1
|
Sun Y, Geng J, Fan Y, Li Y, Zhong Y, Cai J, Liu X, Wang S, Gong Y, Chang C, Yang Y, Fan C. A Non-Invasive and DNA-free Approach to Upregulate Mammalian Voltage-Gated Calcium Channels and Neuronal Calcium Signaling via Terahertz Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405436. [PMID: 39435751 DOI: 10.1002/advs.202405436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/22/2024] [Indexed: 10/23/2024]
Abstract
Mammalian voltage-gated calcium channels (CaV) play critical roles in cardiac excitability, synaptic transmission, and gene transcription. Dysfunctions in CaV are implicated in a variety of cardiac and neurodevelopmental disorders. Current pharmacological approaches to enhance CaV activity are limited by off-target effects, drug metabolism issues, cytotoxicity, and imprecise modulation. Additionally, genetically-encoded channel activators and optogenetic tools are restricted by gene delivery challenges and biosafety concerns. Here a novel terahertz (THz) wave-based method to upregulate CaV1.2, a key subtype of CaV, and boost CaV1-mediated Ca2+ signaling in neurons without introducing exogenous DNA is presented. Using molecular dynamics simulations, it is shown that 42.5 THz (7.05 µm, 1418 cm-1) waves enhance Ca2+ conductance in CaV1.2 by resonating with the stretching mode of the -COO- group in the selectivity filter. Electrophysiological recordings and Ca2+ imaging confirm that these waves rapidly, reversibly, and non-thermally increase calcium influx of CaV1.2 in HEK293 cells and induce acute Ca2+ signals in neurons. Furthermore, this irradiation upregulates critical CaV1 signals, including CREB phosphorylation and c-Fos expression, in vitro and in vivo, without raising significant biosafety risks. This DNA-free, non-invasive approach offers a promising approach for modulating CaV gating and Ca2+ signaling and treating diseases characterized by deficits in CaV functions.
Collapse
Affiliation(s)
- Yuankun Sun
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jinli Geng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Yu Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100072, P. R. China
| | - Yuan Zhong
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100072, P. R. China
| | - Jing Cai
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Xiaodong Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100072, P. R. China
- School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Yaxiong Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University Beijing, Beijing, 100191, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Qin W, Liang F, Lin SJ, Petree C, Huang K, Zhang Y, Li L, Varshney P, Mourrain P, Liu Y, Varshney GK. ABE-ultramax for high-efficiency biallelic adenine base editing in zebrafish. Nat Commun 2024; 15:5613. [PMID: 38965236 PMCID: PMC11224239 DOI: 10.1038/s41467-024-49943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Advancements in CRISPR technology, particularly the development of base editors, revolutionize genetic variant research. When combined with model organisms like zebrafish, base editors significantly accelerate and refine in vivo analysis of genetic variations. However, base editors are restricted by protospacer adjacent motif (PAM) sequences and specific editing windows, hindering their applicability to a broad spectrum of genetic variants. Additionally, base editors can introduce unintended mutations and often exhibit reduced efficiency in living organisms compared to cultured cell lines. Here, we engineer a suite of adenine base editors (ABEs) called ABE-Ultramax (Umax), demonstrating high editing efficiency and low rates of insertions and deletions (indels) in zebrafish. The ABE-Umax suite of editors includes ABEs with shifted, narrowed, or broadened editing windows, reduced bystander mutation frequency, and highly flexible PAM sequence requirements. These advancements have the potential to address previous challenges in disease modeling and advance gene therapy applications.
Collapse
Affiliation(s)
- Wei Qin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fang Liang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yu Zhang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lin Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, 510631, Guangzhou, China.
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631, Guangzhou, China.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Riley KC, Koleilat A, Dugdale JA, Cooper SA, Christensen TA, Schimmenti LA. Three-Dimensional Structure of Inner Ear Hair Cell Ribbon Synapses in a Zebrafish Model of Usher Syndrome Type 1B. Zebrafish 2023; 20:47-54. [PMID: 37071854 DOI: 10.1089/zeb.2022.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Our understanding of inner ear hair cell ultrastructure has heretofore relied upon two-dimensional imaging; however, serial block-face scanning electron microscopy (SBFSEM) changes this paradigm allowing for three-dimensional evaluation. We compared inner ear hair cells of the apical cristae in myo7aa-/- null zebrafish, a model of human Usher Syndrome type 1B, to hair cells in wild-type zebrafish by SBFSEM to investigate possible ribbon synapse ultrastructural differences. Previously, it has been shown that compared to wild type, myo7aa-/- zebrafish neuromast hair cells have fewer ribbon synapses yet similar ribbon areas. We expect the recapitulation of these results within the inner ear apical crista hair cells furthering the knowledge of three-dimensional ribbon synapse structure while resolving the feasibility of therapeutically targeting myo7aa-/- mutant ribbons. In this report, we evaluated ribbon synapse number, volume, surface area, and sphericity. Localization of ribbons and their distance from the nearest innervation were also evaluated. We determined that myo7aa-/- mutant ribbon synapses are smaller in volume and surface area; however, all other measurements were not significantly different from wild-type zebrafish. Because the ribbon synapses are nearly indistinguishable between the myo7aa-/- mutant and wild type, it suggests that the ribbons are structurally receptive, supporting that therapeutic intervention may be feasible.
Collapse
Affiliation(s)
- Kenneth C Riley
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Alaa Koleilat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph A Dugdale
- Department of Otorhinolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Shawna A Cooper
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Trace A Christensen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Microscopy and Cell Analysis Core, and Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Lee MP, Waldhaus J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol Cell Neurosci 2022; 120:103736. [PMID: 35577314 PMCID: PMC9551661 DOI: 10.1016/j.mcn.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.
