1
|
Leclercq J, Torres-Paz J, Policarpo M, Agnès F, Rétaux S. Evolution of the regulation of developmental gene expression in blind Mexican cavefish. Development 2024; 151:dev202610. [PMID: 39007346 DOI: 10.1242/dev.202610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.
Collapse
Affiliation(s)
- Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Maxime Policarpo
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - François Agnès
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
2
|
Blin M, Valay L, Kuratko M, Pavie M, Rétaux S. The evolution of olfactory sensitivity, preferences, and behavioral responses in Mexican cavefish is influenced by fish personality. eLife 2024; 12:RP92861. [PMID: 38832493 PMCID: PMC11149931 DOI: 10.7554/elife.92861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Animals are adapted to their natural habitats and lifestyles. Their brains perceive the external world via their sensory systems, compute information together with that of internal states and autonomous activity, and generate appropriate behavioral outputs. However, how do these processes evolve across evolution? Here, focusing on the sense of olfaction, we have studied the evolution in olfactory sensitivity, preferences, and behavioral responses to six different food-related amino acid odors in the two eco-morphs of the fish Astyanax mexicanus. To this end, we have developed a high-throughput behavioral setup and pipeline of quantitative and qualitative behavior analysis, and we have tested 489 six-week-old Astyanax larvae. The blind, dark-adapted morphs of the species showed markedly distinct basal swimming patterns and behavioral responses to odors, higher olfactory sensitivity, and a strong preference for alanine, as compared to their river-dwelling eyed conspecifics. In addition, we discovered that fish have an individual 'swimming personality', and that this personality influences their capability to respond efficiently to odors and find the source. Importantly, the personality traits that favored significant responses to odors were different in surface fish and cavefish. Moreover, the responses displayed by second-generation cave × surface F2 hybrids suggested that olfactory-driven behavior and olfactory sensitivity is a quantitative genetic trait. Our findings show that olfactory processing has rapidly evolved in cavefish at several levels: detection threshold, odor preference, and foraging behavior strategy. Cavefish is therefore an outstanding model to understand the genetic, molecular, and neurophysiological basis of sensory specialization in response to environmental change.
Collapse
Affiliation(s)
- Maryline Blin
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Louis Valay
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Manon Kuratko
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Marie Pavie
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-SaclaySaclayFrance
| |
Collapse
|
3
|
Sifuentes-Romero I, Aviles AM, Carter JL, Chan-Pong A, Clarke A, Crotty P, Engstrom D, Meka P, Perez A, Perez R, Phelan C, Sharrard T, Smirnova MI, Wade AJ, Kowalko JE. Trait Loss in Evolution: What Cavefish Have Taught Us about Mechanisms Underlying Eye Regression. Integr Comp Biol 2023; 63:393-406. [PMID: 37218721 PMCID: PMC10445413 DOI: 10.1093/icb/icad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Reduction or complete loss of traits is a common occurrence throughout evolutionary history. In spite of this, numerous questions remain about why and how trait loss has occurred. Cave animals are an excellent system in which these questions can be answered, as multiple traits, including eyes and pigmentation, have been repeatedly reduced or lost across populations of cave species. This review focuses on how the blind Mexican cavefish, Astyanax mexicanus, has been used as a model system for examining the developmental, genetic, and evolutionary mechanisms that underlie eye regression in cave animals. We focus on multiple aspects of how eye regression evolved in A. mexicanus, including the developmental and genetic pathways that contribute to eye regression, the effects of the evolution of eye regression on other traits that have also evolved in A. mexicanus, and the evolutionary forces contributing to eye regression. We also discuss what is known about the repeated evolution of eye regression, both across populations of A. mexicanus cavefish and across cave animals more generally. Finally, we offer perspectives on how cavefish can be used in the future to further elucidate mechanisms underlying trait loss using tools and resources that have recently become available.
Collapse
Affiliation(s)
- Itzel Sifuentes-Romero
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Ari M Aviles
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Cell Biology and Genetics, Texas A&M University, College Station, TX 77843, USA
| | - Joseph L Carter
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Allen Chan-Pong
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Anik Clarke
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Patrick Crotty
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - David Engstrom
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Pranav Meka
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Alexandra Perez
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Riley Perez
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Christine Phelan
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Taylor Sharrard
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Maria I Smirnova
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Stiles–Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
- Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Amanda J Wade
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
| | - Johanna E Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 33458, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
4
|
Owen LJ, Rainger J, Bengani H, Kilanowski F, FitzPatrick DR, Papanastasiou AS. Characterization of an eye field-like state during optic vesicle organoid development. Development 2023; 150:dev201432. [PMID: 37306293 PMCID: PMC10445745 DOI: 10.1242/dev.201432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Specification of the eye field (EF) within the neural plate marks the earliest detectable stage of eye development. Experimental evidence, primarily from non-mammalian model systems, indicates that the stable formation of this group of cells requires the activation of a set of key transcription factors. This crucial event is challenging to probe in mammals and, quantitatively, little is known regarding the regulation of the transition of cells to this ocular fate. Using optic vesicle organoids to model the onset of the EF, we generate time-course transcriptomic data allowing us to identify dynamic gene expression programmes that characterize this cellular-state transition. Integrating this with chromatin accessibility data suggests a direct role of canonical EF transcription factors in regulating these gene expression changes, and highlights candidate cis-regulatory elements through which these transcription factors act. Finally, we begin to test a subset of these candidate enhancer elements, within the organoid system, by perturbing the underlying DNA sequence and measuring transcriptomic changes during EF activation.
Collapse
Affiliation(s)
- Liusaidh J. Owen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Jacqueline Rainger
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hemant Bengani
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew S. Papanastasiou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
5
|
Cardozo MJ, Sánchez-Bustamante E, Bovolenta P. Optic cup morphogenesis across species and related inborn human eye defects. Development 2023; 150:dev200399. [PMID: 36714981 PMCID: PMC10110496 DOI: 10.1242/dev.200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The vertebrate eye is shaped as a cup, a conformation that optimizes vision and is acquired early in development through a process known as optic cup morphogenesis. Imaging living, transparent teleost embryos and mammalian stem cell-derived organoids has provided insights into the rearrangements that eye progenitors undergo to adopt such a shape. Molecular and pharmacological interference with these rearrangements has further identified the underlying molecular machineries and the physical forces involved in this morphogenetic process. In this Review, we summarize the resulting scenarios and proposed models that include common and species-specific events. We further discuss how these studies and those in environmentally adapted blind species may shed light on human inborn eye malformations that result from failures in optic cup morphogenesis, including microphthalmia, anophthalmia and coloboma.
Collapse
Affiliation(s)
- Marcos J. Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Elena Sánchez-Bustamante
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
6
|
Rétaux S. [The toolbox of developmental evolution or how Mexican cave fishes lost their eyes]. Biol Aujourdhui 2022; 216:49-53. [PMID: 35876521 DOI: 10.1051/jbio/2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The fish Astyanax mexicanus comes in two very different forms: a "normal" river morph, and a blind, depigmented cave morph, living in the total and permanent darkness of Mexican caves. This species is on the way to becoming a model of choice in evolutionary and comparative biology, both for the study of the evolution of behavior, physiology or morphology, and for molecular genetics or population genetics. Here, I present the advancement of knowledge in the field of the developmental evolution of the eye of the cave morph. By rewinding back in time its development from the eye of the larva to the retinal field at the end of gastrulation, the cave-dwelling Astyanax embryo reveals mechanisms and processes likely to contribute to evolutionary variations between species, but also to pathological variations in the morphogenesis of the optic region.
Collapse
|