1
|
Gjorcheska S, Paudel S, McLeod S, Paulding D, Snape L, Sosa KC, Duan C, Kelsh R, Barske L. Sox10 is required for systemic initiation of bone mineralization. Development 2025; 152:dev204357. [PMID: 39791977 DOI: 10.1242/dev.204357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
Heterozygous variants in SOX10 cause congenital syndromes affecting pigmentation, digestion, hearing, and neural development, primarily attributable to failed differentiation or loss of non-skeletal neural crest derivatives. We report here an additional, previously undescribed requirement for Sox10 in bone mineralization. Neither crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish sox10 mutants, despite normal osteoblast differentiation and matrix production. Mutants are deficient in the Trpv6+ ionocytes that take up calcium from the environment, resulting in severe calcium deficiency. As these ionocytes derive from ectoderm, not crest, we hypothesized that the primary defect resides in a separate organ that systemically regulates ionocyte numbers. RNA sequencing revealed significantly elevated stanniocalcin (Stc1a), an anti-hypercalcemic hormone, in sox10 mutants. Stc1a inhibits calcium uptake in fish by repressing trpv6 expression and Trpv6+ ionocyte proliferation. Epistasis assays confirm excess Stc1a as the proximate cause of the calcium deficit. The pronephros-derived glands that synthesize Stc1a interact with sox10+ cells, but these cells are missing in mutants. We conclude that sox10+ crest-derived cells non-autonomously limit Stc1a production to allow the inaugural wave of calcium uptake necessary to initiate bone mineralization.
Collapse
Affiliation(s)
- Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sandhya Paudel
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah McLeod
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David Paulding
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Louisa Snape
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Bailon-Zambrano R, Keating MK, Sales EC, Nichols AR, Gustafson GE, Hopkins CA, Kocha KM, Huang P, Barske L, Nichols JT. The sclerotome is the source of the dorsal and anal fin skeleton and its expansion is required for median fin development. Development 2024; 151:dev203025. [PMID: 39575996 DOI: 10.1242/dev.203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Paired locomotion appendages are hypothesized to have redeployed the developmental program of median appendages, such as the dorsal and anal fins. Compared with paired fins, and limbs, median appendages remain surprisingly understudied. Here, we report that a dominant zebrafish mutant, smoothback (smb), fails to develop a dorsal fin. Moreover, the anal fin is reduced along the antero-posterior axis, and spine defects develop. Mechanistically, the smb mutation is caused by an insertion of a sox10:Gal4VP16 transgenic construct into a non-coding region. The first step in fin, and limb, induction is aggregation of undifferentiated mesenchyme at the appendage development site. In smb, this dorsal fin mesenchyme is absent. Lineage tracing demonstrates the previously unknown developmental origin of the mesenchyme, the sclerotome, which also gives rise to the spine. Strikingly, we find that there is significantly less sclerotome in smb than in wild type. Our results give insight into the origin and modularity of understudied median fins, which have changed position, number, size, and even disappeared, across evolutionary time.
