1
|
Pal China S, Kalyanaraman H, Zhuang S, Cabriales JA, Sah RL, Pilz RB. Protein kinase G2 activation restores Wnt signaling and bone mass in glucocorticoid-induced osteoporosis in mice. JCI Insight 2024; 9:e175089. [PMID: 38885330 PMCID: PMC11383176 DOI: 10.1172/jci.insight.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Osteoporotic fractures are a major complication of long-term glucocorticoid therapy. Glucocorticoids transiently increase bone resorption, but they predominantly inhibit bone formation and induce osteocyte apoptosis, leading to bone loss. Current treatments of glucocorticoid-induced osteoporosis aim mainly at reducing bone resorption and are, therefore, inadequate. We previously showed that signaling via the NO/cGMP/protein kinase G pathway plays a key role in skeletal homeostasis. Here, we show that pharmacological PKG activation with the guanylyl cyclase-1 activator cinaciguat or expression of a constitutively active, mutant PKG2R242Q restored proliferation, differentiation, and survival of primary mouse osteoblasts exposed to dexamethasone. Cinaciguat treatment of WT mice or osteoblast-specific expression of PKG2R242Q in transgenic mice prevented dexamethasone-induced loss of cortical bone mass and strength. These effects of cinaciguat and PKG2R242Q expression were due to preserved bone formation parameters and osteocyte survival. The basis for PKG2's effects appeared to be through recovery of Wnt/β-catenin signaling, which was suppressed by glucocorticoids but critical for proliferation, differentiation, and survival of osteoblast-lineage cells. Cinaciguat reduced dexamethasone activation of osteoclasts, but this did not occur in the PKG2R242Q transgenic mice, suggesting a minor role in osteoprotection. We propose that existing PKG-targeting drugs could represent a novel therapeutic approach to prevent glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
| | | | | | | | - Robert L Sah
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | | |
Collapse
|
2
|
Pei F, Wang M, Wang Y, Pan X, Cen X, Huang X, Jin Y, Zhao Z. Quantitative proteomic analysis of gingival crevicular fluids to identify novel biomarkers of gingival recession in orthodontic patients. J Proteomics 2022; 266:104647. [PMID: 35779762 DOI: 10.1016/j.jprot.2022.104647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify gingival recession-related biomarkers in orthodontic patients, we compared the proteome of gingival crevicular fluids (GCF) from healthy gingiva without orthodontic treatment (GH), healthy gingiva undergoing orthodontic treatment (OGH), and recessed gingiva undergoing orthodontic treatment (OGR). METHODS GCF samples were obtained from the anterior teeth of 15 volunteers (n = 5/group). Quantitative proteomic analysis was performed using DIA-based liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to annotate differentially expressed proteins (DEPs). Receiver-operating characteristic (ROC) analysis was performed to detect and filter biomarker candidates, while Protein-Protein Interaction (PPI) Networks were utilized to determine the interactions between these DEPs. RESULTS A total of 253, 238, and 101 DEPs were found in OGR vs. OGH, OGR vs. GH, and OGH vs. GH groups, respectively. Based on the Venn diagram of three groups, 128 DEPs in OGR vs. OGH group were identified as specific proteins associated with progressive gingival recession (GR) during orthodontic treatment. Molecular function analysis showed that 128 DEPs were enriched in "molecular binding", including antigen binding, RNA binding, double-stranded RNA binding, cadherin binding involved in cell-cell adhesion, vinculin binding, S100 protein binding, and Ral GTPase binding. The majority of these DEPs were also involved in cytoskeletal regulation. In addition, biological process analysis showed an enrichment in translation, while cellular component analysis indicated that 128 DEPs were related to extracellular exosome. Furthermore, Ribosome and Phagosome were the top two terms in KEGG analysis. The results of ROC analysis demonstrated that 26 proteins could be potential biomarker candidates for GR. PPI networks analysis predicted that IQGAP1, ACTN1, TLN1, VASP, FN1, FERMT3, MYO1C, RALA, RPL35, SEC61G, KPNB1, and NPM1 could be involved in the development of GR via cytoskeletal regulation. CONCLUSIONS In summary, we identified several GCF proteins associated with GR after orthodontic treatment. These findings could contribute to the prevention of GR in susceptible patients before the initiation of orthodontic treatment. SIGNIFICANCE Orthodontic patients with GR often report esthetic defects or root hypersensitivity during orthodontic treatment, especially at the anterior teeth site. GCF, rich in protein, is an easily accessible source of potential biomarkers for the diagnosis of periodontal diseases; however, little is known about the changes in GCF proteome associated with GR in orthodontic patients. In this study we firstly used DIA-based LC-MS/MS to evaluate the proteome and to identify the biomarker candidates for GR in orthodontic patients. These findings will improve our understanding of GR during orthodontic treatment, and could contribute to an earlier diagnosis, or even prevention, of GR in susceptible populations before orthodontic treatment.
