1
|
Almarzouki N. NMI, POLR3G and APIP are the key molecules connecting glaucoma with high intraocular pressure: a clue for early diagnostic biomarker candidates. Int J Ophthalmol 2024; 17:1987-1994. [PMID: 39559319 PMCID: PMC11528275 DOI: 10.18240/ijo.2024.11.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/11/2024] [Indexed: 11/20/2024] Open
Abstract
AIM To understand the molecular connectivity between the intraocular pressure (IOP) and glaucoma which will provide possible clues for biomarker candidates. METHODS The current study uncovers the important genes connecting IOP with the core functional modules of glaucoma. An integrated analysis was performed using glaucoma and IOP microarray datasets to screen for differentially expressed genes (DEGs) in both conditions. To the selected DEGs, the protein interaction network was constructed and dissected to determine the core functional clusters of glaucoma. For the clusters, the connectivity of IOP DEGs was determined. Further, enrichment analyses were performed to assess the functional annotation and potential pathways of the crucial clusters. RESULTS The gene expression analysis of glaucoma and IOP with normal control showed that 408 DEGs (277 glaucoma and 131 IOP genes) were discovered from two GEO datasets. The 290 DEGs of glaucoma were extended to form a network containing 1495 proteins with 9462 edges. Using ClusterONE, the network was dissected to have 12 clusters. Among them, three clusters were linked with three IOP DEGs [N-Myc and STAT Interactor (NMI), POLR3G (RNA Polymerase III Subunit G), and APAF1-interacting protein (APIP)]. In the clusters, ontology analysis revealed that RNA processing and transport, p53 class mediators resulting in cell cycle arrest, cellular response to cytokine stimulus, regulation of phosphorylation, regulation of type I interferon production, DNA deamination, and cellular response to hypoxia were significantly enriched to be implicated in the development of glaucoma. Finally, NMI, POLR3G, and APIP may have roles that were noticed altered in glaucoma and IOP conditions. CONCLUSION Our findings could help to discover new potential biomarkers, elucidate the underlying pathophysiology, and identify new therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Nawaf Almarzouki
- Department of Ophthalmology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Liu K, Yang Y, Wu Z, Sun C, Su Y, Huang N, Wu H, Yi C, Ye J, Xiao L, Niu J. Remyelination-oriented clemastine treatment attenuates neuropathies of optic nerve and retina in glaucoma. Glia 2024; 72:1555-1571. [PMID: 38829008 DOI: 10.1002/glia.24543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.
Collapse
Affiliation(s)
- Kun Liu
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yujian Yang
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Zhonghao Wu
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chunhui Sun
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yixun Su
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nanxin Huang
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Haoqian Wu
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jian Ye
- Department of Ophthalmology, Army Specialty Medical Center, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Jianqin Niu
- Department of Histology and Embryology, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Johnson GA, Kodati B, Nahomi RB, Pham JH, Krishnamoorthy VR, Phillips NR, Krishnamoorthy RR, Nagaraj RH, Stankowska DL. Mechanisms contributing to inhibition of retinal ganglion cell death by cell permeable peptain-1 under glaucomatous stress. Cell Death Discov 2024; 10:305. [PMID: 38942762 PMCID: PMC11213865 DOI: 10.1038/s41420-024-02070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.
