1
|
Yang Y, Yang L, Han X, Wu K, Mei G, Wu B, Cheng Y. The regulation role of calcium channels in mammalian sperm function: a narrative review with a focus on humans and mice. PeerJ 2024; 12:e18429. [PMID: 39469589 PMCID: PMC11514763 DOI: 10.7717/peerj.18429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Mammalian sperm are characterized as specialized cells, as their transcriptional and translational processes are largely inactive. Emerging researches indicate that Ca2+ serves as a crucial second messenger in the modulation of various sperm physiological processes, such as capacitation, hyperactivation, and the acrosome reaction. Specifically, sperm-specific calcium channels, including CatSper, voltage-gated calcium channels (VGCCs), store-operated calcium channels (SOCCs), and cyclic nucleotide-gated (CNG) channels, are implicated in the regulation of calcium signaling in mammalian sperm. Calcium stores located in the sperm acrosomes, along with the IP3 receptors in the neck of the redundant nuclear envelope and the mitochondria in the tail, play significant roles in modulating intracellular Ca2+ levels in sperm. However, the functions and mechanisms of these calcium channels in modulating mammalian sperm physiological functions have not yet been well elucidated. Therefore, by focusing on humans and mice, this study aims to provide a comprehensive review of the current advancements in research regarding the roles of calcium signaling and associated calcium channels in regulating sperm function. This endeavor seeks to enhance the understanding of calcium signaling in sperm regulation and to facilitate the development of drugs for the treatment of infertility or as non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Yebin Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Liu Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Xiaoqun Han
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Kuaiying Wu
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Baojian Wu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Kumaresan A, Yadav P, Sinha MK, Nag P, John Peter ESK, Mishra JS, Kumar S. Male infertility and perfluoroalkyl and poly-fluoroalkyl substances: evidence for alterations in phosphorylation of proteins and fertility-related functional attributes in bull spermatozoa†. Biol Reprod 2024; 111:723-739. [PMID: 38847481 PMCID: PMC11402523 DOI: 10.1093/biolre/ioae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) are pervasive environmental pollutants and potential threats to reproductive health. Epidemiological studies have established an association between PFAS and male infertility, but the underlying mechanisms are unclear. OBJECTIVES Investigate the effect of perfluorooctane sulfonic acid (PFOS), the most prevalent and representative PFAS, on bull sperm protein phosphorylation and function. METHODS We exposed bull sperm to PFOS at 10 (average population exposure) and 100 μM (high-exposure scenario), and analyzed global proteomic and phosphoproteomic analysis by TMT labeling and Nano LC-MS/MS. We also measured sperm fertility functions by flow cytometry. RESULTS PFOS at 10-μM altered sperm proteins linked to spermatogenesis and chromatin condensation, while at 100 μM, PFOS affected proteins associated with motility and fertility. We detected 299 phosphopeptides from 116 proteins, with 45 exhibiting differential expression between control and PFOS groups. PFOS dysregulated phosphorylation of key proteins (ACRBP, PRKAR2A, RAB2B, SPAG8, TUBB4B, ZPBP, and C2CD6) involved in sperm capacitation, acrosome reaction, sperm-egg interaction, and fertilization. PFOS also affected phosphorylation of other proteins (AQP7, HSBP9, IL4I1, PRKAR1A, and CCT8L2) related to sperm stress resistance and cryotolerance. Notably, four proteins (PRM1, ACRBP, TSSK1B, and CFAP45) exhibited differential regulation at both proteomic and phosphoproteomic levels. Flow cytometric analysis confirmed that PFOS increased protein phosphorylation in sperm and also decreased sperm motility, viability, calcium, and mitochondrial membrane potential and increased mitochondrial ROS in a dose-dependent manner. CONCLUSIONS This study demonstrates that PFOS exposure negatively affects phosphorylation of proteins vital for bull sperm function and fertilization.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pradeep Nag
- Department of Animal Sciences, University of Missouri, Columbia, WI 65211, USA
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
3
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
4
|
He Y, Wang B, Huang J, Zhang D, Yuan Y. Environmental pollutants and male infertility: Effects on CatSper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116341. [PMID: 38653022 DOI: 10.1016/j.ecoenv.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Infertility is a growing health concern among many couples worldwide. Men account for half of infertility cases. CatSper, a sperm-specific Ca2+ channel, is expressed on the cell membrane of mammalian sperm. CatSper plays an important role in male fertility because it facilitates the entry of Ca2+ necessary for the rapid change in sperm motility, thereby allowing it to navigate the hurdles of the female reproductive tract and successfully locate the egg. Many pollutants present in the environment have been shown to affect the functions of CatSper and sperm, which is a matter of capital importance to understanding and solving male infertility issues. Environmental pollutants can act as partial agonists or inhibitors of CatSper or exhibit a synergistic effect. In this article, we briefly describe the structure, functions, and regulatory mechanisms of CatSper, and discuss the body of literature covering the effects of environmental pollutants on CatSper.