Collapse
Affiliation(s)
- Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yifan Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Ying Jin
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Augmenting MNK1/2 activation by c-FMS proteolysis promotes osteoclastogenesis and arthritic bone erosion. Bone Res 2021; 9:45. [PMID: 34671034 PMCID: PMC8528869 DOI: 10.1038/s41413-021-00162-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathological bone erosion. Macrophage colony stimulating factor (M-CSF) is abundant in rheumatoid arthritis (RA). However, the role of M-CSF in arthritic bone erosion is not completely understood. Here, we show that M-CSF can promote osteoclastogenesis by triggering the proteolysis of c-FMS, a receptor for M-CSF, leading to the generation of FMS intracellular domain (FICD) fragments. Increased levels of FICD fragments positively regulated osteoclastogenesis but had no effect on inflammatory responses. Moreover, myeloid cell-specific FICD expression in mice resulted in significantly increased osteoclast-mediated bone resorption in an inflammatory arthritis model. The FICD formed a complex with DAP5, and the FICD/DAP5 axis promoted osteoclast differentiation by activating the MNK1/2/EIF4E pathway and enhancing NFATc1 protein expression. Moreover, targeting the MNK1/2 pathway diminished arthritic bone erosion. These results identified a novel role of c-FMS proteolysis in osteoclastogenesis and the pathogenesis of arthritic bone erosion.
Collapse
|
4
|
Inhibition of hypoxia-inducible factor 1α accumulation by glyceryl trinitrate and cyclic guanosine monophosphate. Biosci Rep 2021; 40:221809. [PMID: 31912870 PMCID: PMC6981098 DOI: 10.1042/bsr20192345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
A key mechanism mediating cellular adaptive responses to hypoxia involves the activity of hypoxia-inducible factor 1 (HIF-1), a transcription factor composed of HIF-1α, and HIF-1β subunits. The classical mechanism of regulation of HIF-1 activity involves destabilisation of HIF-1α via oxygen-dependent hydroxylation of proline residues and subsequent proteasomal degradation. Studies from our laboratory revealed that nitric oxide (NO)-mediated activation of cyclic guanosine monophosphate (cGMP) signalling inhibits the acquisition of hypoxia-induced malignant phenotypes in tumour cells. The present study aimed to elucidate a mechanism of HIF-1 regulation involving NO/cGMP signalling. Using human DU145 prostate cancer cells, we assessed the effect of the NO mimetic glyceryl trinitrate (GTN) and the cGMP analogue 8-Bromo-cGMP on hypoxic accumulation of HIF-1α. Concentrations of GTN known to primarily activate the NO/cGMP pathway (100 nM–1 µM) inhibited hypoxia-induced HIF-1α protein accumulation in a time-dependent manner. Incubation with 8-Bromo-cGMP (1 nM–10 µM) also attenuated HIF-1α accumulation, while levels of HIF-1α mRNA remained unaltered by exposure to GTN or 8-Bromo-cGMP. Furthermore, treatment of cells with the calpain (Ca2+-activated proteinase) inhibitor calpastatin attenuated the effects of GTN and 8-Bromo-cGMP on HIF-1α accumulation. However, since calpain activity was not affected by incubation of DU145 cells with various concentrations of GTN or 8-Bromo-cGMP (10 nM or 1 µM) under hypoxic or well-oxygenated conditions, it is unlikely that NO/cGMP signalling inhibits HIF-1α accumulation via regulation of calpain activity. These findings provide evidence for a role of NO/cGMP signalling in the regulation of HIF-1α, and hence HIF-1-mediated hypoxic responses, via a mechanism dependent on calpain.
Collapse
|
5
|
Wang JW, Yeh CB, Chou SJ, Lu KC, Chu TH, Chen WY, Chien JL, Yen MH, Chen TH, Shyu JF. YC-1 alleviates bone loss in ovariectomized rats by inhibiting bone resorption and inducing extrinsic apoptosis in osteoclasts. J Bone Miner Metab 2018; 36:508-518. [PMID: 28983668 DOI: 10.1007/s00774-017-0866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a major health problem in postmenopausal women and the elderly that leads to fractures associated with substantial morbidity and mortality. Current osteoporosis therapies have significant drawbacks, and the risk of fragility fractures has not yet been eliminated. There remains an unmet need for a broader range of therapeutics. Previous studies have shown that YC-1 has important regulatory functions in the cardiovascular and nervous systems. Many of the YC-1 effector molecules in platelets, smooth muscle cells and neurons, such as cGMP and μ-calpain, also have important functions in osteoclasts. In this study, we explored the effects of YC-1 on bone remodeling and determined the potential of YC-1 as a treatment for postmenopausal osteoporosis. Micro-computed tomography of lumbar vertebrae showed that YC-1 significantly improved trabecular bone microarchitecture in ovariectomized rats compared with sham-operated rats. YC-1 also significantly reversed the increases in serum bone resorption and formation in these rats, as measured by enzyme immunoassays for serum CTX-1 and P1NP, respectively. Actin ring and pit formation assays and TRAP staining analysis showed that YC-1 inhibited osteoclast activity and survival. YC-1 induced extrinsic apoptosis in osteoclasts by activating caspase-3 and caspase-8. In osteoclasts, YC-1 stimulated μ-calpain activity and inhibited Src activity. Our findings provide proof-of-concept for YC-1 as a novel antiresorptive treatment strategy for postmenopausal osteoporosis, confirming an important role of nitric oxide/cGMP/protein kinase G signaling in bone.
