1
|
Amador GJ, van Oorschot BK, Liao C, Wu J, Wei D. Functional fibrillar interfaces: Biological hair as inspiration across scales. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:664-677. [PMID: 38887525 PMCID: PMC11181169 DOI: 10.3762/bjnano.15.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Hair, or hair-like fibrillar structures, are ubiquitous in biology, from fur on the bodies of mammals, over trichomes of plants, to the mastigonemes on the flagella of single-celled organisms. While these long and slender protuberances are passive, they are multifunctional and help to mediate interactions with the environment. They provide thermal insulation, sensory information, reversible adhesion, and surface modulation (e.g., superhydrophobicity). This review will present various functions that biological hairs have been discovered to carry out, with the hairs spanning across six orders of magnitude in size, from the millimeter-thick fur of mammals down to the nanometer-thick fibrillar ultrastructures on bateriophages. The hairs are categorized according to their functions, including protection (e.g., thermal regulation and defense), locomotion, feeding, and sensing. By understanding the versatile functions of biological hairs, bio-inspired solutions may be developed across length scales.
Collapse
Affiliation(s)
- Guillermo J Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Brett Klaassen van Oorschot
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Caiying Liao
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianing Wu
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Chen CK, Chang YM, Jiang TX, Yue Z, Liu TY, Lu J, Yu Z, Lin JJ, Vu TD, Huang TY, Harn HIC, Ng CS, Wu P, Chuong CM, Li WH. Conserved regulatory switches for the transition from natal down to juvenile feather in birds. Nat Commun 2024; 15:4174. [PMID: 38755126 PMCID: PMC11099144 DOI: 10.1038/s41467-024-48303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, Guangdong, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Tzu-Yu Liu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiayi Lu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinn-Jy Lin
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Trieu-Duc Vu
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Tao-Yu Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Siang Ng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Kim JH, Kim TY, Goo B, Park Y. Bee Venom Stimulates Growth Factor Release from Adipose-Derived Stem Cells to Promote Hair Growth. Toxins (Basel) 2024; 16:84. [PMID: 38393162 PMCID: PMC10892121 DOI: 10.3390/toxins16020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Limited evidence suggests that stimulating adipose-derived stem cells (ASCs) indirectly promotes hair growth. We examined whether bee venom (BV) activated ASCs and whether BV-induced hair growth was facilitated by enhanced growth factor release by ASCs. The induction of the telogen-to-anagen phase was studied in mice. The underlying mechanism was investigated using organ cultures of mouse vibrissa hair follicles. When BV-treated ASCs were injected subcutaneously into mice, the telogen-to-anagen transition was accelerated and, by day 14, the hair weight increased. Quantitative polymerase chain reaction (qPCR) revealed that BV influenced the expression of several molecules, including growth factors, chemokines, channels, transcription factors, and enzymes. Western blot analysis was employed to verify the protein expression levels of extracellular-signal-regulated kinase (ERK) and phospho-ERK. Both the Boyden chamber experiment and scratch assay confirmed the upregulation of cell migration by BV. Additionally, ASCs secreted higher levels of growth factors after exposure to BV. Following BV therapy, the gene expression levels of alkaline phosphatase (ALP), fibroblast growth factor (FGF)-1 and 6, endothelial cell growth factor, and platelet-derived growth factor (PDGF)-C were upregulated. The findings of this study suggest that bee venom can potentially be utilized as an ASC-preconditioning agent for hair regeneration.