Collapse
Affiliation(s)
- Raisa Bailon-Zambrano
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Margaret K Keating
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily C Sales
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Abigail R Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Grace E Gustafson
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colette A Hopkins
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katrinka M Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single-nucleus transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. eLife 2024; 13:RP92519. [PMID: 39642053 PMCID: PMC11623931 DOI: 10.7554/elife.92519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.cells.ucsc.edu). We identified periosteal SSPCs expressing stemness markers (Pi16 and Ly6a/SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt, and the circadian clock signaling, respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | | | | | | | - Marine Luka
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163ParisFrance
- INSERM US24/CNRS UAR3633, Paris Cité UniversityParisFrance
| | - Mickael Ménager
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | |
Collapse
|
4
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin 16 promotes sensory gating via the endocrine corpuscles of Stannius. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614609. [PMID: 39386705 PMCID: PMC11463452 DOI: 10.1101/2024.09.23.614609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin 16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin 16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin 16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1L, and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and establish Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. Cells 2024; 13:1390. [PMID: 39195278 PMCID: PMC11352439 DOI: 10.3390/cells13161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development, including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and include regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
6
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single nuclei transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546220. [PMID: 39211065 PMCID: PMC11361009 DOI: 10.1101/2023.06.23.546220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nuclei atlas of the periosteum at steady-state and of the fracture site during early stages of bone repair ( https://fracture-repair-atlas.cells.ucsc.edu ). We identified periosteal SSPCs expressing stemness markers ( Pi16 and Ly6a /SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt and the circadian clock signaling respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
|
7
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603187. [PMID: 39091861 PMCID: PMC11291033 DOI: 10.1101/2024.07.20.603187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA-sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and included regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno
| | | |
Collapse
|
8
|
Chen J, Yu L, Gao T, Dong X, Li S, Liu Y, Yang J, Xia K, Yu Y, Li Y, Wang S, Fan Z, Deng H, Guo W. Nanofiber-induced hierarchically-porous magnesium phosphate bone cements accelerate bone regeneration by inhibiting Notch signaling. Bioact Mater 2024; 37:459-476. [PMID: 38698920 PMCID: PMC11063995 DOI: 10.1016/j.bioactmat.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Magnesium phosphate bone cements (MPC) have been recognized as a viable alternative for bone defect repair due to their high mechanical strength and biodegradability. However, their poor porosity and permeability limit osteogenic cell ingrowth and vascularization, which is critical for bone regeneration. In the current study, we constructed a novel hierarchically-porous magnesium phosphate bone cement by incorporating extracellular matrix (ECM)-mimicking electrospun silk fibroin (SF) nanofibers. The SF-embedded MPC (SM) exhibited a heterogeneous and hierarchical structure, which effectively facilitated the rapid infiltration of oxygen and nutrients as well as cell ingrowth. Besides, the SF fibers improved the mechanical properties of MPC and neutralized the highly alkaline environment caused by excess magnesium oxide. Bone marrow stem cells (BMSCs) adhered excellently on SM, as illustrated by formation of more pseudopodia. CCK8 assay showed that SM promoted early proliferation of BMSCs. Our study also verified that SM increased the expression of OPN, RUNX2 and BMP2, suggesting enhanced osteogenic differentiation of BMSCs. We screened for osteogenesis-related pathways, including FAK signaing, Wnt signaling and Notch signaling, and found that SM aided in the process of bone regeneration by suppressing the Notch signaling pathway, proved by the downregulation of NICD1, Hes1 and Hey2. In addition, using a bone defect model of rat calvaria, the study revealed that SM exhibited enhanced osteogenesis, bone ingrowth and vascularization compared with MPC alone. No adverse effect was found after implantation of SM in vivo. Overall, our novel SM exhibited promising prospects for the treatment of critical-sized bone defects.