Collapse
Affiliation(s)
- Yuxin He
- Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330031, China
| | - Binhui Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Jian Huang
- Clinical Medical Experimental Center, Nanchang University, Nanchang 330031, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang 330006, China
| | - Dalei Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang 330006, China
| | - Yangyang Yuan
- Clinical Medical Experimental Center, Nanchang University, Nanchang 330031, China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Lee KH, Hwang JY. Ca 2+ homeostasis and male fertility: a target for a new male contraceptive system. Anim Cells Syst (Seoul) 2024; 28:171-183. [PMID: 38686363 PMCID: PMC11057403 DOI: 10.1080/19768354.2024.2345647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Ca2+ is a key secondary messenger that determines sperm motility patterns. Mammalian sperm undergo capacitation, a process to acquire fertilizing ability, in the female reproductive tract. Capacitated sperm change their flagellar waveform to develop hyperactivated motility, which is crucial for successful sperm navigation to the eggs and fertilization. The sperm-specific channel, CATSPER, and an ATPase transporter, PMCA4, serve as major paths for Ca2+ influx and efflux, respectively, in sperm. The ionic paths coordinate Ca2+ homeostasis in the sperm, and their loss-of-function impairs sperm motility, to cause male infertility. In this review, we summarize the physiological significance of these two Ca2+ gates and suggest their potential applications in novel male contraceptives.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Jae Yeon Hwang
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| |
Collapse
|
6
|
Nand KN, Jordan TB, Yuan X, Basore DA, Zagorevski D, Clarke C, Werner G, Hwang JY, Wang H, Chung JJ, McKenna A, Jarvis MD, Singh G, Bystroff C. Bacterial production of recombinant contraceptive vaccine antigen from CatSper displayed on a human papilloma virus-like particle. Vaccine 2023; 41:6791-6801. [PMID: 37833124 DOI: 10.1016/j.vaccine.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
CatSper is a voltage dependent calcium ion channel present in the principal piece of sperm tail. It plays a crucial role in sperm hyperactivated motility and so in fertilization. Extracellular loops of mouse sperm CatSper were used to develop a vaccine to achieve protection from pregnancy. These loops were inserted at one of the three hypervariable regions of Human Papilloma Virus (HPV) capsid protein (L1). Recombinant vaccines were expressed in E.coli as inclusion body (IB), purified, refolded and assembled into virus-like particles (VLP) in vitro, and adsorbed on alum. Four vaccine candidates were tested in Balb/C mice. All the constructs proved immunogenic, one showed contraceptive efficacy. This recombinant contraceptive vaccine is a non-hormonal intervention and is expected to give long-acting protection from undesired pregnancies.
Collapse
Affiliation(s)
- K N Nand
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - T B Jordan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - X Yuan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - D A Basore
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States; Department of Health and Natural Science, Mercy University, Dobbs Ferry, NY, United States
| | - D Zagorevski
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - C Clarke
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - G Werner
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - J Y Hwang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - H Wang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - J-J Chung
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States; Department of Gynecology and Obstetrics, Yale University School of Medicine, New Haven, CT, United States
| | - A McKenna
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - M D Jarvis
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - G Singh
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - C Bystroff
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States.