Collapse
Affiliation(s)
- Jung Hyun Kim
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Tae Yoon Kim
- Department of Traditional Korean Medicine Practice, Jaseng Medical Foundation, 538, Gangnam-daero, Gangnam-gu, Seoul 06110, Republic of Korea
| | - Bonhyuk Goo
- Department of Acupuncture & Moxibustion, Kyung Hee University Hospital at Gangdong, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea
| | - Yeoncheol Park
- Department of Acupuncture & Moxibustion Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, 26, Kyungheedae-ro 4-gil, Dongdaemun-gu, Seoul 02453, Republic of Korea
| |
Collapse
|
4
|
Li K, Liu F, He Y, Qu Q, Sun P, Du L, Wang J, Chen R, Gan Y, Fu D, Fan Z, Liu B, Hu Z, Miao Y. The homing of exogenous hair follicle mesenchymal stem cells into hair follicle niches. JCI Insight 2023; 8:e173549. [PMID: 37917167 PMCID: PMC10807717 DOI: 10.1172/jci.insight.173549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Hair loss is a debilitating condition associated with the depletion of dermal papilla cells (DPCs), which can be replenished by dermal sheath cells (DSCs). Hence, strategies aimed at increasing the populations of DPCs and DSCs hold promise for the treatment of hair loss. In this study, we demonstrated in mice that introduced exogenous DPCs and DSCs (hair follicle mesenchymal stem cells) could effectively migrate and integrate into the dermal papilla and dermal sheath niches, leading to enhanced hair growth and prolonged anagen phases. However, the homing rates of DPCs and DSCs were influenced by various factors, including recipient mouse depilation, cell passage number, cell dose, and immune rejection. Through in vitro and in vivo experiments, we also discovered that the CXCL13/CXCR5 pathway mediated the homing of DPCs and DSCs into hair follicle niches. This study underscores the potential of cell-based therapies for hair loss by targeted delivery of DPCs and DSCs to their respective niches and sheds light on the intriguing concept that isolated mesenchymal stem cells can home back to their original niche microenvironment.
Collapse
Affiliation(s)
- Kaitao Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Fang Liu
- Medical Cosmetic and Plastic Surgery Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye He
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Pingping Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhang L, Cai C, Liu X, Zhang X, An Z, Zhou E, Li J, Li Z, Li W, Sun G, Li G, Kang X, Han R, Jiang R. Multi-Stage Transcriptome Analysis Revealed the Growth Mechanism of Feathers and Hair Follicles during Induction Molting by Fasting in the Late Stage of Egg Laying. BIOLOGY 2023; 12:1345. [PMID: 37887055 PMCID: PMC10603888 DOI: 10.3390/biology12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Induced molting is a common method to obtain a new life in laying hens, in which periodic changes in feathers are the prominent feature. Nevertheless, its precise molecular mechanism remains unclear. In this study, feather and hair follicle samples were collected during fasting-induced physiological remodeling for hematoxylin-eosin staining, hormone changes and follicle traits, and transcriptome sequencing. Feather shedding was observed in F13 to R25, while newborns were observed in R3 to R32. Triiodothyronine and tetraiodothyronine were significantly elevated during feather shedding. The calcium content was significantly higher, and the ash content was significantly lower after the changeover. The determination of hair follicle traits revealed an increasing trend in pore density and a decrease in pore diameter after the resumption of feeding. According to RNA-seq results, several core genes were identified, including DSP, CDH1, PKP1, and PPCKB, which may have an impact on hair follicle growth. The focus was to discover that starvation may trigger changes in thyroid hormones, which in turn regulate feather molting through thyroid hormone synthesis, calcium signaling, and thyroid hormone signaling pathways. These data provide a valuable resource for the analysis of the molecular mechanisms underlying the cyclical growth of hair follicles in the skin during induced molting.
Collapse
Affiliation(s)
- Lujie Zhang
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Chunxia Cai
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Xinxin Liu
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Xiaoran Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Zhiyuan An
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Enyou Zhou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Jianzeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Wenting Li
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Guirong Sun
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Guoxi Li
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Xiangtao Kang
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Ruili Han
- The Shennong Laboratory, Zhengzhou 450002, China; (L.Z.); (C.C.); (X.L.); (W.L.); (G.S.); (G.L.); (X.K.)
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.Z.); (Z.A.); (E.Z.); (J.L.); (Z.L.)
| |
Collapse
|
6
|
Wei H, Du S, Parksong J, Pasolli HA, Matte-Martone C, Regot S, Gonzalez LE, Xin T, Greco V. Organ function is preserved despite reorganization of niche architecture in the hair follicle. Cell Stem Cell 2023; 30:962-972.e6. [PMID: 37419106 PMCID: PMC10362479 DOI: 10.1016/j.stem.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
The ability of stem cells to build and replenish tissues depends on support from their niche. Although niche architecture varies across organs, its functional importance is unclear. During hair follicle growth, multipotent epithelial progenitors build hair via crosstalk with their remodeling fibroblast niche, the dermal papilla, providing a powerful model to functionally interrogate niche architecture. Through mouse intravital imaging, we show that dermal papilla fibroblasts remodel individually and collectively to form a morphologically polarized, structurally robust niche. Asymmetric TGF-β signaling precedes morphological niche polarity, and loss of TGF-β signaling in dermal papilla fibroblasts leads them to progressively lose their stereotypic architecture, instead surrounding the epithelium. The reorganized niche induces the redistribution of multipotent progenitors but nevertheless supports their proliferation and differentiation. However, the differentiated lineages and hairs produced by progenitors are shorter. Overall, our results reveal that niche architecture optimizes organ efficiency but is not absolutely essential for organ function.
