1
|
Lin Q, Wang X, Han X, Peng X, Zhang X, Ran Y, Sun L, Wang Y, Han T, Zhou X. WES and Transcriptome Analysis Identifies FN1 as a Candidate Gene for Anterior Segment Dysgenesis. J Gene Med 2024; 26:e70001. [PMID: 39601165 DOI: 10.1002/jgm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Anterior segment dysgenesis (ASD) disorders are phenotypically diverse and have multiple associated genes. This study reports on a Chinese family of three generations with ASD disorders and identifies several associated genes and pathways of the disorders. METHODS The history of illnesses, clinical observations, and blood samples of all family members were collected. Whole exome sequencing (WES) and polymerase chain reaction (PCR) were conducted to detect the genetic variants between patients and control members in the family. Transcriptomic study and quantitative real-time PCR (qRT-PCR) were subsequently performed to validate the differentially expressed genes (DEGs) and investigate the possible mechanisms of ASD caused by the variations. RESULTS The medical examination and illness history identified four members of the family diagnosed with ASD (III:3, II:3, II:2 and I:2). All four patients suffered various degrees of corneal opacity with abnormally thin cornea. Members II:3, II:2, and I:2 also had cataracts and iris hypoplasia and received an intraocular lens implant before the age of 20. We detected a heterozygous missense variation c.6122G > A (p.R2041Q and rs746145647) in fibronectin1 (FN1) in the four patients in this family that was absent in the other healthy members. The transcriptome and RT-PCR analysis revealed that the FN1 mRNA level was significantly upregulated in the blood samples of patients compared to healthy controls. A total of 909 DEGs were identified, including 607 upregulated genes and 302 downregulated genes. GO and KEGG annotation revealed that many DEGs were involved in biological processes closely related to focal adhesion, extracellular matrix-receptor interaction, TGF-β pathway, and the immune system. CONCLUSION This study identified an FN1 mutation associated with ASD patients and probed potential pathways related to it.
Collapse
Affiliation(s)
- Qinghong Lin
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
- Department of Refractive Surgery, Bright Eye Hospital, Fuzhou, China
| | - Xuejun Wang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Xiaosong Han
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Xiaoliao Peng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Xiaoyu Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Yuwen Ran
- Department of Refractive Surgery, Aier Eye Hospital, Changsha, China
| | - Ling Sun
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Yan Wang
- Department of Refractive Surgery, Bright Eye Hospital, Fuzhou, China
| | - Tian Han
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| | - Xingtao Zhou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, NHC, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Disease, Chinese Academy of Medical Sciences, Shanghai, China
- Ophthalmology and Optometry, Shanghai Research Center, Shanghai, China
- Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care (20DZ2255000), Shanghai, China
| |
Collapse
|
2
|
Cozzitorto C, Peltz Z, Flores LM, Della Santina L, Mao M, Gould DB. Evaluating neural crest cell migration in a Col4a1 mutant mouse model of ocular anterior segment dysgenesis. Cells Dev 2024; 179:203926. [PMID: 38729574 DOI: 10.1016/j.cdev.2024.203926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The periocular mesenchyme (POM) is a transient migratory embryonic tissue derived from neural crest cells (NCCs) and paraxial mesoderm that gives rise to most of the structures in front of the eye. Morphogenetic defects of these structures can impair aqueous humor outflow, leading to elevated intraocular pressure and glaucoma. Mutations in collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome - a multisystem disorder often characterized by variable cerebrovascular, ocular, renal, and neuromuscular manifestations. Approximately one-third of individuals with COL4A1 and COL4A2 mutations have ocular anterior segment dysgenesis (ASD), including congenital glaucoma resulting from abnormalities of POM-derived structures. POM differentiation has been a major focus of ASD research, but the underlying cellular mechanisms are still unclear. Moreover, earlier events including NCC migration and survival defects have been implicated in ASD; however, their roles are not as well understood. Vascular defects are among the most common consequences of COL4A1 and COL4A2 mutations and can influence NCC survival and migration. We therefore hypothesized that NCC migration might be impaired by COL4A1 and COL4A2 mutations. In this study, we used 3D confocal microscopy, gross morphology, and quantitative analyses to test NCC migration in Col4a1 mutant mice. We show that homozygous Col4a1 mutant embryos have severe embryonic growth retardation and lethality, and we identified a potential maternal effect on embryo development. Cerebrovascular defects in heterozygous Col4a1 mutant embryos were present as early as E9.0, showing abnormal cerebral vasculature plexus remodeling compared to controls. We detected abnormal NCC migration within the diencephalic stream and the POM in heterozygous Col4a1 mutants whereby mutant NCCs formed smaller diencephalic migratory streams and POMs. In these settings, migratory NCCs within the diencephalic stream and POM localize farther away from the developing vasculature. Our results show for the first time that Col4a1 mutations lead to cranial NCCs migratory defects in the context of early onset defective angiogenesis without affecting cell numbers, possibly impacting the relation between NCCs and the blood vessels during ASD development.