| |
Collapse
|
7
|
Vicente-Carrillo A, Álvarez-Rodríguez M, Rodriguez-Martinez H. The Cation/Calcium Channel of Sperm (CatSper): A Common Role Played Despite Inter-Species Variation? Int J Mol Sci 2023; 24:13750. [PMID: 37762052 PMCID: PMC10531172 DOI: 10.3390/ijms241813750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The main cation/calcium channel of spermatozoa (CatSper), first identified in 2001, has been thoroughly studied to elucidate its composition and function, while its distribution among species and sperm sources is yet incomplete. CatSper is composed of several subunits that build a pore-forming calcium channel, mainly activated in vivo in ejaculated sperm cells by intracellular alkalinization and progesterone, as suggested by the in vitro examinations. The CatSper channel relevance is dual: to maintain sperm homeostasis (alongside the plethora of membrane channels present) as well as being involved in pre-fertilization events, such as sperm capacitation, hyperactivation of sperm motility and the acrosome reaction, with remarkable species differences. Interestingly, the observed variations in CatSper localization in the plasma membrane seem to depend on the source of the sperm cells explored (i.e., epididymal or ejaculated, immature or mature, processed or not), the method used for examination and, particularly, on the specificity of the antibodies employed. In addition, despite multiple findings showing the relevance of CatSper in fertilization, few studies have studied CatSper as a biomarker to fine-tune diagnosis of sub-fertility in livestock or even consider its potential to control fertilization in plague animals, a more ethically defensible strategy than implicating CatSper to pharmacologically modify male-related fertility control in humans, pets or wild animals. This review describes inter- and intra-species differences in the localization, structure and function of the CatSper channel, calling for caution when considering its potential manipulation for fertility control or improvement.
Collapse
Affiliation(s)
- Alejandro Vicente-Carrillo
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Álvarez-Rodríguez
- Department Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | | |
Collapse
|
8
|
Ke S, Luo T. The Chemosensing Role of CatSper in Mammalian Sperm: An Updated Review. Curr Issues Mol Biol 2023; 45:6995-7010. [PMID: 37754226 PMCID: PMC10528052 DOI: 10.3390/cimb45090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
After sperm enter the female reproductive tract, the physicochemical and biochemical microenvironment undergoes significant changes. In particular, the large changes in various ions encountered by sperm may alter the physiology of sperm, ultimately compromising capacitation and fertilization. Thus, the rapid response to environmental variations is vital for sperm functions. For example, Calcium, the most crucial ion for sperm functions, enters into sperm via Ca2+ permeable ion channels. The cation channel of sperm (CatSper) is a sperm-specific, pH-sensitive, and Ca2+-permeable ion channel. It is responsible for the predominant Ca2+ entry in mammalian sperm and is involved in nearly every event of sperm to acquire fertilizing capability. In addition, CatSper also serves as a pivotal polymodal chemosensor in mammalian sperm by responding to multiple chemical cues. Physiological chemicals (such as progesterone, prostaglandins, β-defensins, and odorants) provoke Ca2+ entry into sperm by activating CatSper and thus triggering sperm functions. Additionally, synthetic and natural chemicals (such as medicines, endocrine disrupting chemicals, drugs of abuse, and antioxidants) affect sperm functions by regulating CatSper-dependent Ca2+ signaling. Therefore, understanding the interactions between CatSper and extracellular ligands sheds light on the mechanisms underlying male infertility and offers innovative diagnostic and treatment approaches. This underscores the importance of CatSper as a crucial regulatory target in male reproduction, linking sperm function with the extracellular environment. In conclusion, this review comprehensively summarizes the relevant studies describing the environmental factors that affect CatSper in humans and rodents.
Collapse
Affiliation(s)
- Sulun Ke
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Queen Mary School, Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Romarowski A, Fejzo J, Nayyab S, Martin-Hidalgo D, Gervasi MG, Balbach M, Violante S, Salicioni AM, Cross J, Levin LR, Buck J, Visconti PE. Mouse sperm energy restriction and recovery (SER) revealed novel metabolic pathways. Front Cell Dev Biol 2023; 11:1234221. [PMID: 37655160 PMCID: PMC10466171 DOI: 10.3389/fcell.2023.1234221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Mammalian sperm must undergo capacitation to become fertilization-competent. While working on mice, we recently developed a new methodology for treating sperm in vitro, which results in higher rates of fertilization and embryo development after in vitro fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable. Upon re-adding energy substrates, sperm resume motility and become capacitated with improved functionality. Here, we explore how sperm energy restriction and recovery (SER) treatment affects sperm metabolism and capacitation-associated signaling. Using extracellular flux analysis and metabolite profiling and tracing via nuclear magnetic resonance (NMR) and mass spectrometry (MS), we found that the levels of many metabolites were altered during the starvation phase of SER. Of particular interest, two metabolites, AMP and L-carnitine, were significantly increased in energy-restricted sperm. Upon re-addition of glucose and initiation of capacitation, most metabolite levels recovered and closely mimic the levels observed in capacitating sperm that have not undergone starvation. In both control and SER-treated sperm, incubation under capacitating conditions upregulated glycolysis and oxidative phosphorylation. However, ATP levels were diminished, presumably reflecting the increased energy consumption during capacitation. Flux data following the fate of 13C glucose indicate that, similar to other cells with high glucose consumption rates, pyruvate is converted into 13C-lactate and, with lower efficiency, into 13C-acetate, which are then released into the incubation media. Furthermore, our metabolic flux data show that exogenously supplied glucose is converted into citrate, providing evidence that in sperm cells, as in somatic cells, glycolytic products can be converted into Krebs cycle metabolites.