Collapse
Affiliation(s)
- Jin-Wen Wang
- Department of Orthopedics, Chiali Hospital, Chi Mei Medical Center, Chiali, Taiwan, ROC
| | - Chin-Bin Yeh
- Department of Psychiatry, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Shao-Jiun Chou
- Department of General Surgery, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Kuo-Cheng Lu
- Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Tzu-Hui Chu
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC
| | - Wei-Yu Chen
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC
| | - Jui-Lin Chien
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC
| | - Mao-Hsiung Yen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Tien-Hua Chen
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Taipei, Taiwan, ROC
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, 161 Ming Chuan E. Road Section 6, Taipei, 114, Taiwan, ROC.
| |
Collapse
|
6
|
Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018; 76:62-70. [PMID: 29550520 PMCID: PMC9990405 DOI: 10.1016/j.niox.2018.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA.
| |
Collapse
|
7
|
O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH. The roles of ions on bone regeneration. Drug Discov Today 2018; 23:879-890. [DOI: 10.1016/j.drudis.2018.01.049] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
|
8
|
Park R, Ji JD. Calcium channels: the potential therapeutic targets for inflammatory bone destruction of rheumatoid arthritis. Inflamm Res 2016; 65:347-54. [PMID: 26852086 DOI: 10.1007/s00011-016-0920-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/23/2016] [Accepted: 01/26/2016] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Inflammatory bone resorption causes progressive joint destruction which ultimately leads to functional disability in rheumatoid arthritis (RA). The primary cell responsible for bone resorption is the osteoclast, which means it is a potential therapeutic target against bone destruction. In fact, experimental and clinical findings suggest that blockade of osteoclast differentiation and function is highly effective in inhibiting bone destruction in RA. DISCUSSION AND CONCLUSION In this report, we show several lines of experimental evidence which suggest that a variety of Ca(2+) channels are essential in osteoclast differentiation and function, and present a hypothesis that modulation of Ca(2+) channels is a highly effective therapeutic strategy in preventing osteoclast-induced structural damage in RA.
Collapse
Affiliation(s)
- Robin Park
- Division of Rheumatology, College of Medicine, Korea University, 126-1, Anam-Dong 5-Ga, Sungbuk-Ku, Seoul, 136-705, South Korea
| | - Jong Dae Ji
- Division of Rheumatology, College of Medicine, Korea University, 126-1, Anam-Dong 5-Ga, Sungbuk-Ku, Seoul, 136-705, South Korea.
| |
Collapse
|
9
|
Blair HC, Soboloff J, Robinson LJ, Tourkova IL, Larrouture QC, Witt MR, Holaskova I, Schafer R, Elliott M, Hirsch R, Barnett JB. Suppression of arthritis-induced bone erosion by a CRAC channel antagonist. RMD Open 2016; 2:e000093. [PMID: 26819750 PMCID: PMC4716559 DOI: 10.1136/rmdopen-2015-000093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022] Open
Abstract
Objective We have shown in vitro and in vivo that osteoclast maturation requires calcium-release activated calcium (CRAC) channels. In inflammatory arthritis, osteoclasts mediate severe and debilitating bone erosion. In the current study, we assess the value of CRAC channels as a therapeutic target to suppress bone erosion in acute inflammatory arthritis. Methods Collagen-induced arthritis (CIA) was induced in mice. The CRAC channel inhibitor 3,4-dichloropropionaniline (DCPA) and a placebo was administered 1 day prior to collagen II booster to induce arthritis. Effects on swelling, inflammatory cell invasion in joints, serum cytokines and bone erosion were measured. Results Assays, by blinded observers, of arthritis severity showed that DCPA, 21 mg/kg/day, suppressed arthritis development over 3 weeks. Bone and cartilage damage in sections of animal feet was reduced approximately 50%; overall swelling of joints was reduced by a similar amount. Effects on bone density by µCT showed clear separation in DCPA-treated CIA animals from CIA without treatment, while differences between controls without CIA and CIA treated with DCPA differed by small amounts and in most cases were not statistically different. Response was not related to anticollagen titres. There were no adverse effects in the treated group on animal weight or activity, consistent with low toxicity. The effect was maximal 12–17 days after collagen booster, during the rapid appearance of arthritis in untreated CIA. At 20 days after treatment (day 40), differences in arthritis score were reduced and tumour necrosis factor α, interleukin (IL)-1, or IL-6 in the serum of the animals were similar in treated and untreated animals. Conclusions DCPA, a novel inhibitor of CRAC channels, suppresses bone erosion associated with acute arthritis in mice and might represent a new treatment modality for acute arthrits.
