1
|
Pulli K, Saarimäki-Vire J, Ahonen P, Liu X, Ibrahim H, Chandra V, Santambrogio A, Wang Y, Vaaralahti K, Iivonen AP, Känsäkoski J, Tommiska J, Kemkem Y, Varjosalo M, Vuoristo S, Andoniadou CL, Otonkoski T, Raivio T. A splice site variant in MADD affects hormone expression in pancreatic β cells and pituitary gonadotropes. JCI Insight 2024; 9:e167598. [PMID: 38775154 PMCID: PMC11141940 DOI: 10.1172/jci.insight.167598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.
Collapse
Affiliation(s)
- Kristiina Pulli
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Pekka Ahonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Johanna Tommiska
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Yasmine Kemkem
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Obstetrics and Gynecology; and
- HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| |
Collapse
|
2
|
Zhao Y, Zhang L, Wang L, Zhang J, Shen W, Ma Y, Ding C, Wu G. Identification and Analysis of Genes Related to Testicular Size in 14-Day-Old Piglets. Animals (Basel) 2024; 14:172. [PMID: 38200903 PMCID: PMC10778417 DOI: 10.3390/ani14010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The RNA-Seq technology was used to screen the key genes that affect the early development of the testes of Duroc × Landrace × Yorkshire piglets, to determine the regulatory pathway and provide reference for subsequent reproductive performance research, breeding, and other production practices. This study selected 14-day-old Duroc × Landrace × Yorkshire piglets as the trial animals. Testes from piglets with similar weights and no pathological changes were divided into small testis (ST) and large testis (LT) groups, and the RNA-Seq screening of differentially expressed genes (DEGs) was performed to find candidate genes and regulatory pathways related to early testicular development. The results show that 570 DEGs were found in the ST and LT groups, with 281 upregulated and 289 downregulated. The DEGs were mainly enriched on 47 gene ontology (GO) functional items. The Kyoto encyclopedia of genes and genotypes (KEGG) enrichment analysis found that there were 44 significantly enriched KEGG signal pathways, and the regulation of testicular development mainly focused on the arachidonic acid metabolism, Wnt signaling pathway and GnRH secretion pathways. The PTGES, SFRP1, SPP1, PLA2G4E, KCNJ5, PTGS2, and HCN1 genes were found to be as closely related to the testicular development of these Duroc × Landrace × Yorkshire piglets, and the differential gene expression was consistent with the real-time quantitative reverse transcription PCR (real-time qRT-PCR) validation results. This study was validated by high-throughput sequencing analysis and real-time qRT-PCR, and showed that the PTGES, SFRP1, SPP1, PLA2G4E, KCNJ5, PTGS2, and HCN1 genes may be involved in the regulation of germ cell development, spermatogenesis and semen traits. These should be further studied as candidate genes for early testicular development and reproductive trait regulation in boars.
Collapse
Affiliation(s)
- Yunjiao Zhao
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Liangzhi Zhang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining 810008, China;
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Chengxiang Ding
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (L.W.); (J.Z.); (W.S.); (Y.M.); (C.D.)
| |
Collapse
|
3
|
Oleari R, Lettieri A, Manzini S, Paganoni A, André V, Grazioli P, Busnelli M, Duminuco P, Vitobello A, Philippe C, Bizaoui V, Storr HL, Amoruso F, Memi F, Vezzoli V, Massa V, Scheiffele P, Howard SR, Cariboni A. Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency. Dis Model Mech 2023; 16:dmm049996. [PMID: 36810932 PMCID: PMC10110398 DOI: 10.1242/dmm.049996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Grazioli
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Duminuco
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Varoona Bizaoui
- Genetics and Neurodevelopment, Centre Hospitalier de l'Estran, Pontorson 50170, France
| | - Helen L. Storr
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Fani Memi
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Valeria Vezzoli
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | | | - Sasha R. Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
4
|
Lippincott MF, Xu W, Smith AA, Miao X, Lafont A, Shennib O, Farley GJ, Sabbagh R, Delaney A, Stamou M, Plummer L, Salnikov K, Georgopoulos NA, Mericq V, Quinton R, Mau-Them FT, Nambot S, Hamad A, Brittain H, Tooze RS, Calpena E, Wilkie AOM, Willems M, Crowley WF, Balasubramanian R, Lamarche-Vane N, Davis EE, Seminara SB. The p190 RhoGAPs, ARHGAP35, and ARHGAP5 are implicated in GnRH neuronal development: Evidence from patients with idiopathic hypogonadotropic hypogonadism, zebrafish, and in vitro GAP activity assay. Genet Med 2022; 24:2501-2515. [PMID: 36178483 PMCID: PMC9730938 DOI: 10.1016/j.gim.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.