Collapse
Affiliation(s)
- Ana Romarowski
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Jasna Fejzo
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| | - Saman Nayyab
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Maria G. Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Sara Violante
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ana M. Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Justin Cross
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
10
|
Wehrli L, Galdadas I, Voirol L, Smieško M, Cambet Y, Jaquet V, Guerrier S, Gervasio FL, Nef S, Rahban R. The action of physiological and synthetic steroids on the calcium channel CatSper in human sperm. Front Cell Dev Biol 2023; 11:1221578. [PMID: 37547474 PMCID: PMC10397409 DOI: 10.3389/fcell.2023.1221578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
The sperm-specific channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration ([Ca2+]i) and plays an essential role in sperm function. It is mainly activated by the steroid progesterone (P4) but is also promiscuously activated by a wide range of synthetic and physiological compounds. These compounds include diverse steroids whose action on the channel is so far still controversial. To investigate the effect of these compounds on CatSper and sperm function, we developed a high-throughput screening (HTS) assay to measure changes in [Ca2+]i in human sperm and screened 1,280 approved and off-patent drugs including 90 steroids from the Prestwick chemical library. More than half of the steroids tested (53%) induced an increase in [Ca2+]i and reduced the P4-induced Ca2+ influx in human sperm in a dose-dependent manner. Ten of the most potent steroids (activating and P4-inhibiting) were selected for a detailed analysis of their action on CatSper and their ability to act on sperm acrosome reaction (AR) and penetration in viscous media. We found that these steroids show an inhibitory effect on P4 but not on prostaglandin E1-induced CatSper activation, suggesting that they compete for the same binding site as P4. Pregnenolone, dydrogesterone, epiandrosterone, nandrolone, and dehydroepiandrosterone acetate (DHEA) were found to activate CatSper at physiologically relevant concentrations within the nanomolar range. Like P4, most tested steroids did not significantly affect the AR while stanozolol and estropipate slightly increased sperm penetration into viscous medium. Furthermore, using a hybrid approach integrating pharmacophore analysis and statistical modelling, we were able to screen in silico for steroids that can activate the channel and define the physicochemical and structural properties required for a steroid to exhibit agonist activity against CatSper. Overall, our results indicate that not only physiological but also synthetic steroids can modulate the activity of CatSper with varying potency and if bound to CatSper prior to P4, could impair the timely CatSper activation necessary for proper fertilization to occur.