Collapse
Affiliation(s)
- Harry C Blair
- Departments of Pathology and of Cell Biology , The Pittsburgh VA Medical Center and the University of Pittsburgh , Pittsburgh , USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology and the Department of Medical Genetics & Molecular Biochemistry , Temple University School of Medicine , Philadelphia, Pennsylvania , USA
| | - Lisa J Robinson
- Departments of Pathology and of Microbiology, Immunology & Cell Biology , West Virginia University School of Medicine , Morgantown, West Virginia , USA
| | - Irina L Tourkova
- Departments of Pathology and of Cell Biology , The Pittsburgh VA Medical Center and the University of Pittsburgh , Pittsburgh , USA
| | - Quitterie C Larrouture
- Departments of Pathology and of Cell Biology , The Pittsburgh VA Medical Center and the University of Pittsburgh , Pittsburgh , USA
| | - Michelle R Witt
- Departments of Pathology and of Cell Biology , The Pittsburgh VA Medical Center and the University of Pittsburgh , Pittsburgh , USA
| | - Ida Holaskova
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center , West Virginia University School of Medicine , Morgantown, West Virginia , USA
| | - Rosana Schafer
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center , West Virginia University School of Medicine , Morgantown, West Virginia , USA
| | - Meenal Elliott
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center , West Virginia University School of Medicine , Morgantown, West Virginia , USA
| | - Raphael Hirsch
- Department of Pediatrics , University of Iowa Carver College of Medicine , Iowa City ,
| | - John B Barnett
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center , West Virginia University School of Medicine , Morgantown, West Virginia , USA
| |
Collapse
|
10
|
Wheal BD, Beach RJ, Tanabe N, Dixon SJ, Sims SM. Subcellular elevation of cytosolic free calcium is required for osteoclast migration. J Bone Miner Res 2014; 29:725-34. [PMID: 23956003 DOI: 10.1002/jbmr.2068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/15/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022]
Abstract
Osteoclasts are multinucleated cells responsible for the resorption of bone and other mineralized tissues during development, physiological remodeling, and pathological bone loss. Osteoclasts have the ability to resorb substrate while concurrently migrating. However, the subcellular processes underlying migration are not well understood. It has been proposed that, in other cell types, cytosolic free Ca(2+) concentration ([Ca(2+) ]i ) regulates cell protrusion as well as retraction. Integration of these distinct events would require precise spatiotemporal patterning of subcellular Ca(2+) . The large size of osteoclasts offers a unique opportunity to monitor patterns of Ca(2+) during cell migration. We used ratiometric imaging to map [Ca(2+) ]i within rat and mouse osteoclasts. Migration was characterized by lamellipodial outgrowth at the leading edge, along with intermittent retraction of the uropod. Migrating osteoclasts displayed elevation of [Ca(2+) ]i in the uropod, that began prior to retraction. Dissipation of this [Ca(2+) ]i gradient by loading osteoclasts with the Ca(2+) chelator BAPTA abolished uropod retraction, on both glass and mineralized substrates. In contrast, elevation of [Ca(2+) ]i using ionomycin initiated prompt uropod retraction. To investigate downstream effectors, we treated cells with calpain inhibitor-1, which impaired uropod retraction. In contrast, lamellipodial outgrowth at the leading edge of osteoclasts was unaffected by any of these interventions, indicating that the signals regulating outgrowth are distinct from those triggering retraction. The large size of mature, multinucleated osteoclasts allowed us to discern a novel spatiotemporal pattern of Ca(2+) involved in cell migration. Whereas localized elevation of Ca(2+) is necessary for uropod retraction, lamellipod outgrowth is independent of Ca(2+) -a heretofore unrecognized degree of specificity underlying the regulation of osteoclast migration.
Collapse
Affiliation(s)
- Benjamin D Wheal
- Graduate Program in Neuroscience, The University of Western Ontario, London, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
11
|
Lakhkar NJ, Lee IH, Kim HW, Salih V, Wall IB, Knowles JC. Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv Drug Deliv Rev 2013; 65:405-20. [PMID: 22664230 DOI: 10.1016/j.addr.2012.05.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/27/2012] [Accepted: 05/28/2012] [Indexed: 12/28/2022]
Abstract
The role of metal ions in the body and particularly in the formation, regulation and maintenance of bone is only just starting to be unravelled. The role of some ions, such as zinc, is more clearly understood due to its central importance in proteins. However, a whole spectrum of other ions is known to affect bone formation but the exact mechanism is unclear as the effects can be complex, multifactorial and also subtle. Furthermore, a significant number of studies utilise single doses in cell culture medium, whereas the continual, sustained release of an ion may initiate and mediate a completely different response. We have reviewed the role of the most significant ions that are known to play a role in bone formation, namely calcium, zinc, strontium, magnesium, boron, titanium and also phosphate anions as well as copper and its role in angiogenesis, an important process interlinked with osteogenesis. This review will also examine how delivery systems may offer an alternative way of providing sustained release of these ions which may effect and potentiate a more appropriate and rapid tissue response.
