.02 mm in length) and contained fewer eggs (average of 3 eggs/ovariole) than WT ovarioles (8.09 mm in length with an average of 8 eggs/ovariole). Moreover, eggs laid by homozygous mutant females were fragile, with irregular shapes, and were unable to maintain structural integrity due to eggshell ruptures. However, no significant differences were observed between WT and mutant individuals regarding developmental duration, pupal weight, and mating behavior. CONCLUSION Our study suggesteds that PxOsp plays a vital role in female reproduction, particularly in ovary and egg development. Disrupting PxOsp results in recessive female sterility while leaving the male reproductive capability unaffected. This report represents the first study of a haplosufficient gene responsible for female fertility in lepidopteran insects. Additionally, these findings emphasize PxOsp as a potential target for genetically-based pest management of P. xylostella. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jianying Liao
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Faisal Munir
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Senbo Pang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Anam Noreen Abbas
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
5
|
Robinson M, Zhou K, Kung SHY, Karaoğlanoğlu F, Golin A, Safa A, Cai C, Witherspoon L, Hach F, Flannigan R. A novel sorting method for the enrichment of early human spermatocytes from clinical biopsies. F&S SCIENCE 2024; 5:130-140. [PMID: 38369016 DOI: 10.1016/j.xfss.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE To determine if early spermatocytes can be enriched from a human testis biopsy using fluorescence-activated cell sorting (FACS). DESIGN Potential surface markers for early spermatocytes were identified using bioinformatics analysis of single-cell RNA-sequenced human testis tissue. Testicular sperm extraction samples from three participants with normal spermatogenesis were digested into single-cell suspensions and cryopreserved. Two to four million cells were obtained from each and sorted by FACS as separate biologic replicates using antibodies for the identified surface markers. A portion from each biopsy remained unsorted to serve as controls. The sorted cells were then characterized for enrichment of early spermatocytes. SETTING A laboratory study. PATIENTS Three men with a diagnosis of obstructive azoospermia (age range, 30-40 years). INTERVENTION None. MAIN OUTCOME MEASURES Sorted cells were characterized for RNA expression of markers encompassing the stages of spermatogenesis. Sorting markers were validated by their reactivity on human testis formalin-fixed paraffin-embedded tissue. RESULTS Serine protease 50 (TSP50) and SWI5-dependent homologous recombination repair protein 1 were identified as potential surface proteins specific for early spermatocytes. After FACS sorting, the TSP50-sorted populations accounted for 1.6%-8.9% of total populations and exhibited the greatest average-fold increases in RNA expression for the premeiotic marker stimulated by retinoic acid (STRA8), by 23-fold. Immunohistochemistry showed the staining pattern for TSP50 to be strong in premeiotic undifferentiated embryonic cell transcription factor 1-/doublesex and Mab-3 related transcription factor 1-/STRA8+ spermatogonia as well as SYCP3+/protamine 2- spermatocytes. CONCLUSION This work shows that TSP50 can be used to enrich early STRA8-expressing spermatocytes from human testicular biopsies, providing a means for targeted single-cell RNA sequencing analysis and in vitro functional interrogation of germ cells during the onset of meiosis. This could enable investigation into details of the regulatory pathways underlying this critical stage of spermatogenesis, previously difficult to enrich from whole tissue samples.
Collapse
Affiliation(s)
- Meghan Robinson
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Kevin Zhou
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Fatih Karaoğlanoğlu
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; School of Computing Science, Department of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrew Golin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armita Safa
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charley Cai
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, the Ottawa Hospital, Ottawa, Ontario, Canada
| | - Faraz Hach
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
6
|
Zhang P, Jialaliding Z, Gu J, Merchant A, Zhang Q, Zhou X. Knockout of ovary serine protease Leads to Ovary Deformation and Female Sterility in the Asian Corn Borer, Ostrinia furnacalis. Int J Mol Sci 2023; 24:16311. [PMID: 38003502 PMCID: PMC10671606 DOI: 10.3390/ijms242216311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Oogenesis in insects is a carefully orchestrated process, facilitating the formation of female gametes, which is regulated by multiple extrinsic and intrinsic factors, including ovary serine protease (Osp). As a member of the serine protease family, Osp is a homolog of Nudel, a maternally required protease defining embryonic dorsoventral polarity in Drosophila. In this study, we used CRISPR/Cas9-mediated mutagenesis to functionally characterize Osp in the Asian corn borer, Ostrinia furnacalis, a devastating maize pest throughout Asia and Australia. Building on previous knowledge, we hypothesized that knockout of Osp would disrupt embryonic development in O. furnacalis females. To examine this overarching hypothesis, we (1) cloned and characterized Osp from O. furnacalis, (2) designed target sites on exons 1 and 4 to construct a CRISPR/Cas9 mutagenesis system, and (3) documented phenotypic impacts among O. furnacalis Osp mutants. As a result, we (1) examined the temporal-spatial expression profiles of OfOsp, which has an open reading frame of 5648 bp in length and encodes a protein of 1873 amino acids; (2) established O. furnacalis Osp mutants; and (3) documented recessive, female-specific sterility among OfOspF mutants, including absent or deformed oviducts and reduced fertility in female but not male mutants. Overall, the combined results support our initial hypothesis that Osp is required for embryonic development, specifically ovarian maturation, in O. furnacalis females. Given its substantial impacts on female sterility, Osp provides a potential target for the Sterile Insect Technique (SIT) to manage Lepidoptera pests in general and the species complex Ostrinia in particular.