Collapse
Affiliation(s)
| | - Wanxue Xu
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Abigail A Smith
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Xinyu Miao
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Agathe Lafont
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Omar Shennib
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Gordon J Farley
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Riwa Sabbagh
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Angela Delaney
- Intramural Research Program, National Institutes of Health, Bethesda, MD
| | - Maria Stamou
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Lacey Plummer
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Kathryn Salnikov
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, MA
| | - Neoklis A Georgopoulos
- Division of Endocrinology-Department of Internal Medicine, University of Patras School of Health Sciences, Rio-Patras, Greece
| | - Veronica Mericq
- Instituto de Investigaciones Materno Infantil (IDIMI), University of Chile, Santiago, Chile
| | - Richard Quinton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frederic Tran Mau-Them
- Functional Unit 6254 Innovation in Genomic Diagnosis of Rare Diseases, CHU Dijon Bourgogne, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares « Anomalies du Développement Et Syndrome Malformatifs » de L'Est, Hôpital D'Enfants, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Asma Hamad
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Helen Brittain
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Rebecca S Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | | | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre, Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Erica E Davis
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | |
Collapse
|
5
|
Wang Y, Madhusudan S, Cotellessa L, Kvist J, Eskici N, Yellapragada V, Pulli K, Lund C, Vaaralahti K, Tuuri T, Giacobini P, Raivio T. Deciphering the Transcriptional Landscape of Human Pluripotent Stem Cell-Derived GnRH Neurons: The Role of Wnt Signaling in Patterning the Neural Fate. Stem Cells 2022; 40:1107-1121. [PMID: 36153707 PMCID: PMC9806769 DOI: 10.1093/stmcls/sxac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 01/05/2023]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons lay the foundation for human development and reproduction; however, the critical cell populations and the entangled mechanisms underlying the development of human GnRH neurons remain poorly understood. Here, by using our established human pluripotent stem cell-derived GnRH neuron model, we decoded the cellular heterogeneity and differentiation trajectories at the single-cell level. We found that a glutamatergic neuron population, which generated together with GnRH neurons, showed similar transcriptomic properties with olfactory sensory neuron and provided the migratory path for GnRH neurons. Through trajectory analysis, we identified a specific gene module activated along the GnRH neuron differentiation lineage, and we examined one of the transcription factors, DLX5, expression in human fetal GnRH neurons. Furthermore, we found that Wnt inhibition could increase DLX5 expression and improve the GnRH neuron differentiation efficiency through promoting neurogenesis and switching the differentiation fates of neural progenitors into glutamatergic neurons/GnRH neurons. Our research comprehensively reveals the dynamic cell population transition and gene regulatory network during GnRH neuron differentiation.
Collapse
Affiliation(s)
- Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ludovica Cotellessa
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carina Lund
- Folkhälsan Research Center, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | | | - Taneli Raivio
- Corresponding author: Taneli Raivio, Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Yellapragada V, Eskici N, Wang Y, Madhusudan S, Vaaralahti K, Tuuri T, Raivio T. Time and dose-dependent effects of FGF8-FGFR1 signaling in GnRH neurons derived from human pluripotent stem cells. Dis Model Mech 2022; 15:276003. [PMID: 35833364 PMCID: PMC9403748 DOI: 10.1242/dmm.049436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper. Summary: This article demonstrates the essential role FGF8–FGFR1 signaling has in the development of gonadotropin-releasing hormone (GnRH)-expressing neurons by using a human stem cell model.