Collapse
Affiliation(s)
- Gretchen A Johnson
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bindu Kodati
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rooban B Nahomi
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Jennifer H Pham
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Nicole R Phillips
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Raghu R Krishnamoorthy
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ram H Nagaraj
- Department of Ophthalmology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dorota L Stankowska
- North Texas Eye Research Institute, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
- Department of Microbiology, Immunology, and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
4
|
Sun Y, Hao M, Wu H, Zhang C, Wei D, Li S, Song Z, Tao Y. Unveiling the role of CaMKII in retinal degeneration: from biological mechanism to therapeutic strategies. Cell Biosci 2024; 14:59. [PMID: 38725013 PMCID: PMC11084033 DOI: 10.1186/s13578-024-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases that play a crucial role in the Ca2+-dependent signaling pathways. Its significance as an intracellular Ca2+ sensor has garnered abundant research interest in the domain of neurodegeneration. Accumulating evidences suggest that CaMKII is implicated in the pathology of degenerative retinopathies such as diabetic retinopathy (DR), age-related macular degeneration (AMD), retinitis pigmentosa (RP) and glaucoma optic neuropathy. CaMKII can induce the aberrant proliferation of retinal blood vessels, influence the synaptic signaling, and exert dual effects on the survival of retinal ganglion cells and pigment epithelial cells. Researchers have put forth multiple therapeutic agents, encompassing small molecules, peptides, and nucleotides that possess the capability to modulate CaMKII activity. Due to its broad range isoforms and splice variants therapeutic strategies seek to inhibit specifically the CaMKII are confronted with considerable challenges. Therefore, it becomes crucial to discern the detrimental and advantageous aspects of CaMKII, thereby facilitating the development of efficacious treatment. In this review, we summarize recent research findings on the cellular and molecular biology of CaMKII, with special emphasis on its metabolic and regulatory mechanisms. We delve into the involvement of CaMKII in the retinal signal transduction pathways and discuss the correlation between CaMKII and calcium overload. Furthermore, we elaborate the therapeutic trials targeting CaMKII, and introduce recent developments in the zone of CaMKII inhibitors. These findings would enrich our knowledge of CaMKII, and shed light on the development of a therapeutic target for degenerative retinopathy.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyu Hao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
van Koeverden AK, Afiat BC, Nguyen CT, Bui BV, Lee PY. Understanding how ageing impacts ganglion cell susceptibility to injury in glaucoma. Clin Exp Optom 2024; 107:147-155. [PMID: 37980904 DOI: 10.1080/08164622.2023.2279734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide, with a marked increase in prevalence with advancing age. Due to the multifactorial nature of glaucoma pathogenesis, dissecting how ageing impacts upon glaucoma risk requires analysis and synthesis of evidence from a vast literature. While there is a wealth of human clinical studies examining glaucoma pathogenesis and why older patients have increased risk, many aspects of the disease such as adaptations of retinal ganglion cells to stress, autophagy and the role of glial cells in glaucoma, require the use of animal models to study the complex cellular processes and interactions. Additionally, the accelerated nature of ageing in rodents facilitates the longitudinal study of changes that would not be feasible in human clinical studies. This review article examines evidence derived predominantly from rodent models on how the ageing process impacts upon various aspects of glaucoma pathology from the retinal ganglion cells themselves, to supporting cells and tissues such as glial cells, connective tissue and vasculature, in addition to oxidative stress and autophagy. An improved understanding of how ageing modifies these factors may lead to the development of different therapeutic strategies that target specific risk factors or processes involved in glaucoma.
Collapse
Affiliation(s)
- Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brianna C Afiat
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine To Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Xu W, Liu H. Is CaMKII friend or foe for cell apoptosis in eye?: A narrative review. Medicine (Baltimore) 2023; 102:e36136. [PMID: 38050317 PMCID: PMC10695602 DOI: 10.1097/md.0000000000036136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) controls cell proliferation, differentiation, apoptosis, and other biological processes that have an essential role in eye diseases. However, it seems that previous studies have generated conflicting conclusions about the effect of CaMKII on cell apoptosis. In this review, we explore the positive and potentially deleterious effects of CaMKII on eye cell apoptosis. We can safely conclude that the early elevation of CaMKII could be viewed as a promoter of cell apoptosis. Overexpression of CaMKII by transfection or pretreatment with drugs helped combat cell apoptosis.
Collapse
Affiliation(s)
- Weixing Xu
- School of Graduate, Dalian Medical University, Dalian, China
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hua Liu
- School of Graduate, Dalian Medical University, Dalian, China
- School of Graduate, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Van Hook MJ. Influences of Glaucoma on the Structure and Function of Synapses in the Visual System. Antioxid Redox Signal 2022; 37:842-861. [PMID: 35044228 PMCID: PMC9587776 DOI: 10.1089/ars.2021.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Abstract
Significance: Glaucoma is an age-related neurodegenerative disorder of the visual system associated with sensitivity to intraocular pressure (IOP). It is the leading irreversible cause of vision loss worldwide, and vision loss results from damage and dysfunction of the retinal output neurons known as retinal ganglion cells (RGCs). Recent Advances: Elevated IOP and optic nerve injury triggers pruning of RGC dendrites, altered morphology of excitatory inputs from presynaptic bipolar cells, and disrupted RGC synaptic function. Less is known about RGC outputs, although evidence to date indicates that glaucoma is associated with altered mitochondrial and synaptic structure and function in RGC-projection targets in the brain. These early functional changes likely contribute to vision loss and might be a window into early diagnosis and treatment. Critical Issues: Glaucoma affects different RGC populations to varying extents and along distinct time courses. The influence of glaucoma on RGC synaptic function as well as the mechanisms underlying these effects remain to be determined. Since RGCs are an especially energetically demanding population of neurons, altered intracellular axon transport of mitochondria and mitochondrial function might contribute to RGC synaptic dysfunction in the retina and brain as well as RGC vulnerability in glaucoma. Future Directions: The mechanisms underlying differential RGC vulnerability remain to be determined. Moreover, the timing and mechanisms of RGCs synaptic dysfunction and degeneration will provide valuable insight into the disease process in glaucoma. Future work will be able to capitalize on these findings to better design diagnostic and therapeutic approaches to detect disease and prevent vision loss. Antioxid. Redox Signal. 37, 842-861.