Collapse
Affiliation(s)
- Nilay J Lakhkar
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, 256 Gray's Inn Rd, London, WC1X 8LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Robinson LJ, Mancarella S, Songsawad D, Tourkova IL, Barnett JB, Gill DL, Soboloff J, Blair HC. Gene disruption of the calcium channel Orai1 results in inhibition of osteoclast and osteoblast differentiation and impairs skeletal development. J Transl Med 2012; 92:1071-83. [PMID: 22546867 PMCID: PMC3387291 DOI: 10.1038/labinvest.2012.72] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Calcium signaling plays a central role in the regulation of bone cells, although uncertainty remains with regard to the channels involved. In previous studies, we determined that the calcium channel Orai1 was required for the formation of multinucleated osteoclasts in vitro. To define the skeletal functions of calcium release-activated calcium currents, we compared the mice with targeted deletion of the calcium channel Orai1 to wild-type littermate controls, and examined differentiation and function of osteoblast and osteoclast precursors in vitro with and without Orai1 inhibition. Consistent with in vitro findings, Orai1(-/-) mice lacked multinucleated osteoclasts. Yet, they did not develop osteopetrosis. Mononuclear cells expressing osteoclast products were found in Orai1(-/-) mice, and in vitro studies showed significantly reduced, but not absent, mineral resorption by the mononuclear osteoclast-like cells that form in culture from peripheral blood monocytic cells when Orai1 is inhibited. More prominent in Orai1(-/-) mice was a decrease in bone with retention of fetal cartilage. Micro-computed tomography showed reduced cortical ossification and thinned trabeculae in Orai1(-/-) animals compared with controls; bone deposition was markedly decreased in the knockout mice. This suggested a previously unrecognized role for Orai1 within osteoblasts. Analysis of osteoblasts and precursors in Orai1(-/-) and control mice showed a significant decrease in alkaline phosphatase-expressing osteoblasts. In vitro studies confirmed that inhibiting Orai1 activity impaired differentiation and function of human osteoblasts, supporting a critical function for Orai1 in osteoblasts, in addition to its role as a regulator of osteoclast formation.
Collapse
Affiliation(s)
- Lisa J. Robinson
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.
| | - Salvatore Mancarella
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140.
| | - Duangrat Songsawad
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.
| | - Irina L. Tourkova
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506.
| | - Donald L. Gill
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140.
| | - Jonathan Soboloff
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140.
| | - Harry C. Blair
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.
,Veteran’s Affairs Medical Center, Pittsburgh, PA 15216.
| |
Collapse
|
13
|
Mellis DJ, Itzstein C, Helfrich MH, Crockett JC. The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 2011; 211:131-43. [PMID: 21903860 DOI: 10.1530/joe-11-0212] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoclasts are the specialised cells that resorb bone matrix and are important both for the growth and shaping of bones throughout development as well as during the process of bone remodelling that occurs throughout life to maintain a healthy skeleton. Osteoclast formation, function and survival are tightly regulated by a network of signalling pathways, many of which have been identified through the study of rare monogenic diseases, knockout mouse models and animal strains carrying naturally occurring mutations in key molecules. In this review, we describe the processes of osteoclast formation, activation and function and discuss the major transcription factors and signalling pathways (including those that control the cytoskeletal rearrangements) that are important at each stage.