Collapse
Affiliation(s)
- Venkatram Yellapragada
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland.,New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Duittoz AH, Forni PE, Giacobini P, Golan M, Mollard P, Negrón AL, Radovick S, Wray S. Development of the gonadotropin-releasing hormone system. J Neuroendocrinol 2022; 34:e13087. [PMID: 35067985 PMCID: PMC9286803 DOI: 10.1111/jne.13087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
This review summarizes the current understanding of the development of the neuroendocrine gonadotropin-releasing hormone (GnRH) system, including discussion on open questions regarding (1) transcriptional regulation of the Gnrh1 gene; (2) prenatal development of the GnRH1 system in rodents and humans; and (3) paracrine and synaptic communication during migration of the GnRH cells.
Collapse
Affiliation(s)
| | - Paolo E. Forni
- Department of Biological SciencesUniversity at AlbanyAlbanyNYUSA
- The RNA InstituteUniversity at AlbanyAlbanyNYUSA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Postnatal BrainLille Neuroscience & Cognition, UMR‐S1172, Inserm, CHU LilleUniversity of LilleLilleFrance
| | - Matan Golan
- Institute of Animal SciencesAgricultural Research Organization – Volcani CenterRishon LetziyonIsrael
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, InsermMontpellier UniversityMontpellierFrance
| | - Ariel L. Negrón
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Sally Radovick
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Susan Wray
- Cellular and Developmental Neurobiology SectionNational Institute of Neurological Disorders and Stroke/National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
8
|
Fontana L, Garzia E, Marfia G, Galiano V, Miozzo M. Epigenetics of functional hypothalamic amenorrhea. Front Endocrinol (Lausanne) 2022; 13:953431. [PMID: 36034425 PMCID: PMC9415998 DOI: 10.3389/fendo.2022.953431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Functional hypothalamic amenorrhea (FHA) is a temporary infertility characterized by the suppression of the hypothalamic-pituitary-gonadal (HPG) axis, induced by the inhibition of the hypothalamic pulsatile secretion of the gonadotropin-releasing hormone (GnRH), in the presence of stressors, including eating disorders, excessive exercise, and psychological distress. Although the stressful factors that may lead to FHA are well-established, little is known about the inter-individual variability in response to stress and the consequent inhibition of the HPG axis. Not all women, indeed, manifest FHA in presence of stressful conditions. Recent studies highlighted a genetic contribution to FHA. Rare or polymorphic variants in genes that control the development and/or function of GnRH neurons may contribute, indeed, to the adaptability of the reproductive axis to stress factors. Also epigenetic changes have been associated with different pathways involved in the HPG axis and therefore, take part in FHA and confer a personal predisposition to anovulation consequent to a stressful event, or represent biological markers of response to stress. This review summarizes recent advances in the identification of the contribution of (epi)genetics to FHA and to long-term complications of functional amenorrhea, and reports insights into the involvement of additional genetic loci in FHA development on the bases of the clinical and molecular overlap with other gynecological and/or psychological conditions. Finally, we describe the promising application of induced pluripotent stem cells (iPSCs) as a new approach to investigate the molecular pathways involved in FHA.
Collapse
Affiliation(s)
- L. Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
| | - E. Garzia
- Reproductive Medicine Unit, Department of Mother and Child, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
- Aerospace Medicine Institute “A. Mosso”, Italian Air Force, Milan, Italy
| | - G. Marfia
- Aerospace Medicine Institute “A. Mosso”, Italian Air Force, Milan, Italy
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V. Galiano
- Reproductive Medicine Unit, Department of Mother and Child, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - M. Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, Milan, Italy
- *Correspondence: M. Miozzo,
| |
Collapse
|
9
|
Ogawa S, Parhar IS. Heterogeneity in GnRH and kisspeptin neurons and their significance in vertebrate reproductive biology. Front Neuroendocrinol 2022; 64:100963. [PMID: 34798082 DOI: 10.1016/j.yfrne.2021.100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023]
Abstract
