1
|
Park TIH, Schweder P, Lee K, Dieriks BV, Jung Y, Smyth L, Rustenhoven J, Mee E, Heppner P, Turner C, Curtis MA, Faull RLM, Montgomery JM, Dragunow M. Isolation and culture of functional adult human neurons from neurosurgical brain specimens. Brain Commun 2020; 2:fcaa171. [PMID: 33215086 PMCID: PMC7660143 DOI: 10.1093/braincomms/fcaa171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
The ability to characterize and study primary neurons isolated directly from the adult human brain would greatly advance neuroscience research. However, significant challenges such as accessibility of human brain tissue and the lack of a robust neuronal cell culture protocol have hampered its progress. Here, we describe a simple and reproducible method for the isolation and culture of functional adult human neurons from neurosurgical brain specimens. In vitro, adult human neurons form a dense network and express a plethora of mature neuronal and synaptic markers. Most importantly, for the first time, we demonstrate the re-establishment of mature neurophysiological properties in vitro, such as repetitive fast-spiking action potentials, and spontaneous and evoked synaptic activity. Together, our dissociated and slice culture systems enable studies of adult human neurophysiology and gene expression under normal and pathological conditions and provide a high-throughput platform for drug testing on brain cells directly isolated from the adult human brain.
Collapse
Affiliation(s)
- Thomas I-H Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Leon Smyth
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Edward Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Peter Heppner
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Weaver RJ, Valentin JP. Today's Challenges to De-Risk and Predict Drug Safety in Human "Mind-the-Gap". Toxicol Sci 2020; 167:307-321. [PMID: 30371856 DOI: 10.1093/toxsci/kfy270] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Current gaps in drug safety sciences can result from the inability (1) to identify hazard across multiple target organs, (2) to predict and risk assess with certainty against drug safety liabilities for the major target organs, (3) to optimally manage and mitigate against drug safety liabilities, and (4) to apply principles of governance on the generation, integration, and use of experimental data. Translational safety assessment to evaluate several target-organ drug toxicities can only be partially achieved by use of current in vitro and in vivo test systems. What remains to be tackled necessitates the deployment of in vitro-human-relevant test systems to address human specific or selective forms of toxicities. Nevertheless, such models may only address in part some of the requirements in today's armament of biomedical tools essential for improving the discovery of drug candidates. Refinement of in silico tools, Target Safety Assessment and a greater understanding of mechanistic insights of toxicities might provide future opportunities to better identify drug safety liabilities. The increasing diversity of drug modalities present further challenges for nonclinical and clinical development requiring further research to develop suitable test systems and technologies. Our ability to optimally manage and mitigate safety risk will come from the greater refinement of safety margin estimates, provision and use of human-relevant safety biomarkers, and understanding of the translation from in silico, in vitro, and in vivo studies to human. An improvement of governance frameworks and standards at all levels within organizations, national, and international, can only help facilitate drug discovery and development programs.
Collapse
Affiliation(s)
| | - Jean-Pierre Valentin
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine-l'Alleud, Belgium
| |
Collapse
|
3
|
Caballero D, Reis RL, Kundu SC. Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:43-64. [PMID: 32285364 DOI: 10.1007/978-3-030-36588-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditional in vitro and in vivo models typically used in cancer research have demonstrated a low predictive power for human response. This leads to high attrition rates of new drugs in clinical trials, which threaten cancer patient prognosis. Tremendous efforts have been directed towards the development of a new generation of highly predictable pre-clinical models capable to reproduce in vitro the biological complexity of the human body. Recent advances in nanotechnology and tissue engineering have enabled the development of predictive organs-on-a-chip models of cancer with advanced capabilities. These models can reproduce in vitro the complex three-dimensional physiology and interactions that occur between organs and tissues in vivo, offering multiple advantages when compared to traditional models. Importantly, these models can be tailored to the biological complexity of individual cancer patients resulting into biomimetic and personalized cancer patient-on-a-chip platforms. The individualized models provide a more accurate and physiological environment to predict tumor progression on patients and their response to drugs. In this chapter, we describe the latest advances in the field of cancer patient-on-a-chip, and discuss about their main applications and current challenges. Overall, we anticipate that this new paradigm in cancer in vitro models may open up new avenues in the field of personalized - cancer - medicine, which may allow pharmaceutical companies to develop more efficient drugs, and clinicians to apply patient-specific therapies.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal. .,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 2018; 198:228-249. [PMID: 30384974 PMCID: PMC7172914 DOI: 10.1016/j.biomaterials.2018.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
Bacterial infections and antibiotic resistant bacteria have become a growing problem over the past decade. As a result, the Centers for Disease Control predict more deaths resulting from microorganisms than all cancers combined by 2050. Currently, many traditional models used to study bacterial infections fail to precisely replicate the in vivo bacterial environment. These models often fail to incorporate fluid flow, bio-mechanical cues, intercellular interactions, host-bacteria interactions, and even the simple inclusion of relevant physiological proteins in culture media. As a result of these inadequate models, there is often a poor correlation between in vitro and in vivo assays, limiting therapeutic potential. Thus, the urgency to establish in vitro and ex vivo systems to investigate the mechanisms underlying bacterial infections and to discover new-age therapeutics against bacterial infections is dire. In this review, we present an update of current in vitro and ex vivo models that are comprehensively changing the landscape of traditional microbiology assays. Further, we provide a comparative analysis of previous research on various established organ-disease models. Lastly, we provide insight on future techniques that may more accurately test new formulations to meet the growing demand of antibiotic resistant bacterial infections.
Collapse
|
5
|
Li Y, Zhu Y, Prochownik EV. MicroRNA-based screens for synthetic lethal interactions with c-Myc. RNA & DISEASE 2016; 3:e1330. [PMID: 27975083 PMCID: PMC5152767 DOI: 10.14800/rd.1330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRs) are small, non-coding RNAs, which play crucial roles in the development and progression of human cancer. Given that miRs are stable, easy to synthetize and readily introduced into cells, they have been viewed as having potential therapeutic benefit in cancer. c-Myc (Myc) is one of the most commonly deregulated oncogenic transcription factors and has important roles in the pathogenesis of cancer, thus making it an important, albeit elusive therapeutic target. Here we review the miRs that have been identified as being both positive and negative targets for Myc and how these participate in the complex phenotypes that arise as a result of Myc-driven transformation. We also discussseveral recent reports of Myc-synthetic lethal interactions with miRs.These highlight the importance and complexity of miRs in Myc-mediated biological functions and the opportunities for Myc-driven human cancer therapies.
Collapse
Affiliation(s)
- Youjun Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yahui Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC and The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| |
Collapse
|