Collapse
Affiliation(s)
- Jingteng Chen
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling Yu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Shiyu Li
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yinchu Liu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Yang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kezhou Xia
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaru Yu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingshuo Li
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sen Wang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - ZhengFu Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Weichun Guo
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
9
|
Cadiz L, Reed M, Monis S, Akimenko MA, Jonz MG. Identification of signalling pathways involved in gill regeneration in zebrafish. J Exp Biol 2024; 227:jeb246290. [PMID: 38099598 PMCID: PMC10906665 DOI: 10.1242/jeb.246290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
The occurrence of regeneration of the organs involved in respiratory gas exchange amongst vertebrates is heterogeneous. In some species of amphibians and fishes, the gills regenerate completely following resection or amputation, whereas in mammals, only partial, facultative regeneration of lung tissue occurs following injury. Given the homology between gills and lungs, the capacity of gill regeneration in aquatic species is of major interest in determining the underlying molecular or signalling pathways involved in respiratory organ regeneration. In the present study, we used adult zebrafish (Danio rerio) to characterize signalling pathways involved in the early stages of gill regeneration. Regeneration of the gills was induced by resection of gill filaments and observed over a period of up to 10 days. We screened for the effects on regeneration of the drugs SU5402, dorsomorphin and LY411575, which inhibit FGF, BMP or Notch signalling pathways, respectively. Exposure to each drug for 5 days significantly reduced regrowth of filament tips in regenerating tissue, compared with unresected controls. In separate experiments under normal conditions of regeneration, we used reverse transcription quantitative PCR and observed an increased expression of genes encoding for the bone morphogenetic factor, Bmp2b, fibroblast growth factor, Fgf8a, a transcriptional regulator (Her6) involved in Notch signalling, and Sonic Hedgehog (Shha), in regenerating gills at 10 day post-resection, compared with unresected controls. In situ hybridization confirmed that all four genes were expressed in regenerating gill tissue. This study implicates BMP, FGF, Notch and Shh signalling in gill regeneration in zebrafish.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Maddison Reed
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Simon Monis
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | | | - Michael G. Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
10
|
Yan Q, Qi B, Zhang P, Jin Y, Cao K, Liu Y. Hair follicle stem cell proliferation and differentiation are achieved by miR-1285-3P through targeted regulation of NOTCH pathway. Prev Med 2023; 173:107566. [PMID: 37286091 DOI: 10.1016/j.ypmed.2023.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The purpose of this experiment is to understand how miR-1285-3P regulates the NOTCH signaling pathway by targeting, thereby affecting the proliferation and differentiation of hair follicle stem cells. The cultured Inner Mongolia hair follicle stem cells were used in this experiment, and they were divided into control group, blank transfection group and miR-1285-3P transfection group. Among them, the control group was left untreated; the blank group was given miR-NC transfection; at the same time, the miR-1285-3P transfection group was given miR-1285-3P mimics for transfection. Compared with the control group (97.24 ± 6.81) and blank gro transfection up (97.32 ± 7.20), the cell proliferation ability of the miR-1285-3P transfection group (49.31 ± 3.39) was significantly lower. Compared with the other two groups, The proliferation ability of cells in the miR-1285-3P transfection group was decreased (P < 0.05); compared with the S-phase hair follicle stem cells in the control group (19.23 ± 1.29) and blank transfection group (19.38 ± 1.45), the miR-1285-3P transfection group (15.26 ± 1.26) decreased more significantly (P < 0.05). For hair follicle stem cells in each group, the proportion of cells in the G0-G1 phase was significantly different between the blank transfection group (63.18 ± 2.78) and the control group (64.29 ± 2.09), and the blank transfection group had a higher proportion (P < 0.05). In the process of miR-1285-3P targeting and regulating NOTCH signaling pathway, the proliferation and differentiation ability of hair follicle stem cells is affected. When NOTCH signaling pathway is activated, the differentiation of hair follicle stem cells is accelerated.
Collapse
Affiliation(s)
- QiGao Yan
- Development Planning Division, Anqing Medical and Pharmaceutical College, Anqing City, Anhui Province 246000, China
| | - BingJie Qi
- College of Pharmacy, Anqing Medical and Pharmaceutical College, Anqing City, Anhui Province 246000, China
| | - Pei Zhang
- College of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province 233030, China
| | - Yao Jin
- College of nursing, Anqing Medical and Pharmaceutical College, Anqing City, Anhui Province 246000, China
| | - Kai Cao
- Academic Affairs Office, Anqing Medical and Pharmaceutical College, Anqing City, Anhui Province 246000, China
| | - Yi Liu
- College of Pharmacy, Anqing Medical and Pharmaceutical College, Anqing City, Anhui Province 246000, China.