Collapse
Affiliation(s)
- Matthew J. Van Hook
- Department of Ophthalmology & Visual Science and Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Cellular & Integrative Physiology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Profiles of microRNA in aqueous humor of normal tension glaucoma patients using RNA sequencing. Sci Rep 2021; 11:19024. [PMID: 34561506 PMCID: PMC8463707 DOI: 10.1038/s41598-021-98278-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
We aimed to identify and compare microRNAs (miRNAs) from individual aqueous humor samples between normal-tension glaucoma (NTG) patients and normal controls. Aqueous humor (80 to 120 µl) was collected before cataract surgery. Six stable NTG patients and seven age-matched controls were included in the final analysis. RNA sequencing was conducted for RNA samples extracted from the 13 aqueous humor samples, and bioinformatics analysis was employed for the miRNA targets and related pathways. Two hundred and twenty-eight discrete miRNAs were detected in the aqueous humor and consistently expressed in all samples. Eight significantly upregulated miRNAs were found in the NTG patients compared to the controls (fold-change > 2, p < 0.05). They were hsa-let-7a-5p, hsa-let-7c-5p, hsa-let-7f-5p, hsa-miR-192-5p, hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-375, and hsa-miR-143-3p. These miRNAs were predicted to be associated with the biological processes of apoptosis, autophagy, neurogenesis, and aging in the gene ontology categories. The related Kyoto encyclopedia of genes and genomes pathways were extracellular matrix-receptor interaction, mucin-type O-glycan biosynthesis, biotin metabolism, and signaling pathways regulating the pluripotency of stem cells. The differentially expressed miRNA in the NTG samples compared to the controls suggest the possible roles of miRNA in the pathogenesis of NTG. The underlying miRNA-associated pathways further imply novel targets for the pathogenesis of NTG.
Collapse
|
9
|
Neuroprotective effects of bone marrow Sca-1 + cells against age-related retinal degeneration in OPTN E50K mice. Cell Death Dis 2021; 12:613. [PMID: 34127652 PMCID: PMC8203676 DOI: 10.1038/s41419-021-03851-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1- chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1- cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1- chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1- cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.
Collapse
|
10
|
Environmental Enrichment Enhances Ca v 2.1 Channel-Mediated Presynaptic Plasticity in Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2021; 22:ijms22073414. [PMID: 33810296 PMCID: PMC8037860 DOI: 10.3390/ijms22073414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.
Collapse
|
11
|
Zhao L, Liu JW, Kan BH, Shi HY, Yang LP, Liu XY. Acupuncture accelerates neural regeneration and synaptophysin production after neural stem cells transplantation in mice. World J Stem Cells 2020; 12:1576-1590. [PMID: 33505601 PMCID: PMC7789117 DOI: 10.4252/wjsc.v12.i12.1576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Synaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease (AD) patients. Exogenous neural stem cells (NSCs) improve the damaged nerve function. The effects of Sanjiao acupuncture on cognitive impairment may be related to the regulation of the NSC microenvironment.
AIM To explore the anti-dementia mechanism of acupuncture by regulating the NSC microenvironment.
METHODS NSCs were isolated from pregnant senescence-accelerated mouse resistant 1 (SAMR1) mice, labeled with BrdU, and injected into the hippocampus of senescence-accelerated mouse prone 8 (SAMP8) mice. Eight-month-old senescence-accelerated mice (SAM) were randomly divided into six groups: SAMR1 (RC), SAMP8 (PC), sham transplantation (PS), NSC transplantation (PT), NSC transplantation with acupuncture (PTA), and NSC transplantation with non-acupoint acupuncture (PTN). Morris water maze test was used to study the learning and memory ability of mice after NSC transplantation. Hematoxylin-eosin staining and immunofluorescence were used to observe the his-topathological changes and NSC proliferation in mice. A co-culture model of hippocampal slices and NSCs was established in vitro, and the synaptophysin expression in the hippocampal microenvironment of mice was observed by flow cytometry after acupuncture treatment.