Collapse
Affiliation(s)
- Porui Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Zuerdong Jialaliding
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Junwen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA;
| | - Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (P.Z.); (Z.J.); (J.G.)
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
7
|
Sato B, Kim J, Morohoshi K, Kang W, Miyado K, Tsuruta F, Kawano N, Chiba T. Proteasome-Associated Proteins, PA200 and ECPAS, Are Essential for Murine Spermatogenesis. Biomolecules 2023; 13:biom13040586. [PMID: 37189334 DOI: 10.3390/biom13040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Proteasomes are highly sophisticated protease complexes that degrade non-lysosomal proteins, and their proper regulation ensures various biological functions such as spermatogenesis. The proteasome-associated proteins, PA200 and ECPAS, are predicted to function during spermatogenesis; however, male mice lacking each of these genes sustain fertility, raising the possibility that these proteins complement each other. To address this issue, we explored these possible roles during spermatogenesis by producing mice lacking these genes (double-knockout mice; dKO mice). Expression patterns and quantities were similar throughout spermatogenesis in the testes. In epididymal sperm, PA200 and ECPAS were expressed but were differentially localized to the midpiece and acrosome, respectively. Proteasome activity was considerably reduced in both the testes and epididymides of dKO male mice, resulting in infertility. Mass spectrometric analysis revealed LPIN1 as a target protein for PA200 and ECPAS, which was confirmed via immunoblotting and immunostaining. Furthermore, ultrastructural and microscopic analyses demonstrated that the dKO sperm displayed disorganization of the mitochondrial sheath. Our results indicate that PA200 and ECPAS work cooperatively during spermatogenesis and are essential for male fertility.
Collapse
Affiliation(s)
- Ban Sato
- Master's and Doctoral Program in Biology, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan
| | - Jiwoo Kim
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Kazunori Morohoshi
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya 157-8535, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya 157-8535, Japan
| | - Fuminori Tsuruta
- Master's and Doctoral Program in Biology, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Natsuko Kawano
- Laboratory of Regulatory Biology, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Kawasaki 214-8571, Japan
| | - Tomoki Chiba
- Master's and Doctoral Program in Biology, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| |
Collapse
|
8
|
Carracedo S, Briand-Amirat L, Dordas-Perpinyà M, Ramos Escuredo Y, Delcombel R, Sergeant N, Delehedde M. ProAKAP4 protein marker: Towards a functional approach to male fertility. Anim Reprod Sci 2022; 247:107074. [DOI: 10.1016/j.anireprosci.2022.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
|
9
|
Go AC, Civetta A. Divergence of X-linked trans regulatory proteins and the misexpression of gene targets in sterile Drosophila pseudoobscura hybrids. BMC Genomics 2022; 23:30. [PMID: 34991488 PMCID: PMC8740060 DOI: 10.1186/s12864-021-08267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetic basis of hybrid incompatibilities is characterized by pervasive cases of gene interactions. Sex chromosomes play a major role in speciation and X-linked hybrid male sterility (HMS) genes have been identified. Interestingly, some of these genes code for proteins with DNA binding domains, suggesting a capability to act as trans-regulatory elements and disturb the expression of a large number of gene targets. To understand how interactions between trans- and cis-regulatory elements contribute to speciation, we aimed to map putative X-linked trans-regulatory elements and to identify gene targets with disrupted gene expression in sterile hybrids between the subspecies Drosophila pseudoobscura pseudoobscura and D. p. bogotana. RESULTS We find six putative trans-regulatory proteins within previously mapped X chromosome HMS loci with sequence changes that differentiate the two subspecies. Among them, the previously characterized HMS gene Overdrive (Ovd) had the largest number of amino acid changes between subspecies, with some substitutions localized within the protein's DNA binding domain. Using an introgression approach, we detected transcriptional responses associated with a sterility/fertility Ovd allele swap. We found a network of 52 targets of Ovd and identified cis-regulatory effects among target genes with disrupted expression in sterile hybrids. However, a combined analysis of polymorphism and divergence in non-coding sequences immediately upstream of target genes found no evidence of changes in candidate regulatory proximal cis-elements. Finally, peptidases were over-represented among target genes. CONCLUSIONS We provide evidence of divergence between subspecies within the DNA binding domain of the HMS protein Ovd and identify trans effects on the expression of 52 gene targets. Our results identify a network of trans-cis interactions with possible effects on HMS. This network provides molecular evidence of gene × gene incompatibilities as contributors to hybrid dysfunction.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|