Collapse
Affiliation(s)
- Haoyang Wei
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shuangshuang Du
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeeun Parksong
- Departments of Cell Biology and Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | | | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lauren E Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Liu TY, Hughes MW, Wang HV, Yang WC, Chuong CM, Wu P. Molecular and Cellular Characterization of Avian Reticulate Scales Implies the Evo-Devo Novelty of Skin Appendages in Foot Sole. J Dev Biol 2023; 11:30. [PMID: 37489331 PMCID: PMC10366821 DOI: 10.3390/jdb11030030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
Among amniotic skin appendages, avian feathers and mammalian hairs protect their stem cells in specialized niches, located in the collar bulge and hair bulge, respectively. In chickens and alligators, label retaining cells (LRCs), which are putative stem cells, are distributed in the hinge regions of both avian scutate scales and reptilian overlapping scales. These LRCs take part in scale regeneration. However, it is unknown whether other types of scales, for example, symmetrically shaped reticulate scales, have a similar way of preserving their stem cells. In particular, the foot sole represents a special interface between animal feet and external environments, with heavy mechanical loading. This is different from scutate-scale-covered metatarsal feet that function as protection. Avian reticulate scales on foot soles display specialized characteristics in development. They do not have a placode stage and lack β-keratin expression. Here, we explore the molecular and cellular characteristics of avian reticulate scales. RNAscope analysis reveals different molecular profiles during surface and hinge determination compared with scutate scales. Furthermore, reticulate scales express Keratin 15 (K15) sporadically in both surface- and hinge-region basal layer cells, and LRCs are not localized. Upon wounding, the reticulate scale region undergoes repair but does not regenerate. Our results suggest that successful skin appendage regeneration requires localized stem cell niches to guide regeneration.
Collapse
Affiliation(s)
- Tzu-Yu Liu
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Michael W Hughes
- Institute of Clinical Medicine and Department of Life Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, Taipei 106216, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University Southern California, Los Angeles, CA 90033, USA
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Cooper RL, Milinkovitch MC. Transient agonism of the sonic hedgehog pathway triggers a permanent transition of skin appendage fate in the chicken embryo. SCIENCE ADVANCES 2023; 9:eadg9619. [PMID: 37196093 DOI: 10.1126/sciadv.adg9619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Vertebrate skin appendage early development is mediated by conserved molecular signaling composing a dynamical reaction-diffusion-like system. Variations to such systems contribute to the remarkable diversity of skin appendage forms within and among species. Here, we demonstrate that stage-specific transient agonism of sonic hedgehog (Shh) pathway signaling in chicken triggers a complete and permanent transition from reticulate scales to feathers on the ventral surfaces of the foot and digits. Resulting ectopic feathers are developmentally comparable to feathers adorning the body, with down-type feathers transitioning into regenerative, bilaterally symmetric contour feathers in adult chickens. Crucially, this spectacular transition of skin appendage fate (from nodular reticulate scales to bona fide adult feathers) does not require sustained treatment. Our RNA sequencing analyses confirm that smoothened agonist treatment specifically promotes the expression of key Shh pathway-associated genes. These results indicate that variations in Shh pathway signaling likely contribute to the natural diversity and regionalization of avian integumentary appendages.
Collapse
Affiliation(s)
- Rory L Cooper
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Michel C Milinkovitch
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
9
|
The Hair Growth-Promoting Effect of Gardenia florida Fruit Extract and Its Molecular Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8498974. [PMID: 36193135 PMCID: PMC9526658 DOI: 10.1155/2022/8498974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
As a herbal medicine, the extract from the fruits of Gardenia florida has been widely used for its antioxidative, hypoglycemic, and anti-inflammatory properties. However, whether G. florida fruit extract (GFFE) regulates hair growth has been rarely studied. This study was the first application of GFFE on hair growth both in vitro (human dermal papilla cells, hDPCs) and in vivo (C57BL/6 mice). The effects of GFFE on cell proliferation and hair growth-associated gene expression in hDPCs were examined. Moreover, GFFE was applied topically on the hair-shaved skin of male C57BL/6 mice, the hair length was measured, and the skin histological profile was investigated. GFFE promoted the proliferation of hDPCs and significantly stimulated hair growth-promoting genes, including vascular endothelial growth factor (VEGF) and Wnt/β-catenin signals, but suppressed the expression of the hair loss-related gene transforming growth factor-β1 (TGF-β). Furthermore, GFFE treatment resulted in a significant increase in the number, size, and depth of cultured hair follicles and stimulated the growth of hair with local effects in mice. In summary, the results provided the preclinical data to support the much potential use of the natural product GFFE as a promising agent for hair growth.
