1
|
Analysis of Homozygous-by-Descent (HBD) Segments for Purebred and Crossbred Pigs in Russia. Life (Basel) 2021; 11:life11080861. [PMID: 34440604 PMCID: PMC8400874 DOI: 10.3390/life11080861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Intensive selection raises the efficiency of pig farming considerably, but it also promotes the accumulation of homozygosity, which can lead to an increase in inbreeding and the accumulation of deleterious variation. The analysis of segments homozygous-by-descent (HBD) and non-HBD segments in purebred and crossbred pigs is of great interest. Research was carried out on 657 pigs, of which there were Large White (LW, n = 280), Landrace (LR, n = 218) and F1 female (♂LR × ♀LW) (F1, n = 159). Genotyping was performed using the GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc., USA). To identify HBD segments and estimate autozygosity (inbreeding coefficient), we used the multiple HBD classes model. LW pigs exhibited 50,420 HBD segments, an average of 180 per animal; LR pigs exhibited 33,586 HBD segments, an average of 154 per animal; F1 pigs exhibited 21,068 HBD segments, an average of 132 per animal. The longest HBD segments in LW were presented in SSC1, SSC13 and SSC15; in LR, in SSC1; and in F1, in SSC15. In these segments, 3898 SNPs localized in 1252 genes were identified. These areas overlap with 441 QTLs (SSC1—238 QTLs; SSC13—101 QTLs; and SSC15—102 QTLs), including 174 QTLs for meat and carcass traits (84 QTLs—fatness), 127 QTLs for reproduction traits (100 QTLs—litter traits), 101 for production traits (69 QTLs—growth and 30 QTLs—feed intake), 21 QTLs for exterior traits (9 QTLs—conformation) and 18 QTLs for health traits (13 QTLs—blood parameters). Thirty SNPs were missense variants. Whilst estimating the potential for deleterious variation, six SNPs localized in the NEDD4, SEC11C, DCP1A, CCT8, PKP4 and TENM3 genes were identified, which may show deleterious variation. A high frequency of potential deleterious variation was noted for LR in DCP1A, and for LW in TENM3 and PKP4. In all cases, the genotype frequencies in F1 were intermediate between LR and LW. The findings presented in our work show the promise of genome scanning for HBD as a strategy for studying population history, identifying genomic regions and genes associated with important economic traits, as well as deleterious variation.
Collapse
|
2
|
Sawayama E, Handa Y, Nakano K, Noguchi D, Takagi M, Akiba Y, Sanada S, Yoshizaki G, Usui H, Kawamoto K, Suzuki M, Asahina K. Identification of the causative gene of a transparent phenotype of juvenile red sea bream Pagrus major. Heredity (Edinb) 2021; 127:167-175. [PMID: 34175895 PMCID: PMC8322342 DOI: 10.1038/s41437-021-00448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deformities in cultured fish species may be genetic, and identifying causative genes is essential to expand production and maintain farmed animal welfare. We previously reported a genetic deformity in juvenile red sea bream, designated a transparent phenotype. To identify its causative gene, we conducted genome-wide linkage analysis and identified two single nucleotide polymorphisms (SNP) located on LG23 directly linked to the transparent phenotype. The scaffold on which the two SNPs were located contained two candidate genes, duox and duoxa, which are related to thyroid hormone synthesis. Four missense mutations were found in duox and one in duoxa, with that in duoxa showing perfect association with the transparent phenotype. The mutation of duoxa was suggested to affect the transmembrane structure and thyroid-related traits, including an enlarged thyroid gland and immature erythrocytes, and lower thyroxine (T4) concentrations were observed in the transparent phenotype. The transparent phenotype was rescued by T4 immersion. Loss-of-function of duoxa by CRISPR-Cas9 induced the transparent phenotype in zebrafish. Evidence suggests that the transparent phenotype of juvenile red sea bream is caused by the missense mutation of duoxa and that this mutation disrupts thyroid hormone synthesis. The newly identified missense mutation will contribute to effective selective breeding of red sea bream to purge the causative gene of the undesirable phenotype and improve seed production of red sea bream as well as provide basic information of the mechanisms of thyroid hormones and its related diseases in fish and humans.