RESULTS Morris water maze test showed significant cognitive impairment of learning and memory in 8-mo-old SAMP8, which improved in all the NSC transplantation groups. The behavioral change in the PTA group was stronger than those in the other two groups (P < 0.05). Histopathologically, the hippocampal structure was clear, the cell arrangement was dense and orderly, and the necrosis of cells in CA1 and CA3 areas was significantly reduced in the PTA group when compared with the PC group. The BrdU-positive proliferating cells were found in NSC hippocampal transplantation groups, and the number increased significantly in the PTA group than in the PT and PTN groups (P < 0.05). Flow cytometry showed that after co-culture of NSCs with hippocampal slices in vitro, the synaptophysin expression in the PC group decreased in comparison to the RC group, that in PT, PTA, and PTN groups increased as compared to the PC group, and that in the PTA group increased significantly as compared to the PTN group with acupoint-related specificity (P < 0.05).
CONCLUSION Acupuncture may promote nerve regeneration and synaptogenesis in SAMP8 mice by regulating the microenvironment of NSC transplantation to improve the nerve activity and promote the recovery of AD-damaged cells.
Collapse
Affiliation(s)
- Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jian-Wei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Bo-Hong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Hui-Yan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lin-Po Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Xin-Yu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| |
Collapse
|
12
|
Serum Biomarkers for the Diagnosis of Glaucoma. Diagnostics (Basel) 2020; 11:diagnostics11010020. [PMID: 33374330 PMCID: PMC7823527 DOI: 10.3390/diagnostics11010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/17/2023] Open
Abstract
Despite the importance of the early detection of glaucoma, most patients with progressive glaucoma show minimal symptoms. We aimed to evaluate biomarkers for glaucoma diagnosis in Korea. Forty-two volunteers with/without open-angle glaucoma were enrolled from January through October 2015—divided into a control or open-angle glaucoma group, which was further divided into normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) groups—and underwent assessments for myelin basic protein (MBP), heat shock protein 60, anti-Sjögren’s-syndrome-related antigen A (SSA) and antigen B (SSB), anti-α-fodrin, and anti-nucleic acid. The glaucoma group showed a higher serum MBP level and lower serum anti-α-fodrin antibody level than the control group (p < 0.05). The NTG group showed higher serum anti-SSA and anti-SSB levels and lower anti-α-fodrin IgG/IgA levels than the HTG group. In the receiver operating characteristic curve analysis, the area under the curve (AUC) for serum MBP level was 0.917 in discriminating between controls and patients with glaucoma. Between the NTG and HTG groups, anti-SSA, anti-SSB, and anti-α-fodrin IgG/IgA levels showed an AUC above 0.8. Thus, these biomarkers were useful for diagnosing glaucoma and discriminating between controls and patients with glaucoma, and patients with NTG and HTG.
Collapse
|
13
|
Bhat A, Tan V, Heng B, Lovejoy DB, Sakharkar MK, Essa MM, Chidambaram SB, Guillemin GJ. Roflumilast, a cAMP-Specific Phosphodiesterase-4 Inhibitor, Reduces Oxidative Stress and Improves Synapse Functions in Human Cortical Neurons Exposed to the Excitotoxin Quinolinic Acid. ACS Chem Neurosci 2020; 11:4405-4415. [PMID: 33261317 DOI: 10.1021/acschemneuro.0c00636] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The overexpression of phosphodiesterase 4 (PDE4) enzymes is reported in several neurodegenerative diseases. PDE4 depletes cyclic 3'-5' adenosine monophosphate (cAMP) and, in turn, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), the key players in cognitive function. The present study was undertaken to investigate the mechanism behind the protective effects of roflumilast (ROF), a cAMP-specific PDE4 inhibitor, against quinolinic acid (QUIN)-induced neurotoxicity using human primary cortical neurons. Cytotoxicity was analyzed using an MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC-10 staining, respectively. Caspase 3/7 activity was measured using an ApoTox-Glo Triplex assay kit. cAMP was measured using an ELISA kit. The protein expression of CREB, BDNF, SAP-97, synaptophysin, synapsin-I, and PSD-95 was analyzed by the Western blotting technique. QUIN exposure down-regulated CREB, BDNF, and synaptic protein expression in neurons. Pretreatment with ROF increased the intracellular cAMP, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD+) content and decreased the ROS and caspase 3/7 levels in QUIN-exposed neurons. ROF up-regulated the expression of synapse proteins SAP-97, synaptophysin, synapsin-I, PSD-95, and CREB and BDNF, which indicates its potential role in memory. This study suggests for the first time that QUIN causes pre- and postsynaptic protein damage. We further demonstrate the restorative effects of ROF on the mitochondrial membrane potential and antiapoptotic properties in human neurons. These data encourage further investigations to reposition ROF in neurodegenerative diseases and their associated cognitive deficits.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Vanessa Tan