Vertebrate reproduction is essentially controlled by the hypothalamus-pituitary-gonadal (HPG) axis, which is a central dogma of reproductive biology. Two major hypothalamic neuroendocrine cell groups containing gonadotropin-releasing hormone (GnRH) and kisspeptin are crucial for control of the HPG axis in vertebrates. GnRH and kisspeptin neurons exhibit high levels of heterogeneity including their cellular morphology, biochemistry, neurophysiology and functions. However, the molecular foundation underlying heterogeneities in GnRH and kisspeptin neurons remains unknown. More importantly, the biological and physiological significance of their heterogeneity in reproductive biology is poorly understood. In this review, we first describe the recent advances in the neuroendocrine functions of kisspeptin-GnRH pathways. We then view the recent emerging progress in the heterogeneity of GnRH and kisspeptin neurons using morphological and single-cell transcriptomic analyses. Finally, we discuss our views on the significance of functional heterogeneity of reproductive endocrine cells and their potential relevance to reproductive health.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
10
|
Keen KL, Petersen AJ, Figueroa AG, Fordyce BI, Shin J, Yadav R, Erdin S, Pearce RA, Talkowski ME, Bhattacharyya A, Terasawa E. Physiological Characterization and Transcriptomic Properties of GnRH Neurons Derived From Human Stem Cells. Endocrinology 2021; 162:6298609. [PMID: 34125902 PMCID: PMC8294693 DOI: 10.1210/endocr/bqab120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to fibroblast growth factor 8 (FGF8), was more effective in generating GnRH neurons. Second, addition of kisspeptin to FGF8 further increased the efficiency rates of GnRH neurogeneration. Third, we generated a fluorescent marker mCherry labeled human embryonic GnRH cell line (mCh-hESC) using a CRISPR-Cas9 targeting approach. Fourth, we examined physiological characteristics of GnRH (mCh-hESC) neurons: similar to GnRH neurons in vivo, they released the GnRH peptide in a pulsatile manner at ~60 min intervals; GnRH release increased in response to high potassium, kisspeptin, estradiol, and neurokinin B challenges; and injection of depolarizing current induced action potentials. Finally, we characterized developmental changes in transcriptomes of GnRH neurons using hESC, hiPSC, and mCh-hESC. The developmental pattern of transcriptomes was remarkably similar among the 3 cell lines. Collectively, human stem cell-derived GnRH neurons will be an important tool for establishing disease models to understand diseases, such as idiopathic hypothalamic hypogonadism, and testing contraceptive drugs.
Collapse
Affiliation(s)
- Kim L Keen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Andrew J Petersen
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
| | - Alexander G Figueroa
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Benjamin I Fordyce
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Jaeweon Shin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachita Yadav
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Robert A Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Anita Bhattacharyya
- Waisman Center, Graduate School, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Medicine, University of Wisconsin, Madison, WI, USA
| | - Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Correspondence: Ei Terasawa, PhD, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299, USA.
| |
Collapse
|
11
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
12
|
Abstract
Many of the recent advances in our understanding of human reproductive biology and its genetic basis have arisen directly via the genetic investigation of patients with Kallmann syndrome and their families. The disease is characterised by the association of an isolated defect in the secretion (or, less commonly, action) of gonadotropin-releasing hormone (GnRH) and consequent infertility, with anosmia and potentially other associated non-reproductive features. GnRH-producing neurons are located in the hypothalamic brain region after a peculiar migration during embryonic life. To date, different genes affecting GnRH neuron development/migration have so far been implicated in Kallmann syndrome, but our knowledge of the genetic basis of the syndrome remains incomplete. From a clinical point of view, the disease has suffered from a lack of definitive diagnosis and treatment, and although progress has been made in terms of timely diagnosis and evidence-based treatment of patients, implementation remains inconsistent. These aspects will be discussed in this review, which examines new strategies for arriving at more evidence-based and patient-centred medical practice in Kallmann syndrome.