Collapse
Affiliation(s)
- Eitaro Sawayama
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | | | | | - Daiki Noguchi
- Nippon Total Science, Inc., Fukuyama, Hiroshima Japan
| | - Motohiro Takagi
- grid.255464.40000 0001 1011 3808South Ehime Fisheries Research Center, Ehime University, Ehime, Japan
| | - Yosuke Akiba
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shuwa Sanada
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- grid.412785.d0000 0001 0695 6482Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hayato Usui
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kenta Kawamoto
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Miwa Suzuki
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| | - Kiyoshi Asahina
- grid.260969.20000 0001 2149 8846Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa Japan
| |
Collapse
|
3
|
Wang C, Wang S, Liu S, Cheng Y, Geng H, Yang R, Feng T, Lu G, Sun X, Song J, Hao L. Synonymous Mutations of Porcine Igf1r Extracellular Domain Affect Differentiation and Mineralization in MC3T3-E1 Cells. Front Cell Dev Biol 2020; 8:623. [PMID: 32754602 PMCID: PMC7381325 DOI: 10.3389/fcell.2020.00623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Owing to the wide application of miniature pigs in biomedicine, the formation mechanism of its short stature must be elucidated. The insulin-like growth factor 1 receptor (IGF-1R), which receives signals through the extracellular domain (ECD) binding with ligands, is crucial in regulating cell growth and bone matrix mineralization. In this study, two haplotypes of Igf1r with four synonymous mutations in the coding sequences of IGF-1R ECD between large pigs (LP) and Bama pigs (BM) were stably expressed in the Igf1r-knockout MC3T3-E1 cells and named as MC3T3-LP cells (LP group) and MC3T3-BM cells (BM group), respectively. IGF-1R expression was lower in the BM group than in the LP group both in terms of transcription and translation levels, and IGF-1R expression inhibited cell proliferation. In addition, IGF-1R expression in the BM group promoted early-stage differentiation but delayed late-stage differentiation, which not only suppressed the expression of bone-related factors but also reduced alkaline phosphatase activity and calcium deposition. Moreover, different haplotypes of Igf1r changed the stability and conformation of the protein, further affecting the binding with IGF-1. Our data indicated that the four synonymous mutations of IGF1R ECD encoded by affect gene transcription and translation, thereby further leading to differences in the downstream pathways and functional changes of osteoblasts.
Collapse
Affiliation(s)
- Chunli Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Songcai Liu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yunyun Cheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongwei Geng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Rui Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaotong Sun
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Sciences, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
4
|
Tan S, Wang W, Tian C, Niu D, Zhou T, Yang Y, Gao D, Liu Z. Post-transcriptional regulation through alternative splicing after infection with Flavobacterium columnare in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2019; 91:188-193. [PMID: 31077849 DOI: 10.1016/j.fsi.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 05/22/2023]
Abstract
Columnaris disease has long been recognized as a serious problem worldwide which affects both wild and cultured freshwater fish including the commercially important channel catfish (Ictalurus punctatus). The fundamental molecular mechanisms of the host immune response to the causative agent Flavobacterium columnare remain unclear, though gene expression analysis after the bacterial infection has been conducted. Alternative splicing, a post-transcriptional regulation process to modulate gene expression and increase the proteomic diversity, has not yet been studied in channel catfish following infection with F. columnare. In this study, genomic information and RNA-Seq datasets of channel catfish were used to characterize the changes of alternative splicing after the infection. Alternative splicing was shown to be induced by F. columnare infection, with 8.0% increase in alternative splicing event at early infection stage. Intriguingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced (DAS) gene sets after infection. This finding was consistent with our previous study in channel catfish following infection with Edwardsiella ictaluri. It was suggested to be a universal mechanism that genes involved in RNA binding and splicing were regulated to undergo differential alternative splicing after stresses in channel catfish. Moreover, many immune genes were observed to be differentially alternatively spliced after infection. Further studies need to be performed to get a deeper view of molecular regulation on alternative splicing after stresses, setting a foundation for developing catfish broodstocks with enhanced disease resistance.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|