Collapse
Affiliation(s)
- David J Mellis
- Musculoskeletal Research Programme, University of Aberdeen, Institute of Medical Sciences, Foresterhill, UK
| | | | | | | |
Collapse
|
14
|
Blair HC, Robinson LJ, Huang CLH, Sun L, Friedman PA, Schlesinger PH, Zaidi M. Calcium and bone disease. Biofactors 2011; 37:159-67. [PMID: 21674636 PMCID: PMC3608212 DOI: 10.1002/biof.143] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/18/2010] [Indexed: 11/12/2022]
Abstract
Calcium transport and calcium signaling are of basic importance in bone cells. Bone is the major store of calcium and a key regulatory organ for calcium homeostasis. Bone, in major part, responds to calcium-dependent signals from the parathyroids and via vitamin D metabolites, although bone retains direct response to extracellular calcium if parathyroid regulation is lost. Improved understanding of calcium transporters and calcium-regulated cellular processes has resulted from analysis of genetic defects, including several defects with low or high bone mass. Osteoblasts deposit calcium by mechanisms including phosphate and calcium transport with alkalinization to absorb acid created by mineral deposition; cartilage calcium mineralization occurs by passive diffusion and phosphate production. Calcium mobilization by osteoclasts is mediated by acid secretion. Both bone forming and bone resorbing cells use calcium signals as regulators of differentiation and activity. This has been studied in more detail in osteoclasts, where both osteoclast differentiation and motility are regulated by calcium.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh, Veterans Affairs Health System, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Calcium signaling in osteoclasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:979-83. [PMID: 21075150 DOI: 10.1016/j.bbamcr.2010.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 01/25/2023]
Abstract
It has long been known that many bone diseases, including osteoporosis, involve abnormalities in osteoclastic bone resorption. As a result, there has been intense study of the mechanisms that regulate both the differentiation and bone resorbing function of osteoclast cells. Calcium (Ca(2+)) signaling appears to play a critical role in the differentiation and functions of osteoclasts. Cytoplasmic Ca(2+) oscillations occur during RANKL-mediated osteoclastogenesis. Ca(2+) oscillations provide a digital Ca(2+) signal that induces osteoclasts to up-regulate and autoamplify nuclear factor of activated T cells c1 (NFATc1), a Ca(2+)/calcineurin-dependent master regulator of osteoclastogenesis. Here we review previous studies on Ca(2+) signaling in osteoclasts as well as recent breakthroughs in understanding the basis of RANKL-induced Ca(2+) oscillations, and we discuss possible molecular players in this specialized Ca(2+) response that appears pivotal for normal bone function. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
16
|
Trifunović D, Dengler K, Michalakis S, Zrenner E, Wissinger B, Paquet-Durand F. cGMP-dependent cone photoreceptor degeneration in the cpfl1 mouse retina. J Comp Neurol 2010; 518:3604-17. [PMID: 20593360 DOI: 10.1002/cne.22416] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inherited retinal degeneration affecting both rod and cone photoreceptors constitutes one of the leading causes of blindness in the developed world. Such degeneration is at present untreatable, and the underlying neurodegenerative mechanisms are unknown, even though certain genetic causes have been established. The rd1 mouse is one of the best characterized animal models for rod photoreceptor degeneration, whereas the cpfl1 mouse is a recently discovered model for cone cell death. Because both animal models are affected by functionally similar mutations in the rod and cone phosphodiesterase 6 genes, respectively, we asked whether the mechanisms of photoreceptor degeneration in these two mouse lines share common pathways. In the present study, we followed the temporal progression of photoreceptor degeneration in the cpfl1 retina, correlated it with specific metabolic markers, and compared it with the wild-type and the rd1 situation. Similar to corresponding rd1 observations, cpfl1 cone photoreceptor cell death was associated with an accumulation of cyclic guanosine monophosphate (cGMP), activity of calpains, and phosphorylation of vasodilator-stimulated protein (VASP). Cone degeneration progressed rapidly, with a peak in cell death around postnatal day 24. Furthermore, cpfl1 cone photoreceptor migration during early postnatal development was delayed significantly compared with the corresponding wild-type retina. The finding that rod and cone photoreceptor degeneration was associated with the same metabolic markers suggests that in both cell types similar degenerative mechanisms are active. This raises the possibility that equivalent neuroprotective strategies may be used to prevent both rod and cone photoreceptor degeneration.
Collapse
Affiliation(s)
- Dragana Trifunović
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076 Germany
| | | | | | | | | | | |
Collapse
|
17
|
Functional osteoclast attachment requires inositol-1,4,5-trisphosphate receptor-associated cGMP-dependent kinase substrate. J Transl Med 2010; 90:1533-42. [PMID: 20567233 PMCID: PMC3114438 DOI: 10.1038/labinvest.2010.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Osteoclast activity is central to balanced bone turnover to maintain normal bone mass. A specialized osteoclast attachment to bone localizes acid secretion to remove bone mineral; in some cases, attachment is functionally impaired despite normal attachment proteins. The inositol-1,4,5-trisphosphate receptor-1 (IP3R1) is an intracellular calcium channel required for regulation of reversible osteoclast attachment by nitric oxide (NO), an important regulator of both normal and pathological bone degradation. In studies using human osteoclasts produced in vitro, we found that IP3R1 binds an endosomal isoform of the IP3R-associated cGMP-dependent kinase substrate (IRAG). IRAG is a substrate of cGMP-dependent kinase-1 (PKG1) and binds the PKG1 isoform PKG1β, which was the predominant form of PKG1 in human osteoclasts. Western blots of IRAG were consistent with NO-dependent serine phosphorylation of IRAG. An additional effect of PKG1β activity in osteoclasts was disassociation of IP3R1-IRAG complexes, as shown by analysis of IP3R1 complexes and by localization of the proteins within cells. IP3R1-IRAG complexes were stabilized by PKG or Src antagonists, Src activity being a requirement for IP3R1 calcium release downstream of PKG. IP3R1-mediated calcium release regulates cellular detachment in part through the calcium-dependent proteinase μ-calpain. In osteoclasts with IRAG suppressed by siRNA, activity of μ-calpain was increased relative to cells with normal IRAG, and regulation of μ-calpain by NO was lost. Furthermore, cells deficient in IRAG detached easily from substrate and had smaller attached diameters and randomly distributed podosomes, although IRAG knockdown did not affect cell viability. Our results indicate that IRAG is required for PKG1β-regulated cyclic calcium release during motility, and that disruption of the IP3R1-IRAG calcium regulation system is a novel cause of dysfunctional osteoclasts unrelated to defects in attachment proteins or acid secretion.