Collapse
Affiliation(s)
- Corinna Cozzitorto
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States.
| | - Zoe Peltz
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States
| | - Lourdes M Flores
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States
| | - Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States.
| | - Mao Mao
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, San Francisco, CA 94158, United States; Department of Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, United States.
| |
Collapse
|
3
|
Puapatanakul P, Miner JH. Alport syndrome and Alport kidney diseases - elucidating the disease spectrum. Curr Opin Nephrol Hypertens 2024; 33:283-290. [PMID: 38477333 PMCID: PMC10990029 DOI: 10.1097/mnh.0000000000000983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW With the latest classification, variants in three collagen IV genes, COL4A3 , COL4A4 , and COL4A5 , represent the most prevalent genetic kidney disease in humans, exhibiting diverse, complex, and inconsistent clinical manifestations. This review breaks down the disease spectrum and genotype-phenotype correlations of kidney diseases linked to genetic variants in these genes and distinguishes "classic" Alport syndrome (AS) from the less severe nonsyndromic genetically related nephropathies that we suggest be called "Alport kidney diseases". RECENT FINDINGS Several research studies have focused on the genotype-phenotype correlation under the latest classification scheme of AS. The historic diagnoses of "benign familial hematuria" and "thin basement membrane nephropathy" linked to heterozygous variants in COL4A3 or COL4A4 are suggested to be obsolete, but instead classified as autosomal AS by recent expert consensus due to a significant risk of disease progression. SUMMARY The concept of Alport kidney disease extends beyond classic AS. Patients carrying pathogenic variants in any one of the COL4A3/A4/A5 genes can have variable phenotypes ranging from completely normal/clinically unrecognizable, hematuria without or with proteinuria, or progression to chronic kidney disease and kidney failure, depending on sex, genotype, and interplays of other genetic as well as environmental factors.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Mao M, Kuo YM, Yu AK, Labelle-Dumais C, Ou Y, Gould DB. TGFβ Signaling Dysregulation May Contribute to COL4A1-Related Glaucomatous Optic Nerve Damage. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38717426 PMCID: PMC11090142 DOI: 10.1167/iovs.65.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/15/2024] Open
Abstract
Purpose Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFβ) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFβ signaling ameliorated ASD, supporting a role for the TGFβ pathway in disease pathogenesis. Here, we tested whether altered TGFβ signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods To test the role of TGFβ signaling in glaucoma-relevant phenotypes, we genetically reduced TGFβ signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFβ ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFβ receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions Our results suggest that elevated TGFβ signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Alfred K. Yu
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Douglas B. Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, and Bakar Aging Research Institute, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
5
|
Oh JK, Levi SR, de Carvalho JRL, Abdelhakim AH, Hirano M, Maumenee IH, Tsang SH. Venous Tortuosity in COL4A2-Associated Gould Syndrome. Ophthalmic Surg Lasers Imaging Retina 2023; 54:536-539. [PMID: 37642429 DOI: 10.3928/23258160-20230811-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mutations in collagen-encoding genes have been linked to numerous systemic diseases. Specifically, pathologic alterations in COL4A2 have been linked to Gould syndrome, a hereditary angiopathy affecting the brain, kidneys, and eyes. However, the ocular phenotype associated with COL4A2-associated disease has yet to be fully characterized. In this report, we describe a novel variant in COL4A2 identified in a 48-year-old woman and her 15-year-old daughter. Funduscopic examination demonstrated significant venous and arteriolar tortuosity. Genetic testing revealed a novel variant, c.2321G>A:p.(Gly774Glu), in COL4A2. This vascular phenotype is similar to the familial retinal arterial tortuosity seen in COL4A2-associated Gould syndrome with additional venous involvement. [Ophthalmic Surg Lasers Imaging Retina 2023;54:536-539.].