Collapse
Affiliation(s)
- Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Chatterjee D, Mahabir S, Chatterjee D, Gerlai R. Lasting effects of mild embryonic ethanol exposure on voltage-gated ion channels in adult zebrafish brain. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110327. [PMID: 33864849 DOI: 10.1016/j.pnpbp.2021.110327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The zebrafish is increasingly well utilized in alcohol research, particularly in modeling human fetal alcohol spectrum disorders (FASD). FASD results from alcohol reaching the developing fetus intra utero, a completely preventable yet prevalent and devastating life-long disorder. The hope with animal models, including the zebrafish, is to discover the mechanisms underlying this disease, which may aid treatment and diagnosis. In the past, we developed an embryonic alcohol exposure regimen that is aimed at mimicking the milder, and most prevalent, forms of FASD in zebrafish. We have found numerous lasting alterations in behavior, neurochemistry, neuronal markers and glial cell phenotypes in this zebrafish FASD model. Using the same model (2 h long bath immersion of 24 h post-fertilization old zebrafish eggs into 1% vol/vol ethanol), here we conduct a proof of concept analysis of voltage-gated cation channels, investigating potential embryonic alcohol induced changes in L-, T- and N- type Ca++ and the SCN1A Na+ channels using Western blot followed by immunohistochemical analysis of the same channels in the pallium and cerebellum of the zebrafish brain. We report significant reduction of expression in all four channel proteins using both methods. We conclude that reduced voltage-gated cation channel expression induced by short and low dose exposure to alcohol during embryonic development of zebrafish may contribute to the previously demonstrated lasting behavioral and neurobiological changes.
Collapse
Affiliation(s)
| | - Samantha Mahabir
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| | | | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada.
| |
Collapse
|
6
|
Piller M, Werkman IL, Brown RI, Latimer AJ, Kucenas S. Glutamate Signaling via the AMPAR Subunit GluR4 Regulates Oligodendrocyte Progenitor Cell Migration in the Developing Spinal Cord. J Neurosci 2021; 41:5353-5371. [PMID: 33975920 PMCID: PMC8221590 DOI: 10.1523/jneurosci.2562-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are specified from discrete precursor populations during gliogenesis and migrate extensively from their origins, ultimately distributing throughout the brain and spinal cord during early development. Subsequently, a subset of OPCs differentiates into mature oligodendrocytes, which myelinate axons. This process is necessary for efficient neuronal signaling and organism survival. Previous studies have identified several factors that influence OPC development, including excitatory glutamatergic synapses that form between neurons and OPCs during myelination. However, little is known about how glutamate signaling affects OPC migration before myelination. In this study, we use in vivo, time-lapse imaging in zebrafish in conjunction with genetic and pharmacological perturbation to investigate OPC migration and myelination when the GluR4A ionotropic glutamate receptor subunit is disrupted. In our studies, we observed that gria4a mutant embryos and larvae displayed abnormal OPC migration and altered dorsoventral distribution in the spinal cord. Genetic mosaic analysis confirmed that these effects were cell-autonomous, and we identified that voltage-gated calcium channels were downstream of glutamate receptor signaling in OPCs and could rescue the migration and myelination defects we observed when glutamate signaling was perturbed. These results offer new insights into the complex system of neuron-OPC interactions and reveal a cell-autonomous role for glutamatergic signaling in OPCs during neural development.SIGNIFICANCE STATEMENT The migration of oligodendrocyte progenitor cells (OPCs) is an essential process during development that leads to uniform oligodendrocyte distribution and sufficient myelination for central nervous system function. Here, we demonstrate that the AMPA receptor (AMPAR) subunit GluR4A is an important driver of OPC migration and myelination in vivo and that activated voltage-gated calcium channels are downstream of glutamate receptor signaling in mediating this migration.
Collapse
Affiliation(s)
- Melanie Piller
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Inge L Werkman
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Robin Isadora Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Andrew J Latimer
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
7
|
Parkinson L, Stawicki TM. alms1 mutant zebrafish do not show hair cell phenotypes seen in other cilia mutants. PLoS One 2021; 16:e0246844. [PMID: 33793549 PMCID: PMC8016283 DOI: 10.1371/journal.pone.0246844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
Multiple cilia-associated genes have been shown to affect hair cells in zebrafish (Danio rerio), including the human deafness gene dcdc2, the radial spoke gene rsph9, and multiple intraflagellar transport (IFT) and transition zone genes. Recently a zebrafish alms1 mutant was generated. The ALMS1 gene is the gene mutated in the ciliopathy Alström Syndrome a disease that causes hearing loss among other symptoms. The hearing loss seen in Alström Syndrome may be due in part to hair cell defects as Alms1 mutant mice show stereocilia polarity defects and a loss of hair cells. Hair cell loss is also seen in postmortem analysis of Alström patients. The zebrafish alms1 mutant has metabolic defects similar to those seen in Alström syndrome and Alms1 mutant mice. We wished to investigate if it also had hair cell defects. We, however, failed to find any hair cell related phenotypes in alms1 mutant zebrafish. They had normal lateral line hair cell numbers as both larvae and adults and normal kinocilia formation. They also showed grossly normal swimming behavior, response to vibrational stimuli, and FM1-43 loading. Mutants also showed a normal degree of sensitivity to both short-term neomycin and long-term gentamicin treatment. These results indicate that cilia-associated genes differentially affect different hair cell types.
Collapse
Affiliation(s)
- Lauren Parkinson
- Neuroscience Program, Lafayette College, Easton, Pennsylvania, United States of America
| | - Tamara M. Stawicki
- Neuroscience Program, Lafayette College, Easton, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|