| |
Collapse
|
11
|
Sun H, Liu F, Lin Z, Jiang Z, Wen X, Xu J, Zhang Z, Ma R. Silencing of NOTCH3 Signaling in Meniscus Smooth Muscle Cells Inhibits Fibrosis and Exacerbates Degeneration in a HEYL-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207020. [PMID: 37026620 PMCID: PMC10238196 DOI: 10.1002/advs.202207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Indexed: 06/04/2023]
Abstract
The mechanisms of meniscus fibrosis and novel ways to enhance fibrosis is unclear. This work reveals human meniscus fibrosis initiated at E24 weeks. Smooth muscle cell cluster is identified in embryonic meniscus, and the combined analysis with previous data suggests smooth muscle cell in embryonic meniscus as precursors of progenitor cells in the mature meniscus. NOTCH3 is constantly expressed in smooth muscle cells throughout embryogenesis to adulthood. Inhibition of NOTCH3 signaling in vivo inhibits meniscus fibrosis and exacerbates degeneration. Continuous histological sections show that HEYL, NOTCH3 downstream target gene, is expressed consistently with NOTCH3. HEYL knockdown in meniscus cells attenuated the COL1A1 upregulation by CTGF and TGF-β stimulation. Thus, this study discovers the existence of smooth muscle cells and fibers in the meniscus. Inhibition of NOTCH3 signaling in meniscus smooth muscle cells in a HEYL-dependent manner prevented meniscus fibrosis and exacerbated degeneration. Therefore, NOTCH3/HEYL signaling might be a potential therapeutic target for meniscus fibrosis.
Collapse
Affiliation(s)
- Hao Sun
- Department of Orthopaedic surgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Fangzhou Liu
- Department of Orthopaedic surgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Zhencan Lin
- Department of Orthopaedic surgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Zongrui Jiang
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xingzhao Wen
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jie Xu
- Department of Orthopaedic surgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Zhiqi Zhang
- Department of Joint SurgeryFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Ruofan Ma
- Department of Orthopaedic surgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| |
Collapse
|
12
|
Comparisons between Plant and Animal Stem Cells Regarding Regeneration Potential and Application. Int J Mol Sci 2023; 24:ijms24054392. [PMID: 36901821 PMCID: PMC10002278 DOI: 10.3390/ijms24054392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.
Collapse
|
13
|
Liu J, Yang L, Liu K, Gao F. Hydrogel scaffolds in bone regeneration: Their promising roles in angiogenesis. Front Pharmacol 2023; 14:1050954. [PMID: 36860296 PMCID: PMC9968752 DOI: 10.3389/fphar.2023.1050954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Bone tissue engineering (BTE) has become a hopeful potential treatment strategy for large bone defects, including bone tumors, trauma, and extensive fractures, where the self-healing property of bone cannot repair the defect. Bone tissue engineering is composed of three main elements: progenitor/stem cells, scaffold, and growth factors/biochemical cues. Among the various biomaterial scaffolds, hydrogels are broadly used in bone tissue engineering owing to their biocompatibility, controllable mechanical characteristics, osteoconductive, and osteoinductive properties. During bone tissue engineering, angiogenesis plays a central role in the failure or success of bone reconstruction via discarding wastes and providing oxygen, minerals, nutrients, and growth factors to the injured microenvironment. This review presents an overview of bone tissue engineering and its requirements, hydrogel structure and characterization, the applications of hydrogels in bone regeneration, and the promising roles of hydrogels in bone angiogenesis during bone tissue engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lili Yang
- Department of Spinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Feng Gao,
| |
Collapse
|
14
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
15
|
Marcucio R, Miclau T, Bahney C. A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair. J Dent Res 2023; 102:13-20. [PMID: 36303415 PMCID: PMC9791286 DOI: 10.1177/00220345221125401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While formation and regeneration of the skeleton have been studied for a long period of time, significant scientific advances in this field continue to emerge based on an unmet clinical need to improve options to promote bone repair. In this review, we discuss the relationship between mechanisms of bone formation and bone regeneration. Data clearly show that regeneration is not simply a reinduction of the molecular and cellular programs that were used for development. Instead, the mechanical environment exerts a strong influence on the mode of repair, while during development, cell-intrinsic processes drive the mode of skeletal formation. A major advance in the field has shown that cell fate is flexible, rather than terminal, and that chondrocytes are able to differentiate into osteoblasts and other cell types during development and regeneration. This is discussed in a larger context of regeneration in vertebrates as well as the clinical implication that this shift in understanding presents.