Collapse
Affiliation(s)
- Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Royal Victoria Infirmary, Newcastle-Upon-Tyne Hospitals, Newcastle-upon-Tyne, UK
- Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, Newcastle-Upon-Tyne, UK
| | - Roberto Maggi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, MI, Italy
| |
Collapse
|
13
|
Taroc EZM, Katreddi RR, Forni PE. Identifying Isl1 Genetic Lineage in the Developing Olfactory System and in GnRH-1 Neurons. Front Physiol 2020; 11:601923. [PMID: 33192618 PMCID: PMC7609815 DOI: 10.3389/fphys.2020.601923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
During embryonic development, symmetric ectodermal thickenings [olfactory placodes (OP)] give rise to several cell types that comprise the olfactory system, such as those that form the terminal nerve ganglion (TN), gonadotropin releasing hormone-1 neurons (GnRH-1ns), and other migratory neurons in rodents. Even though the genetic heterogeneity among these cell types is documented, unidentified cell populations arising from the OP remain. One candidate to identify placodal derived neurons in the developing nasal area is the transcription factor Isl1, which was recently identified in GnRH-3 neurons of the terminal nerve in fish, as well as expression in neurons of the nasal migratory mass (MM). Here, we analyzed the Isl1 genetic lineage in chemosensory neuronal populations in the nasal area and migratory GnRH-1ns in mice using in situ hybridization, immunolabeling a Tamoxifen inducible Isl1CreERT and a constitutive Isl1Cre knock-in mouse lines. In addition, we also performed conditional Isl1 ablation in developing GnRH neurons. We found Isl1 lineage across non-sensory cells of the respiratory epithelium and sustentacular cells of OE and VNO. We identified a population of transient embryonic Isl1 + neurons in the olfactory epithelium and sparse Isl1 + neurons in postnatal VNO. Isl1 is expressed in almost all GnRH neurons and in approximately half of the other neuron populations in the MM. However, Isl1 conditional ablation alone does not significantly compromise GnRH-1 neuronal migration or GnRH-1 expression, suggesting compensatory mechanisms. Further studies will elucidate the functional and mechanistic role of Isl1 in development of migratory endocrine neurons.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Raghu Ram Katreddi
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
14
|
Acharya KD, Nettles SA, Lichti CF, Warre-Cornish K, Polit LD, Srivastava DP, Denner L, Tetel MJ. Dopamine-induced interactions of female mouse hypothalamic proteins with progestin receptor-A in the absence of hormone. J Neuroendocrinol 2020; 32:e12904. [PMID: 33000549 PMCID: PMC7591852 DOI: 10.1111/jne.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Abstract
Neural progestin receptors (PR) function in reproduction, neural development, neuroprotection, learning, memory and the anxiety response. In the absence of progestins, PR can be activated by dopamine (DA) in the rodent hypothalamus to elicit female sexual behaviour. The present study investigated mechanisms of DA activation of PR by testing the hypothesis that proteins from DA-treated hypothalami interact with PR in the absence of progestins. Ovariectomised, oestradiol-primed mice were infused with a D1-receptor agonist, SKF38393 (SKF), into the third ventricle 30 minutes prior to death. Proteins from SKF-treated hypothalami were pulled-down with glutathione S-transferase-tagged mouse PR-A or PR-B and the interactomes were analysed by mass spectrometry. The largest functional group to interact with PR-A in a DA-dependent manner was synaptic proteins. To test the hypothesis that DA activation of PR regulates synaptic proteins, we developed oestradiol-induced PR-expressing hypothalamic-like neurones derived from human-induced pluripotent stem cells (hiPSCs). Similar to progesterone (P4), SKF treatment of hiPSCs increased synapsin1/2 expression. This SKF-dependent effect was blocked by the PR antagonist RU486, suggesting that PR are necessary for this DA-induced increase. The second largest DA-dependent PR-A protein interactome comprised metabolic regulators involved in glucose metabolism, lipid synthesis and mitochondrial energy production. Interestingly, hypothalamic proteins interacted with PR-A, but not PR-B, in an SKF-dependent manner, suggesting that DA promotes the interaction of multiple hypothalamic proteins with PR-A. These in vivo and in vitro results indicate novel mechanisms by which DA can differentially activate PR isoforms in the absence of P4 and provide a better understanding of ligand-independent PR activation in reproductive, metabolic and mental health disorders in women.
Collapse
Affiliation(s)
| | | | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481
| |
Collapse
|
15
|
First person – Carina Lund. Dis Model Mech 2020. [PMCID: PMC7075046 DOI: 10.1242/dmm.044362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms (DMM), helping early-career researchers promote themselves alongside their papers. Carina Lund is first author on ‘Characterization of the human GnRH neuron developmental transcriptome using a GNRH1-TdTomato reporter line in human pluripotent stem cells’, published in DMM. Carina is a PhD student in the lab of Taneli Raivio at the University of Helsinki, Finland, investigating neuronal differentiation from human pluripotent stem cells.
Collapse
|