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David B. Lovejoy
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015, India
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
14
|
Benning L, Reinehr S, Grotegut P, Kuehn S, Stute G, Dick HB, Joachim SC. Synapse and Receptor Alterations in Two Different S100B-Induced Glaucoma-Like Models. Int J Mol Sci 2020; 21:ijms21196998. [PMID: 32977518 PMCID: PMC7583988 DOI: 10.3390/ijms21196998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 11/03/2022] Open
Abstract
Glaucoma is identified by an irreversible retinal ganglion cell (RGC) loss and optic nerve damage. Over the past few years, the immune system gained importance in its genesis. In a glaucoma-like animal model with intraocular S100B injection, RGC death occurs at 14 days. In an experimental autoimmune glaucoma model with systemic S100B immunization, a loss of RGCs is accompanied by a decreased synaptic signal at 28 days. Here, we aimed to study synaptic alterations in these two models. In one group, rats received a systemic S100B immunization (n = 7/group), while in the other group, S100B was injected intraocularly (n = 6–7/group). Both groups were compared to appropriate controls and investigated after 14 days. While inhibitory post-synapses remained unchanged in both models, excitatory post-synapses degenerated in animals with intraocular S100B injection (p = 0.03). Excitatory pre-synapses tendentially increased in animals with systemic S100B immunization (p = 0.08) and significantly decreased in intraocular ones (p = 0.04). Significantly more N-methyl-d-aspartate (NMDA) receptors (both p ≤ 0.04) as well as gamma-aminobutyric acid (GABA) receptors (both p < 0.03) were observed in S100B animals in both models. We assume that an upregulation of these receptors causes the interacting synapse types to degenerate. Heightened levels of excitatory pre-synapses could be explained by remodeling followed by degeneration.
Collapse
|
15
|
Yu ZH, Chen WJ, Liu X, Xia QY, Yang YN, Dong M, Liu JH, Guan HJ, Sun C, Feng FD, Shen QD. Folate-Modified Photoelectric Responsive Polymer Microarray as Bionic Artificial Retina to Restore Visual Function. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28759-28767. [PMID: 32478503 DOI: 10.1021/acsami.0c04058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A high-optical-resolution artificial retina system that accurately communicates with the optic nerve is the main challenge in the modern biological science and bionic field. Here, we developed a bionic artificial retina possessing phototransduction "cells" with measurements even smaller than that of the neural cells. Using the technique of micrometer processing, we constructed a pyramid-shape periodic microarray of a photoreceptor. Each "sensing cell" took advantage of polythiophene derivative/fullerene derivative (PCBM) as a photoelectric converter. Because folic acid played an essential role in eye growth, we particularly modified the polythiophene derivatives with folic acid tags. Therefore, the artificial retina could enlarge the contact area and even recognize the nerve cells to improve the consequence of nerve stimulation. We implanted the artificial retina into blinded rats' eyes. Electrophysiological analysis revealed its recovery of photosensitive function 3 months after surgery. Our work provides an innovative idea for fabricating a high-resolution bionic artificial retina system. It shows great potential in artificial intelligence and biomedicine.
Collapse
Affiliation(s)
- Zheng-Hang Yu
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Jian Chen
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qiu-Yu Xia
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Nuo Yang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Mei Dong
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Hao Liu
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huai-Jin Guan
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Cheng Sun
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fu-De Feng
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. Int J Mol Sci 2020; 21:ijms21072262. [PMID: 32218163 PMCID: PMC7177277 DOI: 10.3390/ijms21072262] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The retinal ganglion cells (RGCs) are the output cells of the retina into the brain. In mammals, these cells are not able to regenerate their axons after optic nerve injury, leaving the patients with optic neuropathies with permanent visual loss. An effective RGCs-directed therapy could provide a beneficial effect to prevent the progression of the disease. Axonal injury leads to the functional loss of RGCs and subsequently induces neuronal death, and axonal regeneration would be essential to restore the neuronal connectivity, and to reestablish the function of the visual system. The manipulation of several intrinsic and extrinsic factors has been proposed in order to stimulate axonal regeneration and functional repairing of axonal connections in the visual pathway. However, there is a missing point in the process since, until now, there is no therapeutic strategy directed to promote axonal regeneration of RGCs as a therapeutic approach for optic neuropathies.
Collapse
|