Collapse
Affiliation(s)
- Lydia Wehrli
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Ioannis Galdadas
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Lionel Voirol
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yves Cambet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Readers, Assay Development and Screening Unit (READS Unit), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Guerrier
- Research Center for Statistics, Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
- Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Francesco Luigi Gervasio
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Department of Chemistry, University College London, London, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
11
|
Hwang JY, Chung JJ. CatSper Calcium Channels: 20 Years On. Physiology (Bethesda) 2023; 38:0. [PMID: 36512352 PMCID: PMC10085559 DOI: 10.1152/physiol.00028.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The flagellar-specific Ca2+ channel CatSper is the predominant Ca2+ entry site in mammalian sperm. CatSper-mediated Ca2+ signaling affects nearly every event that regulates sperm to acquire fertilizing capability. In this review, we summarize some of the main findings from 20 years of CatSper research and highlight recent progress and prospects.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
- Department of Gynecology and Obstetrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
13
|
Moreno RD. Human globozoospermia-related genes and their role in acrosome biogenesis. WIREs Mech Dis 2023; 15:e1589. [PMID: 36493758 DOI: 10.1002/wsbm.1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
The mammalian acrosome is a secretory vesicle attached to the sperm nucleus whose fusion with the overlying plasma membrane is required to achieve fertilization. Acrosome biogenesis starts during meiosis, but it lasts through the entire process of haploid cell differentiation (spermiogenesis). Acrosome biogenesis is a stepwise process that involves membrane traffic from the Golgi apparatus, but it also seems that the lysosome/endosome system participates in this process. Defective sperm head morphology is accompanied by defective acrosome shape and function, and patients with these characteristics are infertile or subfertile. The most extreme case of acrosome biogenesis failure is globozoospermia syndrome, which is primarily characterized by the presence of round-headed spermatozoa without acrosomes with cytoskeleton defects around the nucleus and infertility. Several genes participating in acrosome biogenesis have been uncovered using genetic deletions in mice, but only a few of them have been found to be deleted or modified in patients with globozoospermia. Understanding acrosome biogenesis is crucial to uncovering the molecular basis of male infertility and developing new diagnostic tools and assisted reproductive technologies that may help infertile patients through more effective treatment techniques. This article is categorized under: Reproductive System Diseases > Environmental Factors Infectious Diseases > Stem Cells and Development Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Departmento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Luque GM, Schiavi-Ehrenhaus LJ, Jabloñski M, Balestrini PA, Novero AG, Torres NI, Osycka-Salut CE, Darszon A, Krapf D, Buffone MG. High-throughput screening method for discovering CatSper inhibitors using membrane depolarization caused by external calcium chelation and fluorescent cell barcoding. Front Cell Dev Biol 2023; 11:1010306. [PMID: 36743410 PMCID: PMC9892719 DOI: 10.3389/fcell.2023.1010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.
Collapse
Affiliation(s)
- Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| | | | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Analia G. Novero
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Nicolás I. Torres
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Claudia E. Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM-CONICET), Buenos Aires, Argentina
| | | | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| |
Collapse
|
16
|
Tourzani DA, Yin Q, Jackson EA, Rando OJ, Visconti PE, Gervasi MG. Sperm Energy Restriction and Recovery (SER) Alters Epigenetic Marks during the First Cell Cycle of Development in Mice. Int J Mol Sci 2022; 24:640. [PMID: 36614081 PMCID: PMC9820464 DOI: 10.3390/ijms24010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
The sperm energy restriction and recovery (SER) treatment developed in our laboratory was shown to improve fertilization and blastocyst development following in vitro fertilization (IVF) in mice. Here, we investigated the effects of SER on early embryogenesis. Developmental events observed during the first cell cycle indicated that progression through the pronuclear stages of SER-generated embryos is advanced in comparison with control-generated embryos. These findings prompted further analysis of potential effects of SER on pronuclear chromatin dynamics, focusing on the key H3K4me3 and H3K27ac histone modifications. Nearly all the SER-generated embryos displayed H3K4me3 in the male pronuclei at 12 h post-insemination (HPI), while a subset of the control-generated embryos did not. Additionally, SER-generated embryos displayed a more homogenous intensity of H3K27ac at 8 and 12 HPI compared to control embryos. These changes in histone modifications during the first cell cycle were accompanied by differences in gene expression at the two-cell stage; both of these changes in early embryos could potentially play a role in the improved developmental outcomes of these embryos later in development. Our results indicate that sperm incubation conditions have an impact on early embryo development and can be useful for the improvement of assisted reproductive technology outcomes.