Collapse
|
10
|
Li S, Liu G, Liu L, Li F. Methionine can subside hair follicle development prejudice of heat-stressed rex rabbits. FASEB J 2022; 36:e22464. [PMID: 35881391 DOI: 10.1096/fj.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
In the present experiment, we study the function of methionine on hair follicle development in heat-stressed Rex Rabbits and its potential molecular mechanism. Rex rabbits were randomly divided into 5 groups (30 replicates per group): control group (20-25°C, fed basic diet), heat stress group (30-34°C, fed basic diet), heat stress + methionine group (30-34°C, fed 0.15% methionine in addition to the basic diet). fed basic diet (control), heat stress + methionine group (30-34°C, fed 0.3% methionine in addition to the basic diet), heat stress + methionine group (30-34°C, fed 0.45% methionine in addition to the basic diet). The results show that heat stress decreases the hair follicle density of Rex rabbits, and the diet methionine addition significantly increases the hair follicle density of heat-stressed Rabbits (p < .05). Heat stress increased serum HSP70 concentration and skin HSP70 gene expression, 0.15%-0.3% methionine but not 0.45% addition alleviated the effect of heat stress. Dietary 0.15% methionine addition significantly increases the gene expression of Wnt10b, β-catenin, LEF, FZD4, LRP6, Shh, HGF, EGF, and Noggin in heat-stressed Rex rabbits and observably decreases the gene expression of BMP2/4 and TGFb. There was no significant effect of methionine on the expression of IGF1 and FGF5/7 gene expression. In conclusion, methionine maybe promotes hair follicle development via TGFβ-BMP/Shh-Noggin, Wnt10b/β-catenin, EGF, and HGF signaling pathways in heat-stressed rabbits.
Collapse
Affiliation(s)
- Shu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Gongyan Liu
- Shandong Academy of Agricultural Sciences Institute of Animal Husbandry and Veterinary Medicine, Jinan, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| |
Collapse
|
11
|
Gan Y, Wang H, Du L, Fan Z, Sun P, Li K, Qu Q, Wang J, Chen R, Hu Z, Miao Y. Ficoll density gradient sedimentation isolation of pelage hair follicle mesenchymal stem cells from adult mouse back skin: a novel method for hair follicle mesenchymal stem cells isolation. Stem Cell Res Ther 2022; 13:372. [PMID: 35902892 PMCID: PMC9330686 DOI: 10.1186/s13287-022-03051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hair follicle mesenchymal stem cells (HF-MSCs) have great potential for cell therapy. Traditional method to isolate whisker HF-MSC is time-consuming and few in cell numbers. How to quickly and conveniently obtain a large number of HF-MSC for experimental research is a problem worth exploring. Methods Two-step Ficoll Density Gradient Sedimentation (FDGS) was performed to isolate pelage HF-MSC from adult mice. The characteristic of the isolated cells was identified and compared with whisker HF-MSC by immunofluorescence staining, flow cytometry, three-lineage differentiation and hair follicle reconstruction. Pelage HF-MSC and exosomes were injected into the dorsal skin of mice as well as hair follicle organ culture to explore its role in promoting hair growth. The cells and exosomes distribution were located by immunofluorescence staining. Results Isolated pelage HF-MSC expressed similar markers (ALP, Versican, NCAM, Nestin), showed similar growth pattern, possessed similar mesenchymal stem cells function and hair follicle induction ability as whisker HF-MSC. A large number of cells can be obtained with fewer mice compared to traditional method. Injected pelage HF-MSC promoted hair growth by secreting exosomes. Conclusion A large number of Pelage HF-MSC can be isolated by FDGS, which can promote hair growth by secreting exosomes which may target the dermal papilla and hair matrix region of host hair follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03051-3.
Collapse
Affiliation(s)
- Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Pingping Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Kaitao Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|