Collapse
|
18
|
Paquet-Durand F, Sanges D, McCall J, Silva J, van Veen T, Marigo V, Ekström P. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem 2010; 115:930-40. [PMID: 20807308 DOI: 10.1111/j.1471-4159.2010.06983.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoreceptor degeneration is the hallmark of a group of inherited blinding diseases collectively termed retinitis pigmentosa (RP); a major cause of blindness in humans. RP is at present untreatable and the underlying neurodegenerative mechanisms are largely unknown, even though the genetic causes are often established. The activation of calpain-type proteases may play an important role in cell death in various neuronal tissues, including the retina. We therefore tested the efficacy of two different calpain inhibitors in preventing cell death in the retinal degeneration (rd1) human homologous mouse model for RP. Pharmacological inhibition of calpain activity in rd1 organotypic retinal explants had ambiguous effects on photoreceptor viability. Calpain inhibitor XI had protective effects when applied for short periods of time (16 h) but demonstrated substantial levels of toxicity in both wild-type and rd1 retina when used over several days. In contrast, the highly specific calpain inhibitor calpastatin peptide reduced photoreceptor cell death in vitro after both short and prolonged exposure, an effect that was also evident after in vivo application via intravitreal injection. These findings highlight the importance of calpain activation for photoreceptor cell death but also for photoreceptor survival and propose the use of highly specific calpain inhibitors to prevent or delay RP.
Collapse
Affiliation(s)
- François Paquet-Durand
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Robinson LJ, Blair HC, Barnett JB, Zaidi M, Huang CLH. Regulation of bone turnover by calcium-regulated calcium channels. Ann N Y Acad Sci 2010; 1192:351-7. [PMID: 20392259 DOI: 10.1111/j.1749-6632.2009.05219.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium plays multiple roles in osteoclast formation, survival, and activity. Intracellular calcium is determined both by the release of intracellular stores and the influx of extracellular calcium through a variety of calcium channels. Osteoclasts express several classes of calcium channels, including ryanodine receptors (RyRs), inositol-1,4,5-trisphosphate receptors (IP(3)Rs), and calcium release-activated calcium channels (CRACs), which respond to depletion of intracellular stores. IP(3)R2 is expressed in osteoclast precursors and activated by cytokines that stimulate osteoclast differentiation. In mature osteoclasts, the IP(3)R1 isoform is highly expressed and is implicated in nitric oxide-cGMP-stimulated processes. RyR calcium channels may contribute to the release of intracellular calcium stores, while RyR2 in the plasma membrane may act to limit osteoclast activity based on extracellular calcium concentration. Orai, through regulation by endoplasmic reticular store-sensing proteins, including Stim-1, may also mediate calcium influx and act as a signal amplifier for calcium release by other calcium channels. Together, these receptors allow intracellular Ca(2+) signals to modulate bone turnover and, through calcium-sensing functions, allow coupling of osteoclast activity to extracellular conditions and integrating additional cytokine and nitric oxide signals via transient intracellular calcium signals.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | |
Collapse
|
20
|
Robinson LJ, Tourkova I, Wang Y, Sharrow AC, Landau MS, Yaroslavskiy BB, Sun L, Zaidi M, Blair HC. FSH-receptor isoforms and FSH-dependent gene transcription in human monocytes and osteoclasts. Biochem Biophys Res Commun 2010; 394:12-7. [PMID: 20171950 DOI: 10.1016/j.bbrc.2010.02.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Cells of the monocyte series respond to follicle stimulating hormone (FSH) by poorly characterized mechanisms. We studied FSH-receptors (FSH-R) and FSH response in nontransformed human monocytes and in osteoclasts differentiated from these cells. Western blot and PCR confirmed FSH-R expression on monocytes or osteoclasts, although at low levels relative to ovarian controls. Monocyte and osteoclast FSH-Rs differed from FSH-R from ovarian cells, reflecting variable splicing in exons 8-10. Monocytes produced no cAMP, the major signal in ovarian cells, in response to FSH. However, monocytes and osteoclasts transcribed TNFalpha in response to the FSH. No relation of expression of osteoclast FSH-R to the sex of cell donors or to exposure to sex hormones was apparent. Controls for FSH purity and endotoxin contamination were negative. Unamplified cRNA screening in adherent CD14 cells after 2h in 25ng/ml FSH showed increased transcription of RANKL signalling proteins. Transcription of key proteins that stimulate bone turnover, TNFalpha and TSG-6, increased 2- to 3-fold after FSH treatment. Smaller but significant changes occurred in transcripts of selected signalling, adhesion, and cytoskeletal proteins. We conclude that monocyte and osteoclast FSH response diverges from that of ovarian cells, reflecting, at least in part, varying FSH-R isoforms.