Collapse
Affiliation(s)
- R.S. Marcucio
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - T. Miclau
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - C.S. Bahney
- University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, San Francisco, CA, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| |
Collapse
|
16
|
Gomez-Picos P, Ovens K, Eames BF. Limb Mesoderm and Head Ectomesenchyme Both Express a Core Transcriptional Program During Chondrocyte Differentiation. Front Cell Dev Biol 2022; 10:876825. [PMID: 35784462 PMCID: PMC9247276 DOI: 10.3389/fcell.2022.876825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
To explain how cartilage appeared in different parts of the vertebrate body at discrete times during evolution, we hypothesize that different embryonic populations co-opted expression of a core gene regulatory network (GRN) driving chondrocyte differentiation. To test this hypothesis, laser-capture microdissection coupled with RNA-seq was used to reveal chondrocyte transcriptomes in the developing chick humerus and ceratobranchial, which are mesoderm- and neural crest-derived, respectively. During endochondral ossification, two general types of chondrocytes differentiate. Immature chondrocytes (IMM) represent the early stages of cartilage differentiation, while mature chondrocytes (MAT) undergo additional stages of differentiation, including hypertrophy and stimulating matrix mineralization and degradation. Venn diagram analyses generally revealed a high degree of conservation between chondrocyte transcriptomes of the limb and head, including SOX9, COL2A1, and ACAN expression. Typical maturation genes, such as COL10A1, IBSP, and SPP1, were upregulated in MAT compared to IMM in both limb and head chondrocytes. Gene co-expression network (GCN) analyses of limb and head chondrocyte transcriptomes estimated the core GRN governing cartilage differentiation. Two discrete portions of the GCN contained genes that were differentially expressed in limb or head chondrocytes, but these genes were enriched for biological processes related to limb/forelimb morphogenesis or neural crest-dependent processes, respectively, perhaps simply reflecting the embryonic origin of the cells. A core GRN driving cartilage differentiation in limb and head was revealed that included typical chondrocyte differentiation and maturation markers, as well as putative novel "chondrocyte" genes. Conservation of a core transcriptional program during chondrocyte differentiation in both the limb and head suggest that the same core GRN was co-opted when cartilage appeared in different regions of the skeleton during vertebrate evolution.
Collapse
Affiliation(s)
- Patsy Gomez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
17
|
Stenzel A, Mumme-Monheit A, Sucharov J, Walker M, Mitchell JM, Appel B, Nichols JT. Distinct and redundant roles for zebrafish her genes during mineralization and craniofacial patterning. Front Endocrinol (Lausanne) 2022; 13:1033843. [PMID: 36578958 PMCID: PMC9791542 DOI: 10.3389/fendo.2022.1033843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
The Notch pathway is a cell-cell communication system which is critical for many developmental processes, including craniofacial development. Notch receptor activation induces expression of several well-known canonical targets including those encoded by the hes and her genes in mammals and zebrafish, respectively. The function of these genes, individually and in combination, during craniofacial development is not well understood. Here, we used zebrafish genetics to investigate her9 and her6 gene function during craniofacial development. We found that her9 is required for osteoblasts to efficiently mineralize bone, while cartilage is largely unaffected. Strikingly, gene expression studies in her9 mutants indicate that although progenitor cells differentiate into osteoblasts at the appropriate time and place, they fail to efficiently lay down mineralized matrix. This mineralization role of her9 is likely independent of Notch activation. In contrast, her9 also functions redundantly with her6 downstream of Jagged1b-induced Notch activation during dorsoventral craniofacial patterning. These studies disentangle distinct and redundant her gene functions during craniofacial development, including an unexpected, Notch independent, requirement during bone mineralization.
Collapse
Affiliation(s)
- Amanda Stenzel
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Abigail Mumme-Monheit
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Juliana Sucharov
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Macie Walker
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: James T. Nichols,
| |
Collapse
|