Collapse
Affiliation(s)
- Darya A. Tourzani
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Qiangzong Yin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erica A. Jackson
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Maria G. Gervasi
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Dahan T, Breitbart H. Involvement of metabolic pathway in the sperm spontaneous acrosome reaction. Theriogenology 2022; 192:38-44. [PMID: 36044805 DOI: 10.1016/j.theriogenology.2022.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
In order to fertilize the egg, spermatozoa must undergo a series of biochemical processes in the female reproductive tract collectively called capacitation. Only capacitated sperm can interact with the egg resulting in the acrosome reaction (AR), allowing egg penetration and fertilization. Sperm can undergo spontaneous AR (sAR) before reaching the egg, preventing successful fertilization. Here we investigated the metabolic pathways involved in sperm capacitation and sAR. Inhibition of glycolysis or oxidative phosphorylation did not affect capacitation or sAR levels; however, when both systems were inhibited, no capacitation occurred, and there was a significant increase in sAR. Under such ATP-starvation, the increase in sAR is triggered by Ca2+ influx into the sperm via the CatSper cation channel. Protein kinase A (PKA) is an essential key enzyme in sperm capacitation; there was no change in its activity when a single metabolic system was inhibited, while complete inhibition of was observed when the two systems were inhibited. Protein tyrosine phosphorylation (PTP), also known to occur in sperm capacitation, was partially reduced by inhibition of one metabolic system, and completely blocked when the two metabolic systems were inhibited. We conclude that ATP, PKA and PTP are involved in the mechanisms protecting sperm from sAR.
Collapse
Affiliation(s)
- Tsipora Dahan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Haim Breitbart
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
18
|
Zhao Y, Wang H, Wiesehoefer C, Shah NB, Reetz E, Hwang JY, Huang X, Wang TE, Lishko PV, Davies KM, Wennemuth G, Nicastro D, Chung JJ. 3D structure and in situ arrangements of CatSper channel in the sperm flagellum. Nat Commun 2022; 13:3439. [PMID: 35715406 PMCID: PMC9205950 DOI: 10.1038/s41467-022-31050-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
The sperm calcium channel CatSper plays a central role in successful fertilization as a primary Ca2+ gateway. Here, we applied cryo-electron tomography to visualize the higher-order organization of the native CatSper complex in intact mammalian sperm. The repeating CatSper units form long zigzag-rows along mouse and human sperm flagella. Above each tetrameric channel pore, most of the extracellular domains form a canopy that interconnects to a zigzag-shaped roof. Murine CatSper contains an additional wing-structure connected to the tetrameric channel. The intracellular domains link two neighboring channels to a diagonal array, suggesting a dimer formation. Fitting of an atomic model of isolated monomeric CatSper to the in situ map reveals supramolecular interactions and assembly of the CatSper complex. Loss of EFCAB9-CATSPERζ alters the architecture and interactions of the channels, resulting in fragmentation and misalignment of the zigzag-rows and disruption of flagellar movement in Efcab9-/- sperm. This work offers unique insights into the structural basis for understanding CatSper regulation of sperm motility.
Collapse
Affiliation(s)
- Yanhe Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Caroline Wiesehoefer
- Department of Anatomy, University of Duisburg-Essen, Medical Faculty, 45147, Essen, Germany
| | - Naman B Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bioimaging division, Bioscience Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Tse-En Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Polina V Lishko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- The Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Karen M Davies
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bioimaging division, Bioscience Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gunther Wennemuth
- Department of Anatomy, University of Duisburg-Essen, Medical Faculty, 45147, Essen, Germany
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
19
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
20
|
Hwang JY, Wang H, Lu Y, Ikawa M, Chung JJ. C2cd6-encoded CatSperτ targets sperm calcium channel to Ca 2+ signaling domains in the flagellar membrane. Cell Rep 2022; 38:110226. [PMID: 34998468 PMCID: PMC8857959 DOI: 10.1016/j.celrep.2021.110226] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
In mammalian sperm cells, regulation of spatiotemporal Ca2+ signaling relies on the quadrilinear Ca2+ signaling nanodomains in the flagellar membrane. The sperm-specific, multi-subunit CatSper Ca2+ channel, which is crucial for sperm hyperactivated motility and male fertility, organizes the nanodomains. Here, we report CatSperτ, the C2cd6-encoded membrane-associating C2 domain protein, can independently migrate to the flagella and serve as a major targeting component of the CatSper channel complex. CatSperτ loss of function in mice demonstrates that it is essential for sperm hyperactivated motility and male fertility. CatSperτ targets the CatSper channel into the quadrilinear nanodomains in the flagella of developing spermatids, whereas it is dispensable for functional channel assembly. CatSperτ interacts with ciliary trafficking machinery in a C2-dependent manner. These findings provide insights into the CatSper channel trafficking to the Ca2+ signaling nanodomains and the shared molecular mechanisms of ciliary and flagellar membrane targeting.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yonggang Lu
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Department of Gynecology and Obstetrics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|