Collapse
Affiliation(s)
- Lisa J Robinson
- Departments of Pathology and of Cell Biology and Physiology, University of Pittsburgh, and Veteran's Affairs Medical Center, Pittsburgh, PA 15243, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In vitro differentiated monocytes were used to characterize the cellular defect in a type of osteopetrosis with minimally functional osteoclasts, in which defects associated with common causes of osteopetrosis were excluded by gene sequencing. Monocytes from the blood of a 28-year-old patient were differentiated in media with RANKL and CSF-1. Cell fusion, acid compartments within cells, and tartrate resistant acid phosphatase (TRAP) activity were normal. However, the osteoclasts made abnormally small pits on the dentine. Phalloidin labeling showed that the cell attachments lacked the peripheral ring structure that supports lacunar resorption. Instead, the osteoclasts had clusters of podosomes near the center of cell attachments. Antibody to the alphavbeta3 integrin pair or to the C-terminal of beta3 did not label podosomes, but antibody to alphav labeled them. Western blots using antibody to the N-terminal of beta3 showed a protein of reduced size. Integrins beta1 and beta5 were upregulated, but, in contrast to observations in beta3 defects, alpha2 had not increased. The rho-GTP exchange protein Vav3, a key attachment organizing protein, did not localize normally with peripheral attachment structures. Vav3 forms of 70 kD and 90 kD were identified on western blots. However, the proteins beta3 integrin, Vav3, Plekhm1, and Src, implicated in attachment defects, had normal exon sequences. In this new type of osteopetrosis, the integrin-organizing complex is dysfunctional, and at least two attachment proteins may be partially degraded.
Collapse
|
22
|
Paquet-Durand F, Hauck SM, van Veen T, Ueffing M, Ekström P. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem 2009; 108:796-810. [PMID: 19187097 DOI: 10.1111/j.1471-4159.2008.05822.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photoreceptor degeneration in retinitis pigmentosa is one of the leading causes of hereditary blindness in the developed world. Although causative genetic mutations have been elucidated in many cases, the underlying neuronal degeneration mechanisms are still unknown. Here, we show that activation of cGMP-dependent protein kinase (PKG) hallmarks photoreceptor degeneration in rd1 and rd2 human homologous mouse models. When induced in wild-type retinae, PKG activity was both necessary and sufficient to trigger cGMP-mediated photoreceptor cell death. Target-specific, pharmacological inhibition of PKG activity in both rd1 and rd2 retinae strongly reduced photoreceptor cell death in organotypic retinal explants. Likewise, inhibition of PKG in vivo, using three different application paradigms, resulted in robust photoreceptor protection in the rd1 retina. These findings suggest a pivotal role for PKG activity in cGMP-mediated photoreceptor degeneration mechanisms and highlight the importance of PKG as a novel target for the pharmacological intervention in RP.
Collapse
Affiliation(s)
- François Paquet-Durand
- University of Tübingen, Centre for Ophthalmology, Institute for Ophthalmic Research, Division of Experimental Ophthalmology, Röntgenweg 11, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
23
|
Robinson LJ, Yaroslavskiy BB, Griswold RD, Zadorozny EV, Guo L, Tourkova IL, Blair HC. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-alpha with BCAR1 and Traf6. Exp Cell Res 2009; 315:1287-301. [PMID: 19331827 DOI: 10.1016/j.yexcr.2009.01.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/28/2008] [Accepted: 01/16/2009] [Indexed: 01/08/2023]
Abstract
The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at approximately 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-beta-estradiol. Estrogen receptor-alpha (ERalpha) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ERalpha. However, ERalpha was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ERalpha in the presence of estrogen, was abundant. Immunoprecipitation showed rapid (approximately 5 min) estrogen-dependent formation of ERalpha-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-kappaB activity, precipitated with this complex. Reduction of NF-kappaB nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of IkappaB in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ERalpha.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Dinh H, Scholz GM, Hamilton JA. Regulation of WAVE1 expression in macrophages at multiple levels. J Leukoc Biol 2008; 84:1483-91. [DOI: 10.1189/jlb.0308216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|