Collapse
|
6
|
Thakore P, Yamasaki E, Ali S, Sanchez Solano A, Labelle-Dumais C, Gao X, Chaumeil MM, Gould DB, Earley S. PI3K block restores age-dependent neurovascular coupling defects associated with cerebral small vessel disease. Proc Natl Acad Sci U S A 2023; 120:e2306479120. [PMID: 37607233 PMCID: PMC10467353 DOI: 10.1073/pnas.2306479120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2) in brain capillary endothelial cells, leading to the loss of inwardly rectifying K+ (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP2 by converting it to phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Evan Yamasaki
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Alfredo Sanchez Solano
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology and Anatomy, Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA94143
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA94143-0628
| | - Myriam M. Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA94158
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA94143-0628
| | - Douglas B. Gould
- Department of Ophthalmology and Anatomy, Institute for Human Genetics, University of California San Francisco School of Medicine, San Francisco, CA94143
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System University of Nevada, Reno School of Medicine, Reno, NV89557-0318
| |
Collapse
|
7
|
Thakore P, Yamasaki E, Ali S, Solano AS, Labelle-Dumais C, Gao X, Chaumeil MM, Gould DB, Earley S. PI3K block restores age-dependent neurovascular coupling defects associated with cerebral small vessel disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531032. [PMID: 36945616 PMCID: PMC10028793 DOI: 10.1101/2023.03.03.531032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Neurovascular coupling (NVC), a vital physiological process that rapidly and precisely directs localized blood flow to the most active regions of the brain, is accomplished in part by the vast network of cerebral capillaries acting as a sensory web capable of detecting increases in neuronal activity and orchestrating the dilation of upstream parenchymal arterioles. Here, we report a Col4a1 mutant mouse model of cerebral small vessel disease (cSVD) with age-dependent defects in capillary-to-arteriole dilation, functional hyperemia in the brain, and memory. The fundamental defect in aged mutant animals was the depletion of the minor membrane phospholipid phosphatidylinositol 4,5 bisphosphate (PIP 2 ) in brain capillary endothelial cells, leading to the loss of inwardly rectifier K + (Kir2.1) channel activity. Blocking phosphatidylinositol-3-kinase (PI3K), an enzyme that diminishes the bioavailability of PIP 2 by converting it to phosphatidylinositol (3,4,5)-trisphosphate (PIP 3 ), restored Kir2.1 channel activity, capillary-to-arteriole dilation, and functional hyperemia. In longitudinal studies, chronic PI3K inhibition also improved the memory function of aged Col4a1 mutant mice. Our data suggest that PI3K inhibition is a viable therapeutic strategy for treating defective NVC and cognitive impairment associated with cSVD. One-sentence summary PI3K inhibition rescues neurovascular coupling defects in cerebral small vessel disease.
Collapse
|
8
|
Mao M, Labelle-Dumais C, Tufa SF, Keene DR, Gould DB. Elevated TGFβ signaling contributes to ocular anterior segment dysgenesis in Col4a1 mutant mice. Matrix Biol 2022; 110:151-173. [PMID: 35525525 PMCID: PMC10410753 DOI: 10.1016/j.matbio.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Ocular anterior segment dysgenesis (ASD) refers to a collection of developmental disorders affecting the anterior structures of the eye. Although a number of genes have been implicated in the etiology of ASD, the underlying pathogenetic mechanisms remain unclear. Mutations in genes encoding collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome, a multi-system disorder that often includes ocular manifestations such as ASD and glaucoma. COL4A1 and COL4A2 are abundant basement membrane proteins that provide structural support to tissues and modulate signaling through interactions with other extracellular matrix proteins, growth factors, and cell surface receptors. In this study, we used a combination of histological, molecular, genetic and pharmacological approaches to demonstrate that altered TGFβ signaling contributes to ASD in mouse models of Gould syndrome. We show that TGFβ signaling was elevated in anterior segments from Col4a1 mutant mice and that genetically reducing TGFβ signaling partially prevented ASD. Notably, we identified distinct roles for TGFβ1 and TGFβ2 in ocular defects observed in Col4a1 mutant mice. Importantly, we show that pharmacologically promoting type IV collagen secretion or reducing TGFβ signaling ameliorated ocular pathology in Col4a1 mutant mice. Overall, our findings demonstrate that altered TGFβ signaling contributes to COL4A1-related ocular dysgenesis and implicate this pathway as a potential therapeutic target for the treatment of Gould syndrome.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Sara F Tufa
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas R Keene
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, United States; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
9
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Boyce D, McGee S, Shank L, Pathak S, Gould D. Epilepsy and related challenges in children with COL4A1 and COL4A2 mutations: A Gould syndrome patient registry. Epilepsy Behav 2021; 125:108365. [PMID: 34735964 DOI: 10.1016/j.yebeh.2021.108365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED Recently, patient advocacy groups started using the name Gould syndrome to describe clinical features of COL4A1 and COL4A2 mutations. Gould syndrome is increasingly identified in genetic screening panels, and because it is a rare disease, there is a disproportionate burden on families to understand the disease and chart the course for clinical care. Among the chief concerns for caregivers of children with Gould syndrome are the challenges faced because of epilepsy, including severe manifestations such as infantile spasms. To document the concerns of the patient population, the Gould Syndrome Foundation established the Gould Syndrome Global Registry (GSGR). METHODS The Gould Syndrome Foundation developed questions for the GSGR with iterative input from patients and caregivers. An institutional review board issued an exemption determination before data collection began. Participants were recruited through social media and clinician referrals. All participants consented electronically, and the data were collected and managed using REDCap electronic data capture tools. De-identified data representing responses received between October 2019 and February 2021 were exported and analyzed with IBM SPSS 27 using descriptive statistics (mean, standard deviation, frequency, range, and percent). RESULTS Seventy families from twelve countries provided data for the registry, representing 100 affected people (40 adults and 60 children). This analysis represents a subanalysis of the 35 out of 60 children <=18 years of age who reported a history of seizures. Nearly half of these participants were diagnosed with infantile spasms. Participants with epilepsy frequently reported developmental delays (88.6%), stroke (60.0%), cerebral palsy (65.7%), and constipation (57.1%). Ten (28.6%) children use a feeding tube. Despite the fact that more than half of respondents reported stroke, only 34.3% reported ever receiving education on stroke recognition. CONCLUSION Here we describe the development and deployment of the first global registry for individuals and family members with Gould syndrome, caused by mutations in COL4A1 and COL4A2. It is important for pediatric neurologists to have access to resources to provide families upon diagnosis. Specifically, all families with Gould Syndrome must have access to infantile spasms awareness and stroke education materials. The Gould Syndrome Foundation is planning several improvements to this patient registry which will encourage collaboration and innovation for the benefit of people living with Gould syndrome.
Collapse
Affiliation(s)
| | - Sheena McGee
- Gould Syndrome Foundation, Cleveland, OH 44106, USA
| | - Lisa Shank
- Military Cardiovascular Outcomes Research (MiCOR) Program, Department of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814, USA; Metis Foundation, San Antonio, TX 78205, USA
| | - Sheel Pathak
- Department of Neurology, Division of Pediatric and Developmental Neurology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Douglas Gould
- Departments of Ophthalmology and Anatomy, Institute for Human Genetics, University of California, San Francisco, School of Medicine, San Francisco, CA 94143 USA
| |
Collapse
|